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Projective filtering of the fundamental eigenmode from spatially multimode radiation

A. M. Pérez,1,2,* P. R. Sharapova,3 S. S. Straupe,3 F. M. Miatto,4 O. V. Tikhonova,3,5 G. Leuchs,1,2 and M. V. Chekhova1,2,3

1Max-Planck Institute for the Science of Light, Günther-Scharowsky-Str.1/Bau 24, Erlangen D-91058, Germany
2Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstrasse 7/B2, 91058 Erlangen, Germany

3Physics Department, Moscow State University, Leninskiye Gory 1-2, Moscow 119991, Russia
4Department of Physics, University of Ottawa, Ottawa, ON, Canada K1N 6N5

5Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
(Received 23 February 2015; published 30 November 2015)

Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem
crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of
nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain
parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a
huge increase in the information capacity provided that each mode can be addressed separately. However, the
nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses.
Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of
bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode
can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not
affect the targeted mode and leaves it usable for further applications.

DOI: 10.1103/PhysRevA.92.053861 PACS number(s): 42.65.Lm, 42.50.Ar, 42.50.Dv, 42.65.Yj

I. INTRODUCTION

Sources with a perfectly single-mode spatial spectrum are
desirable but rare; an example is a laser with the beam quality
factor M2 = 1. Most sources contain multiple spatial modes,
which leads to the need for filtering methods. Preferably,
these methods should be lossless; i.e., they should maintain
all energy contained in the filtered mode. This is important for
laser sources but becomes absolutely crucial for certain types
of nonclassical light because of the destructive role of losses.

Although formally one can choose free-space modes in
many different ways, the most common example being plane-
wave modes, spatial coherence dictates a special choice of
eigenmodes for each type of radiation. For instance, if a mode
has to contain all spatially coherent radiation, it has to be
chosen according to the Mercer expansion [1] of the first-
order Glauber’s correlation function. The Mercer expansion
provides the so-called coherent modes because the radiation
within each of them is coherent.

Very similar to Mercer expansion is the Schmidt decom-
position. While the Mercer expansion describes coherence
of partially coherent light, the Schmidt decomposition also
accounts for photon-number correlations. Within a certain
Schmidt mode the radiation is coherent and has photon-number
correlations only with itself or with a single matching mode.
Such modes, which typically are not monochromatic plane
waves, have been used to describe nonclassical light, mostly
for frequency or temporal modes and sometimes also for wave
vector or spatial modes. Bennink and Boyd introduced the term
“squeezing modes” for describing squeezing within a broad
frequency spectrum of a traveling-wave parametric amplifier
[2]. Opatrny and coworkers used the same concept to describe
frequency correlations for Kerr-squeezed pulses in optical
fibers [3]. It is worth stressing that the “squeezing modes”

*Corresponding author: angela.perez@mpl.mpg.de

of Ref. [2] as well as the “broadband modes” of Ref. [3] and
the Schmidt modes mentioned further here are the same eigen-
modes, the ones that diagonalize the Hamiltonian producing
the radiation. It has been shown [2] that without a proper
selection of such modes, the degree of measured squeezing
decreases considerably. This is a consequence of the fragility of
squeezing to losses. In the case of multimode bright squeezed
vacuum (BSV), generated through high-gain parametric down-
conversion (PDC) [4] or four-wave mixing (FWM) [5], the
necessity to filter out a single Schmidt mode in a clean
way, without losing its photons or admixing photons from
different modes, is especially important due to strong thermal
fluctuations within each mode [6–8]. If unmatched modes are
detected, these fluctuations completely destroy the squeezing.

There exists a partial solution in the case of homodyne
detection, where one detects only the modes matching the ones
of the local oscillator. It is therefore possible to select proper
modes by tailoring the radiation of the local oscillator. In a
series of works [9], Fabre, Treps, and coworkers studied BSV
generated by frequency combs and its eigenmodes (referred
to there as “supermodes”). They detected the eigenmodes
selectively using a specially tailored local oscillator. A similar
strategy of tailoring the local oscillator is applied in experi-
ments with spatially multimode BSV produced via FWM [10].
However, in homodyne detection one cannot make use of the
radiation in the selected mode, for instance, by coupling it with
atoms or mechanical systems. If we seek any further use of
nonclassical light, we need another type of projective filtering,
a nondestructive one.

As a solution, here we consider filtering of a spatial
mode with an optical fiber. We will show in Sec. II that
an optical fiber performs the projection of the input spatial
spectrum on its eigenmode, which can be considered, to a
good approximation, as a Gaussian beam. We should stress
that only in the case where the fiber eigenmode coincides
with the radiation Schmidt mode, the filtering procedure will
retain all features of the initial radiation such as coherence,
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peculiarities of the photon statistics, nonclassicality, etc. We
test the quality of such filtering by measuring the fraction
of intensity transmitted through the fiber and comparing it
with the theoretical expectation, which is the weight of the
strongest mode in the Schmidt decomposition. As the radiation
to be tested, we choose multimode BSV generated through
high-gain PDC.

The goal of this work is to test the quality of filtering of a sin-
gle coherent mode of PDC with an optical fiber. Many authors
aimed at maximizing the total efficiency of coupling low-gain
PDC (SPDC) radiation into an optical fiber [11]. It has been
shown that the optimal case is the one of a rather tightly focused
pump, when SPDC contains a few, almost a single, mode; but
even under this condition the maximum coupling efficiency
does not exceed 75% [11]. Besides, as we will show further,
in this case the coupling of a single eigenmode is lossy. Other
authors [12–14] maximize the heralding efficiency of signal
and idler SPDC photons coupled into single-mode fibers. It
was found that the heralding efficiency is maximal and nearly
100% for a softly focused pump and, correspondingly, for
spatially multimode SPDC [13]. Here, in contrast, we consider
the losses within a single eigenmode. In order to determine
the shapes and weights of the eigenmodes for PDC radiation,
we apply the Schmidt decomposition, which is considered in
Sec. III. We describe the experiment in Sec. IV where we
assess the quality of the filtering.

In the experiment, we deal with spatial (near-field) and
angular (far-field) modes. Being parts of Fourier-conjugate
spectra, they are alternative ways to describe the radiation.
In Sec. V we consider the analogy of projective filtering for
temporal or frequency spectra and propose a method for linear
projective filtering of these modes. Finally, in Sec. VI we
summarize the results.

II. PROJECTIVE FILTERING AND SPATIAL
RADIATION EIGENMODES

A. Filtering with an aperture

If one needs to select a single mode from the angular
(spatial) spectrum, the simplest strategy is to put an aperture
of a certain size into the far (near) field. For a very small
aperture, the mode selected this way will be a plane wave
in the first case and a spherical wave in the second one. It
is well known that the radiation after such filtering will be
coherent (see, for instance, Ref. [1]). As a consequence, the
statistical properties (such as photon-number distribution) of
certain radiation types will be also maintained. This will be
the case, for instance, for thermal light [1]. However, for more
fragile types of light, e.g., squeezed vacuum, photon-number
correlations will be lost [6,7]. Moreover, even if the aperture
has a specially chosen size and intensity transmission repeating
the intensity distribution of a single mode, the filtering will still
be lossy.

B. Single-mode fiber as a projective filter

In order to maintain photon-number correlations, we re-
quire a different strategy, one in which only a single eigenmode
is filtered out, or a pair of conjugated eigenmodes, in the case of
light with bipartite correlations. It is important for the filtering

FIG. 1. (Color online) Filtering a single eigenmode of broadband
PDC radiation with a single-mode fiber. Wsch is the width of the first
Schmidt mode in the near field, a is the pump width.

to be of projective type: a single field mode of the incident
radiation should be projected on the eigenmode of the filtering
device. This kind of filtering is provided by a single-mode
fiber [15], with the restriction that its eigenmode is a Bessel
function, very close to a Gaussian. If a mode of any other shape
has to be filtered, the fiber could be preceded by a spatial
light modulator (SLM) performing the transformation from
this shape to a Gaussian [15,16]. The only losses introduced
this way will be the ones associated with the SLM or any
alternative device.

As mentioned before, here we consider PDC as a source of
multimode radiation (Fig. 1). The PDC radiation created in a
nonlinear crystal has its near-field effective diameter related
to the full width at half maximum (FWHM) a of the Gaussian
pump. However, as it is multimode, its angular divergence is
much larger than expected for a Gaussian beam of waist a. A
single-mode fiber filters out the Gaussian Schmidt mode with
the waist wsch losslessly and blocks all other modes.

Mathematically the effect of the fiber is described as
a projection operation. Let the eigenmode of the fiber in
the near field be f (r),

∫ |f (r)|2 dr = 1, with r being the
coordinate at the input facet of the fiber, and the radiation
eigenmodes be un(r),

∫
u∗

n(r)uk(r) dr = δnk . Then we can
write the photon annihilation operator Â in the fiber mode as
a linear combination of the photon annihilation operators Âk

acting in the radiation eigenmodes, which form an orthonormal
set:

Â =
∑

k

CkÂk. (1)

Here

Ck ≡
∫

f (r)u∗
k(r)dr,

∑
k

|Ck|2 = 1 (2)

are the projections of the fiber mode on the radiation eigen-
modes. If a single radiation eigenmode u0(r) coincides with
the fiber mode, its projection C0 = 1 and the other projections
are zero.

Equivalently, the modes can be described in the far field as
uk(q), by introducing the transverse wave vector q. Note that
the same relation (1) will be valid for classical fields instead
of the annihilation operators.

Relation (1) is the same as the one describing the field or
operator at one output of a series of beam splitters in terms of
the fields (operators) at their inputs (Fig. 2):

aout =
n∑

k=0

Ckak,

n∑
k=0

|Ck|2 = 1. (3)
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FIG. 2. (Color online) Analogy between multiple orthogonal
modes projected on the eigenmode of a fiber and multiple input
modes of several beam splitters projected on a single output mode.

The projections Ck depend then on the field transmission or
reflection coefficients tk,rk :

C0 = t1t2 . . . tn, C1 = r1t2 . . . tn, . . . , Cn = rn. (4)

C. Spatial radiation modes

In the classical case, the eigenmodes of free-space radiation
are given by the Mercer expansion, defined through the first-
order Glauber’s correlation function G(1)(r1,r2) [1,17]:

G(1)(r1,r2) =
∑

n

αnu
∗
n(r1)un(r2). (5)

The modes un(r) are called coherent modes because the
radiation within each such a mode is coherent.

Whenever photon correlations between two beams are of
interest, especially nonclassical photon-number correlations,
rather than coherence within a single beam, Mercer decompo-
sition is not sufficient and the Schmidt decomposition should
be used, as will be shown in the next section addressing
high-gain PDC.

III. HIGH-GAIN PDC AND ITS EIGENMODES

High-gain PDC is a convenient way to produce bright
squeezed vacuum, a macroscopic quantum state of light
that is among the most promising sources for quantum
technologies. It manifests polarization and photon-number
entanglement [18,19] and can violate Bell’s inequality under
certain experimental conditions [20]. It already has found
applications in quantum imaging [21] and quantum metrology
[22], in particular enabling phase supersensitivity [23]. BSV
is multimode in angle and frequency and can have the mean
photon number per mode as high as 1013 [24]. These features
provide its high information capacity as quantum information
can be encoded in the photon number of each mode. Ideally
one would like to isolate and efficiently control each mode
without losing its nonclassical correlations.

A. The Schmidt decomposition and
the Bloch-Messiah reduction

The eigenmodes of BSV are found from the Schmidt
decomposition, in which each mode of the signal beam is
correlated to a single idler mode [15,25–29]. In signal and

idler channels taken separately, the modes found this way
coincide with the coherent modes from the Mercer expansion
(5) [17,30].

It has been shown [29] that BSV exhibits the same Schmidt
modes as two-photon light generated via low-gain PDC under
the same experimental geometry. The modes are found by
diagonalizing the Hamiltonian of PDC,

Ĥ = i��

∫
dqsdqiF (qs ,qi)â

†
qs

â†
qi

+ H.c., (6)

where � is the coupling parameter scaling as the pump
amplitude, qs ,qi the signal and idler transverse wave vector
components, â

†
qs

â
†
qi

the photon creation operators in the cor-
responding plane-wave modes, and F (qs ,qi) the two-photon
amplitude (TPA). This term, as it is used here, is conventional:
at strong pumping, photons are no more emitted in pairs but in
large even numbers. The Hamiltonian is diagonalized through
the Schmidt decomposition of the TPA,

F (qs ,qi) =
∑
m,n

√
λmnumn(qs)vmn(qi), (7)

where λmn are the Schmidt eigenvalues,
∑

m,n λmn = 1, and
umn(qs),vmn(qi) are the 2D Schmidt modes of the signal and
idler radiation. In the degenerate case, where signal and idler
beams are indistinguishable, umn(q) = vmn(q).

After substituting Eq. (7) into Eq. (6), the Hamiltonian can
be written in the diagonal form (the Bloch-Messiah reduction)
[29],

H = i��
∑

k

√
λk(Â†

kB̂
†
k − ÂkB̂k), (8)

where k ≡ {m,n} and Â
†
k,B̂

†
k are photon creation operators for

the Schmidt modes defined as

Â
†
k =

∫
dqsuk(qs)a

†
qs

, B̂
†
k =

∫
dqivk(qi)a

†
qi

. (9)

In order to label the photons as signal or idler, we assume
here some additional degree of freedom, for instance, different
wavelengths as in nondegenerate PDC. The solution to the
Heisenberg equations for the operators in Schmidt modes
leads to Bogolyubov-type transformations between the input
operators Âk0,B̂k0 and the output ones Âk,B̂k [29],

Âk = ckÂk0 + skB̂
†
k0,

(10)
B̂k = ckB̂k0 + skÂ

†
k0,

where
ck = cosh(G

√
λk), sk = sinh(G

√
λk), (11)

and G = ∫
� dt is the parametric gain.

The mean photon number in mode k is Nk = s2
k , and the

total mean photon number in each (signal or idler) beam is
given by the incoherent sum over separate Schmidt modes:
N = ∑

k s2
k . Thus, the Schmidt eigenvalues at high gain are

renormalized [29],

λ′
k = s2

k

N
= sinh2(G

√
λk)∑

k sinh2(G
√

λk)
, (12)

so that the eigenvalue λ′
k of a certain Schmidt mode determines

the contribution of this mode to the total number of photons,
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Nk = Nλ′
k . The effective number of Schmidt modes, in

the low-gain regime given by the Schmidt number K =
[
∑

k λ2
k]−1, is hence reduced at high gain, K ′ = [

∑
k λ′2

k ]−1.
The signal photon annihilation operator Â after the fiber is

then given by Eq. (1), with Âk being the photon annihilation
operators in the signal Schmidt modes and the projections Ck

given by Eq. (2). A similar expression is valid for the idler
photon annihilation operator B̂ after the fiber: B̂ = ∑

k DkB̂k ,
with Dk denoting the projections of the idler Schmidt modes
on the fiber eigenmode. We assume here that the fiber mode
function is identical for the signal and idler photons. The mean
photon numbers after the fiber are

Ns = 〈Â†Â〉 =
∑

k

|Ck|2s2
k = N

∑
k

|Ck|2λ′
k,

Ni = 〈B̂†B̂〉 =
∑

k

|Dk|2s2
k = N

∑
k

|Dk|2λ′
k.

(13)

B. The two-crystal scheme

In our experiment, described further in Sec. IV, PDC is
generated in two consecutive nonlinear crystals placed into a
common Gaussian pump beam. For two crystals of length L

at a distance l, the normalized TPA for frequency-degenerate
or nearly degenerate type-I PDC has the form [29,31]

F (qs ,qi) = exp

[
− a2k2

0

8 ln 2

{(
θ2
s + θ2

i

) + 2θsθi cos(φs − φi)
}]

×sinc

(
�kzL

2

)
cos

(
�kzL + �k′

zl

2

)

× exp(−i�kzL) exp

(−i�k′
zl

2

)
, (14)

where k0 is the length of signal and idler wave vectors,
θs,i ,φs,i are their spherical angles, a is the full width at half
maximum (FWHM) of the pump intensity distribution, �kz =
kp − k0[cos(θs) + cos(θi)] is the longitudinal mismatch inside
each crystal, and kp is the length of the pump wave vector. In its
turn, �k′

z = kair
p − kair

0 [cos(	s) + cos(	i)] is the longitudinal
mismatch in the air gap between the crystals, where the pump
and signal or idler wave vectors take values kair

p and kair
0 ,

respectively; 	s,i = n0
nair

0
θs,i , and n0,n

air
0 are the signal or idler

refractive indices inside the crystals and inside the air gap,
respectively.

The Schmidt decomposition is most conveniently found
in the cylindrical frame of reference, in which the transverse
wave vectors qs,i are given by their modules, qs,i = k0 sin θs,i ,
and the azimuthal angles, φs,i [16,30]. In this case, F (qs ,qi)
can be written as a Fourier expansion due to its periodicity in
(φs − φi) [16],

F (qs,qi,φs − φi) =
∑

n

χn(qs,qi)e
in(φs−φi ), (15)

where χn(qs,qi) can be found using the inverse Fourier
transformation. Then the Schmidt decomposition of χn(qs,qi)
yields

χn(qs,qi) =
∑
m

√
λmn

ũmn(qs)√
qs

ṽmn(qi)√
qi

(16)

with the functions ũmn(qs) and ṽmn(qi) obeying the normaliza-
tion condition∫ ∞

0
dqsũmn(qs)ũ

∗
kn(qs) =

∫ ∞

0
dqi ṽmn(qi)ṽ

∗
kn(qi) = δmk.

From Eq. (16), we obtain the Schmidt decomposition of the
TPA (7) with umn(qs) = ũmn(qs )√

qs
einφs ,vmn(qi) = ṽmn(qi )√

qi
e−inφi .

C. Filtering the first Schmidt mode

The first Schmidt mode u00 of the BSV state, a Gaussian of
waist wsch, can be filtered by projecting the angular spectrum
on the eigenmode of a fiber, which is close to a Gaussian of
waist w,f (q) = (

√
πw)−1 exp(−q2/2w2). The projections of

different Schmidt modes on the eigenmode of the fiber are [see
Eq. (2)]

Cmn =
∫ 2π

0
dφ

∫ ∞

0
qdqf (q,φ)umn(q,φ), (17)

∑
m,n |Cmn|2 = 1. Note that since the fiber mode does not

depend on φ, only Schmidt modes with n = 0 will contribute
in the coupling efficiency.

From (13), the coupling efficiency T for the signal radiation
is obtained by summing the photon numbers that couple into
the fiber from different modes:

T =
∑
m,n

|Cmn|2λ′
mn � λ′

00. (18)

The last inequality follows from the fact that λ′
m�0,n�0 � λ′

00
and shows that the photon number transmitted through the fiber
is maximized when the fiber mode exactly matches the first
Schmidt mode, |C00| = 1, and Tmax = λ′

00. In this case the first
Schmidt mode is filtered perfectly, without losses. Only in this
case the filtered Schmidt mode maintains all specific features
of the incoming PDC radiation including nonclassicality.

D. The absence of losses

However, for the first Schmidt mode to coincide with the
fiber eigenmode, the former should be real or at least have no
spatially varying phase, as the latter is a real Gaussian function.
At the same time, Eq. (14) for the TPA includes some phase
factors; moreover, even the TPA for a single crystal is complex
[29]. As a consequence the Schmidt modes of down-converted
radiation can be complex functions. In this case the projection
amplitudes Cmn entering Eq. (18) are reduced. Using the
Cauchy-Schwarz inequality one can show that the maximal
projection amplitude for the first Schmidt mode u00(q,φ) and
the fiber eigenmode f (q,φ) will be still less than 1 if the
Schmidt mode is complex. Indeed,

|C00|2 �
∫ 2π

0
dφ

∫ ∞

0
q dq|f (q,φ)|2

×
∫ 2π

0
dφ

∫ ∞

0
q dq|u00(q,φ)|2 = 1, (19)

with the equality valid only in the case where the Schmidt mode
and the fiber eigenmode coincide up to a constant phase factor.
Whenever |C00| < 1, the filtering procedure leads to intrinsic
losses. Now let us consider under what circumstances the first
Schmidt mode would be strongly complex. The TPA (14) is
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FIG. 3. (Color online) Numerical estimation of losses accompa-
nying the filtering of PDC generated in the two-crystal system. The
pump diameter a is varied in order to change the initial number K of
the transversal modes. The dashed line corresponds to the parameters
used in our experiment. The insets show the intensity distributions
of the first Schmidt mode for various points in the transverse-wave
vector space.

complex due to the phase factor exp{−i�kzL − i�k′
zl/2},

which does not depend on the pump beam waist a. At the
same time, the size of the first Schmidt mode does depend
on a. By choosing appropriate a, one can find the conditions
under which the phase of the TPA does not vary noticeably
within the scale of the first Schmidt mode. In this case, the left
part of (19) will be close to 1 and the losses will be negligibly
small.

To demonstrate this, we have performed the Schmidt
decomposition and calculated C00 for various diameters a

of the pump. For each case, the shape of the first Schmidt
mode was calculated (the corresponding intensity distributions
in transverse wave vector space are shown as insets in
Fig. 3). Further, the losses accompanying the filtering, given
by 1 − |C00|2, were numerically calculated (shown in Fig. 3
as points connected by a line.) The result is that the weaker
the focusing, the smaller the losses. From the inset, one can
also notice that for weaker focusing, the first Schmidt mode is
narrower and this is why the TPA phase in its vicinity is flat. For
focusing into more than 100 μm, the losses are less than 1.5%.
In our experiment, we use a = 110 μm, which corresponds to
2% of losses (shown in Fig. 3 by dashed line).

Thus, for a weakly focused pump, the first Schmidt mode
has a flat phase and can be filtered nearly losslessly using a
single-mode fiber. In the opposite case of a tightly focused
pump, projective filtering with a single-mode fiber is lossy. In
principle, even in this case, the phase of the Schmidt mode to
be filtered can be eliminated before coupling the light into the
fiber, but this requires some special efforts like using an SLM.

Note that experiments with SPDC report high (up to 96%)
heralding efficiencies with a softly focused pump [13,14],
despite a low generation rate of photons. This is in agreement
with our observation (Fig. 3): if the heralded mode coincides
with the Schmidt mode of a highly multimode state, the losses
of its fiber coupling can be indeed negligible. In contrast, with
the pump tightly focused into the crystal, so that the resulting

FIG. 4. (Color online) Setup scheme. The third harmonic of a
Nd:YAG laser, mode cleaned and properly polarized (aperture AP,
half-wave plate HWP1 and Glan prism GP), focused into crystals
BBO1 and BBO2 by lens Lp , generates PDC. An auxiliary laser diode
beam, mode cleaned by a single-mode fiber SMF1, serves to emulate
the spatial distribution of different Gaussian modes, with the waists in
the same plane. These modes are prepared with the help of different
lenses Lk , placed at the planes marked by the vertical dotted lines
one at a time. A Gaussian mode is filtered by the single-mode fiber
SMF2 after lenses Lc, Lin2. Flipping mirrors FM1 and FM2 separate
the filtering path from the free-space path (dashed lines). Before
PDC enters the monochromator, its polarization is adjusted by half-
wave and quarter-wave plates (HWP2, QWP2). Finally, the signals
are analyzed in a Hanbury Brown-Twiss interferometer including
detectors D1 and D2.

number of modes is small [11], the coupling efficiency is never
high, again in agreement with our calculations (Fig. 3). At the
same time, the efficiency of filtering a single mode has been
never directly measured before. The next section considers this
measurement.

IV. EXPERIMENT

A. Intensity measurements

The BSV state is generated via high-gain PDC (Fig. 4) in
two 1 mm long beta barium borate crystals (BBO1, BBO2) cut
for type-I collinear degenerate phase matching and arranged
in the anisotropy compensating configuration at the closest
achievable distance of 2.5 ± 0.5 mm [32–34]. The crystals
are pumped by a Nd:YAG laser third harmonic (wavelength
355 nm, pulse duration 18 ps, and repetition rate 1 kHz). The
pump is mode-cleaned by means of a diamond pinhole (AP)
and its polarization is set by a Glan prism (GP) and a half-wave
plate HWP1. The pump waist is imaged by lens Lp (100 mm
focal length) onto the plane between the crystals, where its
FWHM is 110 um ± 5 um. This experimental configuration in
the low-gain regime creates a two-photon state with the spatial
Schmidt number K = 89 [Fig. 5(a)]. The first Schmidt mode
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FIG. 5. (Color online) The Schmidt eigenvalues for PDC from
the two-crystal scheme used in our experiment (a) in the low-gain
regime, resulting in the effective mode number K = 89, and (b) in
the high-gain regime, resulting in K ′ = 14.7.

is very close to a Gaussian function, with the divergence 0.006
rad and the waist 53 μm. Our experiment is performed in the
high-gain regime (pump power 70 mW), which, according to
Eq. (12), leads to the reduction in the number of spatial modes.
The resulting Schmidt number is calculated to be K ′ = 14.7
[Fig. 5(b)] for G = 22.8.

After the crystals, the pump radiation is cut off by a dichroic
mirror (DM) and a red glass filter RG 650 (RG). The spatial
filtering is performed by a standard step index single-mode
fiber (SMF2, Thorlabs SM600). In the experiment we filter
from the PDC radiation, with the help of the fiber, Gaussian
beams with different waists or divergences and measure the
fraction T of PDC intensity transmitted through the fiber.
According to Eq. (18), the largest T should equal the first
Schmidt eigenvalue and should be achieved when the coupled
Gaussian mode coincides with the first Schmidt mode.

For emulating Gaussian beams with various waists, we use
an additional CW diode laser with the wavelength 706.5 nm.
The diode laser beam is mode-cleaned by a single-mode fiber
SMF1, collimated by lens Lout1, and then overlapped with the
pump beam on the crystals after passing through one of the
lenses Lk , with the other lenses removed from the beam. Each
lens is aligned so that it forms the beam waist of a certain
diameter wk (measured by a beam profiler) on the crystals.
For each waist diameter, the beam is coupled into SMF2

by means of lens Lc (150 mm focal length) and aspheric
lens Lin2 (3.3 mm focal length), with the losses 12%–18%
including 4% reflection at the uncoated input facet. For each
lens Lk , efficient coupling of the diode laser beam into the
fiber indicates that the system filters out a Gaussian mode
with a certain waist wk and the corresponding divergence
�θk . After this, the diode laser is switched off and the spatial
filtering is applied to the PDC radiation. Light out-coupled
from the fiber is sent through a monochromator selecting a
bandwidth of 0.1 nm around the nondegenerate wavelength
708 nm. Zero-order quarter-wave plate (QWP2) and half-wave
plate (HWP2) optimize the incoming polarization on the
monochromator and minimize losses.

For comparing the data in the presence and in the absence
of filtering, a free-space channel is used where the PDC
radiation is sent to the monochromator directly, avoiding the
fiber (Fig. 4). Switching between the free-space and spatially
filtered channels is done with the flipping mirrors FM1 and
FM2. The efficiency T of coupling into the fiber is measured
by dividing the sum signal of the detectors D1 and D2 in the
presence of filtering by the one in its absence.

FIG. 6. (Color online) Spatial filtering of PDC radiation: the
coupling efficiency (a) versus the angular width �θk of the Gaussian
beam coupled into the fiber and (b) versus the longitudinal adjustment
dz of the coupling system. The bars at points A and B show the
absolute uncertainty of the coupling efficiency.

Since each Gaussian beam is coupled to SMF2 with 85% ±
3% coupling efficiency, the PDC coupling is underestimated.
We quantify these technical losses and correct for them at
each measured point. In the free-space configuration we
also measure the total number of spatial modes through the
normalized second-order intensity correlation function g(2)

at the nondegenerate wavelength of 708 nm, making sure
that all angular spectrum is collected. Then the measured
correlation function depends on the number of modes K ′ as
g(2) = 1 + 1/K ′ [34]. We obtain g(2) = 1.07 ± 0.01, which
indicates K ′ = 15 ± 2 spatial modes, in agreement with the
calculation [Fig. 5(b)].

Figure 6(a) shows the coupling efficiencies for each angular
width �θk of the filtered Gaussian mode as well as the
theoretical curve, with a good agreement between the two.
Both curves have their maximum at an angular width of
6 mrad, which is the angular divergence of the first Schmidt
mode. Moreover, the maximum coupling efficiency achieved
experimentally is 0.201 ± 0.005, which matches the first
Schmidt eigenvalue λ′

00 = 0.205 calculated for our BSV state
(Fig. 5). From these values, the losses of the filtering procedure
do not exceed 2%, as expected from the calculation (Fig. 3).
This proves that filtering of the first Schmidt mode of PDC
radiation with a single-mode fiber is nearly lossless, up to
reflections at the fiber facets and imperfect coupling.

Thus, the efficiency of coupling PDC radiation into the fiber
is maximal when the first Schmidt mode coincides with the
fiber eigenmode. One can guess that the first Schmidt mode can
be targeted by simply maximizing the coupling efficiency. In
what follows, we show that this is indeed the case. In fact, this
is the strategy usually applied for low-gain PDC [11], but up
to now it has not been tested for the filtering of a single mode.

Starting from a setting where a “wrong” Gaussian mode is
coupled into the fiber [first point from the right in Fig. 6(a) and
point A in Fig. 6(b)], we improve the PDC coupling by varying
the distance between lens Lin2 and the tip of the fiber. This way,
we are able to achieve the coupling efficiency equal to the first
Schmidt eigenvalue [point B in Fig. 6(b)]. This indicates that
the mode collected is indeed the targeted Schmidt mode. Note
that we achieve this goal by simply moving the fiber tip. At
first sight impossible, it is feasible in our scheme due to the
fact that in Gaussian optics, the position of the waist image
depends on the initial waist size. As a result, modification of
the beam waist on the crystals mainly leads to the displacement
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FIG. 7. (Color online) g(2)
ss measurement at the nondegenerate

wavelength λndeg = 708 nm versus the angular width of the Gaussian
mode coupled into the fiber.

of the beam waist after lens Lin2 rather than to the change of
its size.

B. Correlation measurements

One might think that the mode filtering quality could be
controlled by means of the correlation function measurement
[27,28,34] since it usually indicates the number of modes.
However, the measured autocorrelation function of the signal
radiation at zero time delay, g(2)

ss (0) (further, simply g(2)
ss , Fig. 7),

is independent of the angular width of the Gaussian mode fully
coupled into the fiber, and hence of the number of Schmidt
modes contributing to the fiber output.

This can be understood from the analogy with a multiport
beam splitter (Fig. 2). Indeed, with the thermal light at the
input ports of a beam splitter, the statistics of light at each
of its output ports will be also thermal [35,36]. Since each
mode of PDC radiation has thermal statistics, the radiation at
the output of the fiber will be thermal, and one will measure
g(2)

ss = 2 regardless of the number of modes contributing. Since
our frequency filtering is not perfect, the measured value is
lower, g(2)

ss = 1.76± 0.02, as shown in Fig. 7.
This shows that the quality of filtering cannot be assessed

from the correlation function measurement for thermally
populated Schmidt modes. At the same time, if the modes are
populated with two-photon light, correlation measurements
will indicate whether one or several modes are contributing to
the fiber output.

Indeed, consider the normalized second-order correlation
function at zero time delay after the spatial mode filter, the
autocorrelation function

g(2)
ss = 〈A†A†AA〉

N2
s

= 1

N2
s

∑
i,j,k,l

(Ci)
∗(Cj )∗CkCl〈A†

i A
†
jAkAl〉,

(20)

and the cross-correlation function

g
(2)
si = 〈A†B†AB〉

NsNi

= 1

NsNi

∑
i,j,k,l

(Ci)
∗(Dj )∗CkDl〈A†

i B
†
jAkBl〉. (21)

FIG. 8. (Color online) Dependence of the cross-correlation func-
tion g

(2)
si on the size of the mode coupled into the fiber for two values

of the gain: G = 1 (black continuous line) and G = 10 (red dashed
line). The width is given in relative units w/w0, where w0 is the width
of the (approximately) Gaussian first Schmidt mode. In both cases
the Schmidt number K ′ = 5.

A straightforward calculation using (10) gives

〈A†
i A

†
jAkAl〉 = sisj sksl(δjkδil + δikδjl),

〈A†
i B

†
jAkBl〉 = sicj ckslδij δkl + sisj skslδikδjl .

(22)

Substituting (22) into (20) and (21) we get the following
expressions for the second-order correlation functions:

g(2)
ss ≡ 2,

g
(2)
si = 1 +

∣∣∑
i C

∗
i D

∗
i sici

∣∣2

(∑
i |Ci |2s2

i

)(∑
k |Dk|2s2

k

) .
(23)

The autocorrelation function is identically equal to 2, in
accordance with the multiport analogy and the results of our
measurement (Fig 7). The behavior of the cross-correlation
function is more subtle. Its value depends on both coupling
coefficients between the Schmidt modes and the fiber mode
and the partial photon numbers in each Schmidt mode. In the
simplest case where the fiber matches the first Schmidt mode,
i.e., |Ck| = |Dk| = δk0, the expression for g

(2)
si simplifies to

g
(2)
si = 2 + 1

s2
0

= 2 + 1

N0
, (24)

where N0 is the mean photon number in the first Schmidt
mode. In this case the correlation function after the mode
filter correctly describes the statistics of a single mode of
the initial PDC source. However, when the mode matching
is not perfect and several modes have significantly nonzero
coupling coefficients, the correlation function value deviates
from the expression expected for a single-mode PDC field.
The dependence on the fiber mode waist, calculated using the
double-Gauss model for the TPA, is shown in Fig. 8. At first
sight, it looks unusual that the normalized cross-correlation
function is minimal for the case of optimal coupling. However,
this is in line with the usual dependence of normalized cross-
correlation function for PDC on the mean photon number,
given by Eq. (24). At larger photon numbers, PDC always
has lower normalized cross-correlation function. Therefore,
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FIG. 9. (Color online) Setup for linear projective filtering of the
frequency modes. DG, diffraction grating; CL, cylindrical lens, PW,
planar waveguide; a, the size of its eigenmode.

optimal coupling, giving the maximal mean photon number,
at the same time results in a minimum of the cross-correlation
function. Unfortunately, the dependence flattens out with
increasing gain, making the effect unobservable under current
experimental conditions.

V. TEMPORAL OR FREQUENCY ANALOGY

A natural question arises whether a similar technique
can be applied to filtering a single frequency mode from a
multimode spectrum. There have been proposals of doing this
by means of up-conversion, with the pump mode properly
tailored in frequency [28,37]. A “quantum phase gate” based
on this principle has been recently demonstrated to provide
80% efficiency for coherent pulses at the input [38]. This
kind of filtering is also of projective type as it projects the
field mode on the eigenmode of the converter. However, the
method is technically complicated, requires phase matching
within a broad frequency range, may have additional losses
for external radiation fed into the nonlinear converter, and will
be also influenced by noise whenever weak input radiation is
considered (a feature of all similar up-converting devices).

By analogy with the spatial filtering introduced above, we
can suggest a similar scheme for the filtering of the frequency
or temporal modes, based on converting the frequency into the
angle and then filtering the angle. The proposed setup (Fig. 9) is
based on a 4f pulse shaper, in which the input multimode pulse
falls on a diffraction grating followed by a cylindrical lens. In
the focal plane of the lens the vertical coordinate scales linearly
with the wavelength. In a usual 4f system, a spatially selective
device such as a slit or an SLM is placed, after which another
cylindrical lens and a diffraction grating collect the radiation
into a single beam. To make the filtering projective, one can
replace the spatial filter in the middle of the 4f scheme by a
planar waveguide whose eigenmode has a Gaussian profile in
the vertical direction. The size a of the mode should correspond
to the frequency width of the Gaussian mode to be filtered. This
device will project the frequency spectrum on a Gaussian one.
If a more complicated frequency mode has to be filtered out,

a mode converter (for instance, an SLM) should be placed
before the planar waveguide.

VI. CONCLUSION

In this paper, we have considered the spatial filtering
performed by a single-mode fiber and have shown that, in
contrast to the filtering performed by an aperture, it is of
projective type and therefore imposes no losses on the mode
filtered out. An analogy between a fiber and a multiport
beam splitter has been drawn. Based on this analogy, we
have considered this type of filtering for the spatial modes
of high-gain PDC. It was shown that only under the condition
that the pump is focused into the crystal not too tightly, this
filtering can be practically lossless. Otherwise, if the pump
waist is small, the Schmidt modes have spatially nonuniform
phases and the filtering will be lossy unless a phase correction
is applied.

Further, we have demonstrated projective filtering of the
first Schmidt mode from the spectrum of high-gain PDC
in experiment. The total losses accompanying the filtering
are only caused by imperfect alignment as well as the
reflection on the uncoated fiber facet and do not exceed
15%. Importantly, the radiation in the mode filtered out this
way is not destroyed and is available for further use. The
method can be extended to higher-order spatial modes by
using appropriate spatial-mode transformations, for instance,
with the help of a spatial light modulator. Furthermore, it has
been shown that the correct Schmidt mode can be filtered
simply by maximizing the coupling into the fiber, provided
that the apertures of the lenses do not clip significant portions
of the radiation. The transmissivity of the fiber being close to
the first Schmidt eigenvalue can be therefore used as a criterion
for the selection of the first Schmidt mode. On the other hand,
the autocorrelation function cannot be used for this purpose
as it is independent on the number of modes contributing to
the fiber output intensity. The cross-correlation function can
be used to characterize the number of modes contributing but
only at low parametric gain.

Finally, a similar technique has been proposed for the
filtering of a single frequency mode out of the PDC spectrum.
It is based on a standard 4f pulse-shaping scheme where a
planar waveguide is used as a spatially selective element.
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