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Nonclassical light from an incoherently pumped quantum dot in a microcavity
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Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of
semiconductor quantum optics. In many cases, however, technical and physical issues limit the study of optical
fields to incoherently excited systems. We analyze the model of an incoherently driven two-level system in a
single-mode cavity. The specific structure of the applied master equation yields a recurrence relation for the
steady-state values of correlations of the intracavity field and the emitter. We provide boundary conditions that
permit a systematic solution which is numerically less demanding than standard methods. The method allows us
to directly infer reasonable cutoff conditions from the system parameters. Different cavity systems from previous
experiments are analyzed in terms of field correlation functions which can be measured via homodyne correlation
measurements. We find that nonclassical correlations occur in systems of moderate quantum-dot–cavity coupling
rather than strong coupling. Our boundary conditions also allow us to derive analytical results for the overall
quantum state and its higher-order moments. We obtain very good approximations for the full quantum state of
the field in terms of the characteristic functions. It turns out that for every physically reasonable set of system
parameters, the state of the intracavity field is nonclassical.
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I. INTRODUCTION

The basic structure of a two-level system (TLS), located in a
quasiresonant single-mode cavity, shows remarkable quantum
properties. Already in the regime of weak coupling between
the intracavity field and the TLS, the emission rate of the latter
is increased by the so-called Purcell factor [1]. For stronger
coupling, the energy eigenvalues of the system are drastically
changed, resulting in dressed states (polaritons) and Rabi
splittings [2], which are also known from strong atom-laser
interaction [3,4]. The mentioned phenomena are pure quantum
effects indicating the quantum nature of the systems under
study. Thus, such a setup also constitutes a versatile source
for nonclassical light. Antibunching and sub-Poisson photon
statistics were shown in experiments with ions in optical
cavities [5,6]. For details, see also [7,8].

More recently, semiconductor microcavities have become
a focus of research. In these systems, excitons in quantum dots
adopt the role of the TLS [9]. Semiconductor microcavities
are much more complex than their atomic counterparts, as
both the cavity and the quantum dot are embedded in an
interacting medium. In particular, the dissipation rates of dot
and cavity are usually dominant, limiting the possibility of
strong coupling. Nevertheless, antibunching and sub-Poisson
photon statistics could be demonstrated for quantum dots
themselves [10,11] as well as inside microcavities [12].
Furthermore, Rabi splitting was achieved in some realizations
of semiconductor microcavities [13–15].

Another peculiar aspect in semiconductor microcavities
is the difficulty to drive them with coherent light. This is
due to multiple factors such as intensive light scattering off
the sample geometry, resonance frequencies unfavorable for
current laser technologies, and others [11]. As a consequence,
incoherent excitation is a broadly applied method in semicon-
ductor optics, e.g., via far-detuned photoluminescence [13] or
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electroluminescence [16]. Theoretical descriptions of the
quantum fields emitted from such systems are of great
relevance to semiconductor quantum optics. For excitons
behaving like bosonic particles, it has been shown that the
regimes of weak and strong coupling depend sensitively on
the system parameters [17].

An early treatment of the steady-state properties of inco-
herently driven TLSs in cavities was given by Agarwal and
Dutta Guppta [18]. They applied continued fraction methods
to obtain solutions and compared them to full numerical
calculations. Nonclassical phenomena of the radiation field
had been studied on the basis of first- and second-order
moments of the photon number statistic by inspection of
Mandel’s Q parameter [19]. This is a first important step,
which gives insight into the sub-Poisson photon statistics.
Later on, more general criteria for the nonclassicality of
light, such as matrices of moments of the photon number
operator [20], were introduced. This method was further
generalized to a full characterization of the quantum properties
of light through higher-order moments of two noncommuting
observables [21,22]. Alternatively, general nonclassicality
tests can be based on the characteristic function of the radiation
field [23,24]. Such methods have not been applied yet to the
systems under study.

In the present paper, we study the quantum properties
of an incoherently pumped TLS in a microcavity. Due to
the incoherent dynamics, only specific correlations couple
with each other. This yields closed infinite sets of coupled
equations. In the steady-state case, correlations between the
quantum dot and the intracavity field follow from recurrence
relations, which are numerically less demanding than previous
methods. We will solve these equations by applying boundary
conditions following directly from the recurrence relations.
The boundary conditions not only yield the necessary criteria
for the solution but also an analytical proof of convergence.
The structure of the solution allows us to determine an
appropriate cutoff for numerical calculations, which solely
depends on the system parameters. The boundary conditions
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directly imply properties of the quantum state of light.
In particular, the state of the intracavity field can never
resemble a thermal one under realistic physical conditions.
Based on general moments criteria for nonclassicality, we
analyze various quantum effects of the system for experimental
parameters of different cavities studied within the last decade.
It turns out that the system with moderate quantum-dot–cavity
coupling shows stronger signatures of nonclassicality than for
stronger coupling. Finally, we apply the boundary conditions
to approximate the characteristic function of the quantum state
of the intracavity field with controlled errors. In this way, we
prove the nonclassicality of the latter for any incoherently
pumped quantum-dot–cavity system.

The article is structured as follows. In Sec. II, we specify
the system under study and give the corresponding equations
of motion. Section III is used to introduce our ansatz for
solving the steady-state case using recurrence techniques.
We also derive the above-mentioned boundary and initial
conditions there. In Sec. IV, we test various nonclassicality
criteria with parameters describing realistic systems applied in
recent years. Section V deals with the characteristic function
of the intracavity field, including a general treatment of the
asymptotic behavior of the recurrence relation. In Sec. VI, we
give a summary and some conclusions.

II. SYSTEM

A scheme of the model under study with the considered pro-
cesses is depicted in Fig. 1. The quantum dot in a microcavity
is described by a TLS with transition frequency ω21 coupled
to a mode of the electromagnetic field inside the cavity with
frequency ωc = ω21 + δ. Applying the dipole approximation
and the rotating-wave approximation, and shifting into the
frame rotating with ω21, we obtain the Jaynes-Cummings
Hamiltonian [25]

Ĥ = �δ â†â + �g(â†Â12 + Â21â). (1)

Here, â and â† are the annihilation and creation operator of
the field mode, respectively, Ânm = |n〉〈m| (m,n = 1,2) are
the atomic operators of the TLS, and g denotes the coupling
strength.

The dynamics of the system under incoherent pumping is
governed by a master equation for the system density operator

g

p

c

|1 >

|2 >

FIG. 1. (Color online) Scheme of a quantum dot (two-level sys-
tem) in a (semiconductor) microcavity. The left mirror is supposed to
reflect perfectly, whereas the right one is partially transparent giving
rise to a loss of the cavity mode.

ρ̂ [8], which reads

d

dt
ρ̂ = − i

�
[Ĥ ,ρ̂] + �

2
LÂ12

(ρ̂) + p

2
LÂ21

(ρ̂) + κ

2
Lâ(ρ̂), (2)

with pumping strength p, quantum-dot spontaneous-emission
rate �, and cavity decay rate κ . The relaxation processes are
incorporated via the Lindblad operators LX̂(ρ̂) = [X̂ρ̂,X̂†] +
[X̂,ρ̂X̂†].

In the following, we write down all correlations in normal
ordered form for the sake of clarity. The structure of Eq. (2)
has the effect that only those moments 〈Âk

21Â
l
12â

†mân〉
(k,l,m,n ∈ N) that create or annihilate the same number of
excitations overall (that is, both intracavity field and TLS)
couple to each other. Furthermore, due to the incoherent
nature of the pumping process, those moments with excess
creation or annihilation vanish in the long-time limit as
they do not couple to the only inhomogeneous correlation
1 = 〈Â0

21Â
0
12â

† 0â0〉. There remain three types of independent,
nonvanishing moments, which we abbreviate as

In = 〈â† nân〉, (3a)

Bn = 〈Â22â
† nân〉, (3b)

Rn = 〈Â21â
† nân+1〉. (3c)

The corresponding set of coupled equations of motion can
easily be derived from (2) and reads

d

dt
In = −nκIn − 2ngIm[Rn−1], (4a)

d

dt
Bn = −σnBn + pIn + 2gIm[Rn], (4b)

d

dt
Rn = −(iδ + γn)Rn − ig[(n + 1)Bn + 2 Bn+1 − In+1],

(4c)

where we defined γn = [� + p + κ(2n + 1)]/2 and σn =
� + p + nκ . On a side note, we state that for certain limiting
conditions, analytical solutions can be found; e.g., in the steady
state for κ → 0, we find a thermal state for the intracavity
moments In. In the following, we consider all dissipation rates
and g to be finite but nonzero, and define this as a physically
reasonable set of system parameters.

It should be noted that, in general, semiconductor quantum
dots also experience strong nonradiative dephasing. This can
be easily included by adding a Lindblad term �D

2 LÂ22
(ρ̂). It

couples only to the moments Rn, yielding a different value for
γn, which reads

γ̃n = γn + �D

2
. (5)

For our purpose, it does not change any of our qualitative
statements and the amplitude of the considered correlations
varies only slightly. Furthermore, for the realistic cavities
considered in Secs. IV and V, no values for �D were given.
Hence, we discard these dephasing effects throughout the
paper.
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III. ANSATZ FOR STEADY-STATE SOLUTIONS

We are interested in the long-time solution (steady state)
of the set of equations (4). In this case, Eq. (4) reduces
to a homogeneous and coupled set of algebraic equations.
The specific structure of these equations makes it feasible to
formulate a recurrence relation for the moments In of the form

In+2 = αn+1In+1 + βnIn, (6)

with the recurrence coefficients αn, βn given by

αn = σn

2κ

(
2p

σn

− nκ

σn−1
− 1 + �n−1

�n−1

)
, (7)

βn = (n + 1) p

2κ

σn+1

σn

, (8)

where we set �n = (2g2γn)/κ(δ2 + γ 2
n ).

In order to solve this recurrence relation, we require two
independent boundary conditions. Once found, relation (6)
yields the full steady-state solutions for all moments In, Bn,
and Rn. The first condition, related to the normalization or
completeness relation, reads

I0 = 〈1̂〉 = 1. (9)

The other one, usually applied by truncating the endless hierar-
chy of coupled equations, would follow from the boundedness
of the density operator �̂. As limn→∞〈n|�̂|n〉 = 0, we may
set 〈n0|�̂|n0〉 = 0, thus cutting off the coupling between the
different moments for n < n0 and n > n0, yielding a closed
system of equations. The error from this approach can be
adjusted by increasing n0. The resulting boundary condition
reads

〈n0|�̂|n0〉 = 1

n0!
〈: â†n0 ân0 exp(−â†â) :〉 (10)

= 1

n0!

∞∑
k=0

(−1)k

k!
In0+k = 0, (11)

where 〈: · :〉 denotes normal ordering. In general, this criterion
is difficult to apply. Another possible formulation of the second
condition is found using the fact that for any order n, the
moment In is positive semidefinite. Therefore, using Eq. (6),
we find

0 � αn+1In+1 + βnIn. (12)

Since βn > 0 holds for all n, this is equivalent to

In

In+1
� −αn+1

βn

. (13)

For αn+1 � 0, this inequality is trivial to fulfill. However, for
αn+1 < 0, it yields a bound for the growth of the moments In

as

In+1

In

� βn

−αn+1
. (14)

Now, for sufficiently large n, we may only take into account the
leading terms of the coefficients, which read (see Appendix A

for details)

αn+1 ≈ − κ2

4g2
n2 < 0, (15)

βn ≈ p

2κ
n. (16)

After inserting these into Eq. (14), we obtain

In+1

In

� 2g2p

κ3

1

n
= ξ

1

n
, (17)

with the positive constant ξ = 2g2p/κ3. As this ratio goes to
zero, we can set as a second boundary condition

lim
n→∞ In = 0. (18)

A few things should be noted. First, Eq. (18) is by no means
a general result for quantum states of bosonic systems. Quite
the opposite, the moments for both a coherent state (I coh

n = I n
1 )

with I1 > 1 and a thermal state (I therm
n = n!I n

1 ) with I1 > 0
diverge. In particular, the latter is relevant as it would be the
state in either of the (not physically reasonable) cases of κ →
0 or p → ∞ (see Appendix B). The other way around, we
directly conclude that neither of these states is reached in this
setup. Second, in Appendix A we also estimated a lower bound
of the ratio In+1/In, approaching again ξ/n for large n. Hence,
the right-hand side of Eq. (17) is not just an upper bound, but a
very good approximation for the large-n behavior. We will use
this fact when we consider the characteristic function of the
intracavity field. Third, as a consequence of our second note,
we observe that neither δ nor � play a role in the asymptotic
behavior.

The boundary condition (18) can be utilized to calculate
a more practicable condition for I1. Iteratively applying the
identity (6), we obtain

In+2 = Cn+2I1 + Dn+2I0. (19)

The coefficients Cn+2 and Dn+2 obey recurrence relations
like (6), namely,

Cn+2 = αn+1Cn+1 + βnCn,

Dn+2 = αn+1Dn+1 + βnDn,

with initial conditions

C0 = 0, C1 = 1,
(20)

D0 = 1, D1 = 0.

Applying the conditions I0 = 1 and limn→∞ In = 0, we find

I1 = lim
n→∞ −Dn

Cn

. (21)

The calculation of the moments Bn and Rn is straightforward
using the steady-state form of Eq. (4). It should be kept in mind
that for numerical calculations, a truncation has to be done in
Eq. (21), where we have to set IN = 0 for an appropriate order
N and only moments up to this order can be calculated from
Eq. (6).

Let us consider the numerical complexity of our method.
Since the initial conditions (20) are known and the αn+1 and
βn are analytical functions in n, the recurrence relations for
the CN and DN are of the order of O(N ). Using the recurrence
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FIG. 2. I1 = 〈â†â〉 for resonance δ = 0 as a function of g/κ .
The normalized quantum-dot decay is �/κ = 1 and the normalized
pumping strength is varied from p/κ = 0.5 to 2 in steps of 0.5, where
a longer dashing corresponds to a stronger pumping.

relation (6) for the IN together with the calculated I1, our
approach yields the same complexity of O(N ). Let us compare
this to the standard approach for solving the steady-state
problem; cf. [26,27]. The main step involves the inversion of
the matrix of coefficients following directly from the master
equation (2) governing the dynamic of the density matrix.
Truncation at N means a maximum of N photons in the cavity,
and thus 2(N + 1) possible states. For the density matrix,
this yields [2(N + 1)]2 ∝ N2 rows. A matrix inversion based
on the standard Gauss-Jordan elimination algorithm scales in
computational effort with O(M3), with M being the number
of rows. Thus we obtain for a photon number cutoff of N ,
an O(N6) complexity scaling. In contrast to this, our method
reduces the complexity to O(N ).

We can also use the explicit formulas (14) and (17) as well
as the lower bound from the appendix, given by Eq. (A5),
to infer an appropriate cutoff for the numerical calculations
together with the corresponding error bars. First, one derives
the bounds for n, for which the dependences in Eqs. (15)
and (16) become dominant. Then we use the upper and lower
bounds to determine the value for n, for which In+1/In is within
the desired ε neighborhood. Applying Eq. (19) to Eq. (A5),
with the assumption of Cn+1 > 0, we find

−
Dn+1 − βn

ε−αn+1
Dn

Cn+1 − βn

ε−αn+1
Cn

� I1 � −
Dn+1 − βn

−αn+1
Dn

Cn+1 − βn

−αn+1
Cn

. (22)

Comparing with Eq. (21) and the approximation in Eqs. (15)
and (16), we see that the correction to the applied formula (21)
is of the order of O(n−3).

As an example, we plotted in Fig. 2 the first moment I1,
which is the intracavity field intensity, against the normalized
coupling strength g/κ . The parameters are the same as in the
previous work of Agarwal and Dutta Gupta (cf. [18]) and our
method yields the same result. As the coupling increases, so
does the intensity, and I1 ultimately reaches a saturated state
for large coupling. The saturation values appear to be linearly
dependent on the pumping strength.

Another example for the use of the moments is the
calculation of the nth-order normalized intensity correlation

0 200 400 600 800 1000
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p�

I n
��
I 1
n n
��

FIG. 3. (Color online) Renormalized correlation functions
In/(I n

1 n!) for parameters �/κ = 1, δ = 0, and g/κ = 1 (blue/darker)
or g/κ = 5 (orange/lighter). Depicted are the orders n = 2,3,4 with
increasing dashing size, respectively.

of the intracavity field for zero time delay [28],

g(n)(0) = In

I n
1

. (23)

Those normalized correlations are, in principle, measurable by
higher-order generalization of the antibunching experiment by
Kimble et al. [29], e.g., by time-multiplexing techniques [30],
and allow a comparison to well-known states. For example,
a coherent state and a thermal state, as mentioned above,
have moments I coh

n = I n
1 and I therm

n = n!I n
1 . Hence, their

nth-order normalized correlations are equal to unity and n!,
respectively. The intracavity field transits to a thermal state
for p → ∞, as can be seen from Fig. 3, where we plotted
In/(I n

1 n!) for n = 2,3,4 against the normalized pumping
strength. We chose two parameter sets with normalized
coupling g/κ = 1 (blue/darker) and g/κ = 5 (orange/lighter),
each with �/κ = 1 and δ = 0. The curves tend, for both sets
and all orders, to unity for increasing p/κ . It should be kept
in mind that although the system converges formally into a
thermal state for p → ∞, it never reaches it. The transition
is only possible since in Eq. (17) the upper bound ξ diverges,
allowing the moments In to diverge. A rigorous proof of the
thermal state limit is given in Appendix B.

IV. MOMENT-BASED NONCLASSICALITY CRITERIA

We proceed with an investigation of nonclassicality based
on the moments extracted from the steady state. Nonclassical
light fields are quantum fields with properties which cannot
be described by the classic Maxwell equations and are
thus interesting for many applications. Agarwal and Dutta
Gupta applied their method [18] to analyze the Mandel Q

parameter [19] of the intracavity field,

Q = 〈(�n̂)2〉 − 〈n̂〉
〈n̂〉 = I2 − I 2

1 − I1

I1
. (24)

Determining this parameter in experiments requires a measure-
ment of the photon statistics as the amplitude of mean value
and variance of the photon number need to be compared. In
the following, we will focus on the more general correlation
conditions according to [20–22]. There, we only compare
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moments with the same powers of field operators. Hence,
their verification in experiments can be directly concluded
from field correlations measured in homodyne correlation [31]
setups.

The following moment-based criteria are calculated for
two exemplary microcavity systems, namely, micropillars and
microdisks. Those were realized within the last decade and
give a good account of the realizable parameter ranges. The
used parameters are taken from Khitrova et al. [32] and
the two assigned parameter sets include the decay rates �

and κ of the quantum dot (TLS) and cavity, respectively,
as well as the coupling strength g. Note that according
to the used Hamiltonian (1), all parameters are given as
angular frequencies. The first set for the micropillars consists
of � = 113 × 109 s−1, κ = 276 × 109 s−1, and g = 122 ×
109 s−1 and is denoted as set A. The second set, set B, for
the microdisks is � = 427 × 109 s−1, κ = 213 × 109 s−1, and
g = 616 × 109 s−1. The remaining parameters, the pumping
strength p and detuning δ, can then be subject to the experiment
performed on those microcavities, thus being the independent
variables. However, we will set δ = 0, since for our analysis
the detuning is of less interest and we only vary p.

Experimentally accessible criteria for nonclassicality can
be formulated by considering principle minors of the matrix
of moments for suitable basic operators; cf. [20–22]. In our
case, we define

f̂ =
∑
n ∈ N

k,l ∈ {0,1}

Cn,k,l â
† n+l ân+kÂk

21Â
l
12. (25)

Hence, the resulting matrix of moments is solely based on
the moments defined in Eq. (3). Then the necessary and
sufficient condition for a nonclassical state is that at least
one principle minor of 〈: f̂ †f̂ :〉 becomes negative. However,
we will only analyze certain minors related to particular
nonclassical effects, and thus the resulting conditions are just
sufficient. The first condition deals with the intracavity field
only and reads

I2n

I 2
n

< 1. (26)

The special case of n = 1 gives the well-known second-order
correlation function for zero time delay, g(2)(0), and indicates
sub-Poissonian photon statistics if g(2)(0) = I2/I

2
1 < 1.

In Fig. 4, we plotted the condition for orders n = 1,3,5
against the pumping strength, in each case for both parameter
sets A and B. For all shown orders n, set A fulfills
the condition (26) below certain pumping strengths. Hence,
the system undergoes a transition from the nonclassical
to the classical regime for increasing pumping strength.
Keeping the special case n = 1 in mind, this would be the
transition from a sub- to super-Poissonian photon statistics.
Set B does not fulfill condition (26) for any shown order n.
Note that this does not rule out any nonclassicalities of higher
orders. In fact, set B does fulfill the condition (26) for n = 10.

The second condition reads

B2n

B2
n

< 1, (27)

0 2 4 6 8 10
0

1

2

3

4

5

6

p �1012 s�1�

I 2
n�
I n
2

FIG. 4. (Color online) Condition I2n/I
2
n plotted for orders n =

1,3,5 and parameter sets A (blue/darker) and B (orange/lighter) for
varied pumping strength p. A longer dashing corresponds to higher
orders n. Note that the order of magnitude of p is 103 times higher
compared to the other parameters; see beginning of Sec. IV.

which is formally akin to condition (26) but takes into
account the intensity of both the TLS and the intracavity field.
Condition (27) is plotted against the pumping strength p in
Fig. 5 again for sets A (blue/dark) and B (orange/light) and
orders n = 1,3,5. For n = 1, the condition is not fulfilled for
both sets A and B, but higher-order criteria are fulfilled for set
A, again with consecutively lower values and for greater ranges
of the pumping strength. This case again shows that the derived
nonclassicality criteria are only sufficient and an unfulfilled
criteria for some order n does not rule out nonclassical effects
of higher orders.

The third and last criterion examined here is

B1/|R0|2 < 1. (28)

While the more general relation

B2n+1/|Rn|2 < 1 (29)

indicates nonclassicality as the other criteria, Eq. (28) is also
a sufficient criterion for entanglement between the intracavity

0 2 4 6 8 10
0

1

2

3

4

5

p �1012 s�1�

B
2
n�
B
n2

FIG. 5. (Color online) B2n/B
2
n plotted for n = 1,3,5 and param-

eter sets A (blue/darker) and B (orange/lighter) against the pumping
strength p. A longer dashing corresponds to higher orders n. Note
that the order of magnitude of p is 103 times higher than the other
parameters.
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FIG. 6. (Color online) Plot of B1 − |R0|2 for set A (blue/darker)
and set B (orange/lighter). Negative values occur for entanglement
between the intracavity field and the TLS.

field and the TLS [33]. In Fig. 6, we plotted condition (28) for
our two example systems. Similar to the case of condition (26),
set B does not show entanglement, whereas set A fulfills the
condition for certain pumping strengths. However, note the
scaling of both the abscissa and ordinate. Negative values in
Eq. (28) only occur for very low pumping strengths and also
attain only small values.

The results so far indicate that set A shows nonclassical
behavior of different kinds, which reveal themselves via lower-
order moment-based criteria. For set B, on the other hand, those
same order criteria do not indicate a nonclassical character. In
particular, it should be noted that an accurate measurement of
higher-order field moments, such as I10 as shown in Fig. 4,
is currently out of technological reach [30]. This result is
rather surprising as set B has a better quantum-dot–cavity
coupling relative to the dissipation rates. We conclude that
the creation of nonclassical light in incoherently driven
quantum-dot–cavity systems may be favored by not too strong
coupling. In semiconductor quantum optics, strong coupling,
and especially Rabi splitting, is considered a clear indicator of
quantum light; see, in particular, the argumentations in [13–
15]. Our results, on the other hand, clearly show the occurrence
of strong signatures of nonclassicality for moderate coupling,
making this scenario favorable for applications.

Detecting nonclassicality can be cumbersome, as there is an
infinite hierarchy of sufficient but not necessary nonclassicality
conditions [22]. For some system parameters, lower-order
moments do not reveal any nonclassical effect. Hence, in the
following, we will investigate the characteristic function of the
intracavity field, which includes the full information also on
higher-order moments. It is important that the characteristic
function can be directly sampled from experimental data [34].
Moreover, the characteristic function may uncover quantum
effects more directly than moments criteria [35].

V. CHARACTERISTIC FUNCTION

The characteristic function is one possible representation
of the quantum state of light, thus containing all information
on the state. The same information is contained in all of the
moments In and, in this section, we derive their relation to the
characteristic function of the intracavity field. Using this result

�20 �10 0 10 20
�3

�2

�1

0

1

2

3

4

� �

�
�

FIG. 7. (Color online) Characteristic function for the parameter
sets A (blue/darker) and B (orange/lighter) and pumping strength
p = 1 × 1011 s−1.

and the large-n behavior of the In, the asymptotic behavior of
the characteristic function is found. With this, we prove that the
intracavity field is nonclassical for any physically reasonable
set of system parameters.

The characteristic function is defined as [28,36,37]

�(α) = 〈: D̂(α) :〉, α ∈ C, (30)

with the displacement operator D̂(α) = exp(αâ† − α∗â). The
representation of �(α) in terms of the In is derived by
evaluating Eq. (30), while bearing in mind that the off-diagonal
elements 〈â† kâl〉k 
=l vanish in the long-time limit due to the
incoherent nature of the pumping. The result reads

�(α) =
∞∑

n=0

(−1)n

(n!)2
|α|2nIn, (31)

and is therefore phase independent, �(α) = �(|α|). For an
actual calculation, we truncate the infinite sum at n = N in
accordance with the truncation for the moments IN = 0.

The characteristic function is of special interest since it
contains the whole information about the underlying state and
appropriate nonclassicality criteria can be formulated [24].
The simplest criterion reads [23]

|�(α)| > 1. (32)

In order to test Eq. (32), we plotted �(α) in Fig. 7 for the
parameter sets A and B and a pumping strength of p = 1 ×
1011 s−1. In the plotted range of |α|, only set A fulfills the
condition (32) and therefore reveals nonclassicality.

However, this analysis has its limits since only a restricted
range of |α| can be displayed due to the truncation of the infinite
sum in Eq. (31) at n = N . Beyond these limitations, we can,
however, analyze the general behavior of the characteristic
function when using the asymptotic behavior of the moments
In. The detailed derivation can be found in Appendix A, which
gives the asymptotic relation

In+1 = ξ

n
In, n � N, (33)

with ξ = 2pg2/κ3. Here, the order N is defined as N : =
max(n1,n2,n3), where n1, n2, and n3 are the orders for
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FIG. 8. (Color online) Plot of the lower (blue/darker) and upper
(orange/lighter) boundaries for the moments. Also seen are the
approximated ratios βn/(−αn+1) where the linear order is kept (green
dashed line) and the asymptotic relations hold (red dot-dashed line).
The parameters were taken from set B and the pumping strength is
p = 1 × 1011 s−1.

which the approximations −αn+1 ∝ n2, βn ∝ n, and In+1 =
In βn/(−αn+1) hold, respectively; cf. Eqs. (A3)–(A5).

It should be kept in mind that N can become considerably
large and for actual calculations, such as in Sec. IV, the
relation (33) is not reasonable. For a visualization, we plotted in
Fig. 8 the upper and lower bounds for the moments according
to Eq. (A5) in Appendix A against the order n. We also
added the asymptotic relation βn/(−αn+1) = ξ/n as used in
Eq. (33) and the case where the next-to-leading order is kept
for the coefficients αn+1 and βn; cf. Eqs. (A3) and (A4). The
parameters were chosen from set B with a pumping strength
of p = 1 × 1011 s−1. Apparently, the asymptotic relation holds
true for orders n ≈ 103, whereas the lower and upper bounds
are already equal for n ≈ 10. Hence, the moments In can
already be approximated by the upper bound when the
asymptotic relation still differs by orders of magnitude.

While the above considerations are important for actual
calculations involving any of the mentioned approximations,
we can neglect them for the following theoretical analysis and
solely rely on the fact that there is some N which fulfills
the requirements of the asymptotic relation (33). Under these
assumptions, we are now able to avoid the truncation but
instead split the infinite sum in Eq. (31) into two parts. In
the first sum, we use the exact moments up to the order N ,
and in the second, we insert the asymptotic relation (33). The
latter sum can be simplified by iterative application of Eq. (33),
leading to the following expression for �(α):

�(α) =
N∑

n=0

(−1)n

(n!)2
|α|2nIn

+ IN (N − 1)!

ξN

∞∑
n=N+1

(−1)n

(n!)3
|α|2nnξn. (34)

With this expansion at hand, it can be shown that the asymptotic
behavior of the characteristic function is sufficient to prove
nonclassicality according to the criterion (32) for all physically
reasonable sets of system parameters. At first we note that in
general we do not know the coefficients of the first part of the

expansion for the characteristic function as they follow from
the full calculation. Hence, it is necessary for our aim to show
that the asymptotic term increases faster than |α|2N or any
polynomial. Denoting x = |α|2ξ , the asymptotic behavior can
be reduced to

�asymp(x) = VN

∞∑
n=N+1

n
(−x)n

(n!)3
, (35)

with VN the positive prefactor. Note that x > 0 allows one
to take positive roots of x. As we are only interested in the
order of asymptotic behavior, the values of both the scaling
VN and N itself are irrelevant. The latter would only imply
a subtraction of a polynomial of order xN . We therefore set
VN = 1 and N = 0 to simplify our series to

�asymp(x) =
∞∑

n=1

n
(−x)n

(n!)3
. (36)

Using Stirling’s approximation, we obtain

(n!)3 ≈
√

(2πn)3

(
n

e

)3n

≈ 2πn3−(3n+1/2)(3n)! (37)

and thus, after defining x̃ = 3
√

x,

∞∑
n=1

n
(−x)n

(n!)3
≈

√
3

2π

∞∑
n=1

(−3x̃)3n

(3n)!
. (38)

The sum on the right-hand side of Eq. (38) can easily be
obtained by a sum of three scaled exponential functions with
complex exponents, yielding

∞∑
n=1

(−3x̃)3n

(3n)!
= 1

3

[
2 exp

(
3

2
x̃

)
cos

(
3
√

3

2
x̃

)
+ e−3x̃

]
− 1.

(39)

The addition of −1 stems from the limitation of the series to
n � 1. For x̃ � 1, both that constant term as well as the term
exp(−3x̃) can be neglected. Inserting this result into Eq. (36),
we finally obtain

�asymp(x) ≈ 1√
3π

exp

(
3

2
x

1
3

)
cos

(
3
√

3

2
x

1
3

)
. (40)

This is an alternating, diverging function with an envelope
function going with exp( 3

2x
1
3 ), which will overcome any

polynomial increase or decrease from the first part of the
characteristic function in Eq. (34) or the approximation when
setting N = 0 in Eq. (36). Hence, we can state as our final
result that the steady-state intracavity field in our system is
always nonclassical.

VI. SUMMARY

We introduced an alternative technique for solving the
steady-state problem of an incoherently pumped two-level
system coupled to a single-mode cavity by using recurrence
relations with appropriate boundary conditions. Due to the
incoherent nature of the pumping, only three types of non-
vanishing moments are needed, whose coupled equations of
motion lead to the recurrence relation in the steady state.
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Boundary conditions have been derived and an analytical proof
of convergence of the moments has been given. Furthermore,
we provided a direct estimate of the errors in dependence
on the cutoff procedure to be used in numerical calculations.
Together with the method of solution via recurrence relations
a significant reduction of numerical effort was achieved.

Nonclassicality criteria based on moments have been ana-
lyzed for system parameters describing realistic microcavity
structures. Nonclassical effects, such as sub-Poisson photon
statistics for the intracavity field or its entanglement with
the two-level system, occurred for certain parameters. The
favorable scenario for demonstrating quantum phenomena
is that of moderate quantum-dot–cavity coupling and weak
pumping. This is contrary to the often discussed claim
that strong coupling is essential for revealing nonclassical
signatures. In the limit of extremely strong pumping, the
quantum state of the cavity field approaches a thermal one.
For more realistic conditions, however, the state is far from
showing a thermal statistics.

We also examined the characteristic function of the intra-
cavity field, which contains the full information about the
quantum state of light, based on the asymptotic relations
describing the behavior of moments up to higher orders. This
approach renders it possible to show that the intracavity field is
nonclassical for any realistic set of parameters. In conclusion,
the techniques developed in our paper provide helpful tools
for describing a two-level system in a cavity in the steady
state. They offer a variety of possibilities for characterizing
nonclassicality of the intracavity field and its entanglement
with the degrees of freedom of the two-level system.
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APPENDIX A: LOWER BOUND AND ASYMPTOTIC
BEHAVIOR

In addition to the upper bound for the ratio In+1/In in
Eq. (14), we find a lower bound being valid from a certain
order on. The recurrence relation (6) together with Eq. (14)
give

In+2 = αn+1In+1 + βnIn � In+1
βn+1

−αn+2
. (A1)

Hence, if there is a constant ε � βn+1/(−αn+2) > 0, we have

In+2 = αn+1In+1 + βnIn � εIn+1. (A2)

From the asymptotic behavior of the coefficients αn+1,
βn, which follow from their definitions (7) and (8), and

read

αn+1 ≈ − κ2

4g2
n2 −

[
1 + κ2

4g2

(
5

2
+ 3

2

� + p

κ

)]
n, (A3)

βn ≈ p

2κ
(n + 2), (A4)

it follows that such a constant ε does not only exist but that
for every ε > 0 there is an order N from which Eq. (A2)
holds. Note that for the special case of ε < 1, the moments
In converge monotonically. N may be extracted from ε �
βn+1/(−αn+2) or more easily by using only the leading terms
in Eqs. (A3) and (A4) and ξ = 2pg2/κ3 as in the result (17),
giving N � ξ/ε.

Now, we can also formulate a lower bound and together

βn

ε − αn+1
� In+1

In

� βn

−αn+1
, n � ξ

ε
. (A5)

For sufficiently large n, the relation between In and In+1 is
well approximated by ξ/n.

APPENDIX B: ASYMPTOTIC BEHAVIOR FOR
LARGE PUMPING

In the case of very large pumping strengths p � �,κ,g,δ,
we can simplify the coefficients αn+1 and βn to

αn+1 ≈ p

2κ
− p2

4g2
− n + 1

2
, (B1)

βn ≈ 1 + n

2

p

κ
. (B2)

Applying again our upper-bound scenario from Eq. (13), we
obtain

In

In+1
� κ

p
− 1

n + 1
+ κp

2g2(n + 1)
≈ κp

2g2(n + 1)
. (B3)

The latter approximation follows again for sufficiently large
pumping. As in the limit p → ∞, the right-hand side can
only be fulfilled for In+1 → 0, and we can approximate the
behavior, similar to the case above, by

In+1 ≈
(

2g2

κp

)
(n + 1)In. (B4)

Repeatedly applying this formula and taking into account that
for p → ∞, the value of n, from which point on the asymptotic
behavior is valid decreases, we find the relation of moments
for a thermal state:

In ≈ n!

(
2g2

κp

)n

. (B5)

Consequently, the intensity I1 is then given by 2g2

κp
. In the

strict limit of p → ∞, the moments In = 0, ∀n ∈ N, and one
obtains the vacuum state.
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