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Impedance matching of inverted conductors: Two-dimensional beam splitters with divergent gain
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A thin conducting sheet—graphene, for example—transmits, absorbs, and reflects radiation. A sheet that
is very thin, even vanishingly so, can still produce 50% absorption at normal incidence if it has conductivity
corresponding to half the impedance of free space. We find that, regardless of the sheet conductivity, there exists
a combination of polarization and angle of incidence that achieves this impedance-half-matching condition. If
the conducting medium can be inverted, the conductivity is formally negative and the sheet amplifies the incident
radiation. To the extent that a negative half-match in a thin sheet can be maintained, enormous single-pass gain
in both transmission and reflection is possible. Known semiconductors (e.g., gallium nitride) have the optical
properties necessary to give large amplification in a structure that is, remarkably, both thin and nonresonant.
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I. INTRODUCTION

An electromagnetic medium can be characterized by its
permittivity ε and permeability μ, or equivalently by its
index of refraction n and impedance η [1]. Metamaterials
exhibiting the unusual case of a negative index can be
engineered [2] and show promise for previously unimagined
applications such as perfect lenses [3]. Negative impedances
are analogous to negative indices: while not the usual case, they
are not forbidden. Materials with this property are prepared by
creating a population inversion and are widely used in lasers
and other optical amplifiers [1]. This communication describes
how a negative-conductivity, properly impedance-matched
thin sheet can form an amplifying beam splitter with enormous
single-pass gain.

Much like pellicle beam splitters, these systems are thin
films that divide an incident beam into transmitted and
reflected components. The case of reflective amplification
is particularly noteworthy, for, in the limit where the film
becomes vanishingly thin, the reflection and amplification
occur simultaneously upon incidence at the gain medium
interface. This situation stands in marked contrast to other
types of optical amplifiers, even those where reflection plays
a conspicuous role in enhancing the gain. For instance, in disk
lasers, also known as active mirrors, the gain can be attributed
to one medium and the reflection to another [4]. Likewise
in fibers with active cladding the gain is most easily viewed
as occurring as the evanescent wave propagates in the gain
medium [5]. Here, in the thin film limit, the gain and reflection
cannot be conceptually decoupled. Thus this classical example
identifies a direct connection between reflection and stimulated
emission.

II. SHEET

The reflection, transmission, and absorption of classical
electromagnetic waves by a planar conductor is depicted
in Fig. 1. We begin by treating the case of a conducting
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FIG. 1. Diagrams establishing sign conventions for S-polarized
and P -polarized plane waves incident on a conductor sandwiched
between media with refractive indices n1 and n3 respectively. An E-
field directed into the page is indicated with ⊗, and the magnetic fields
B not shown are oriented such that E × B is along the wave vector k.
We consider two cases: the conductor is a sheet with thickness d = 0
and two-dimensional conductivity σ2D, or it is a slab with d �= 0,
permittivity ε̂2, and three-dimensional conductivity σ3D.

sheet of infinitesimal thickness, an algebraically simple but
conceptually rich example which captures our main results.
We imagine plane waves of angular frequency ω and wave
vector k incident on a sheet at an angle θ relative to the sheet
normal vector n̂ (Fig. 1). Ohm’s law K = σ2DE describes
the coupling between the surface current density K and the
electric field E. The two dimensional conductivity σ2D has the
dimensionality of conductance, e.g., �−1 or �/�. The third
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FIG. 2. The transmission T , reflection R, and absorption A by a two-dimensional (2D) conducting plane as a function of ξ , where
ξ = σ2DZ0/n cos θ for S polarization and ξ = σ2DZ0 cos θ/n for P polarization. For a given value of the conductivity σ2D any magnitude of
ξ can be arranged by judicious choice of the polarization and the angle of incidence θ . Thus strong coupling (ξ = ±2), which gives 50%
absorption for positive conductivity and divergent gain with negative conductivity, is always possible.

and fourth Maxwell equations give the nonredundant relations
that follow from matching the fields at the boundary,

n̂ × (Et − Ei − Er ) = 0 and (1a)

n̂ × [
√

ε3/μ3 kt × Et

−
√

ε1/μ1(ki × Ei + kr × Er )] = (4π/c)K, (1b)

where we have used H = √
ε/μ k̂ × E. For simplicity we take

all of the materials in the problem to be nonmagnetic, with
permeability μ = 1. Solving these equations with the sign
conventions shown in Fig. 1 gives

tS = 2n1 cos θ1

n1 cos θ1 + n3 cos θ3 + σ2DZ0
, (2a)

rS = n1 cos θ1 − n3 cos θ3 − σ2DZ0

n1 cos θ1 + n3 cos θ3 + σ2DZ0
, (2b)

tP = 2n1 cos θ1

n1 cos θ3 + n3 cos θ1 + σ2DZ0 cos θ1 cos θ3
, (2c)

rP = −n1 cos θ3 + n3 cos θ1 + σ2DZ0 cos θ1 cos θ3

n1 cos θ3 + n3 cos θ1 + σ2DZ0 cos θ1 cos θ3
, (2d)

where rS/P and tS/P refer to the normalized ratios of the re-
flected and transmitted electric fields for the two polarizations
S and P (E ⊥ and || the plane of incidence respectively). Here
Z0 = 4π/c � 377 � is the impedance of free space, and for
the dissipationless, semi-infinite boundary media n = √

ε. The
angles of incidence, reflection, and transmission have been
rewritten as θi = θr ≡ θ1 and θt ≡ θ3, where θ1 and θ3 are
related by Snell’s law, n1 sin θ1 = n3 sin θ3. When the sheet
has zero conductivity (σ2D = 0), the expressions (2) properly
reduce to the usual Fresnel equations describing transmission
and reflection at the interface between two dielectrics.

Energy conservation gives R + T + A = 1, which relates
the absorption (A) to the reflection (R = r2) and transmission
(T = t2n3 cos θ3/n1 cos θ1) power ratios. For the case where
the medium is the same on both sides of the sheet, n1 = n3 ≡ n

and θ1 = θ3 ≡ θ . The results for both polarizations can then

be summarized,

(T ,A,R) = (1,ξ,ξ 2/4)

(1 + ξ/2)2
, (3)

where we have defined effective conductivity ratios

ξS ≡ σ2DZ0

n cos θ
and (4a)

ξP ≡ σ2DZ0 cos θ/n (4b)

for S polarization and P polarization respectively. Equa-
tions (3) and (4), plotted in Fig. 2, capture the main results
of this paper.

To elucidate the implications of Eqs. (3) and (4) we
take n = 1 and first consider the case of normal incidence
(cos θ = 1). Even for the usual case of positive conductivity
(ξ > 0), Eq. (3) shows interesting behavior. As expected,
for vanishing conductivity the transmission T → 1 and the
reflection R → 0, whereas for high conductivity T → 0 and
R → 1. The absorption A vanishes in both limits, but the
intermediate maximum is surprisingly large. As has been noted
previously [6,7], a sheet with half the impedance of free space
absorbs 50% of the incident power at normal incidence, even
if it is thin compared to a skin depth. The 50% limit on the
absorption results from the lack of dissipative coupling to the
magnetic half of the electromagnetic wave’s energy [8], but
excepting this factor of two the coupling is maximal.

Proceeding to the case of non-normal incidence, we see that,
because of the cosines in Eqs. (4), varying the polarization
and angle of incidence can accomplish the same result as
varying the conductivity σ2D. Working in S polarization
(P polarization) away from normal incidence effectively
increases (decreases) the sheet conductivity. To the extent that
glancing incidence (θ → π/2) can be achieved, any effective
conductivity ratio ξ is possible regardless of the actual sheet
conductivity σ2D. As a consequence, maximal coupling can
be arranged in any one of the transmission, absorption, or
reflection channels.
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Particularly important is the geometry that gives strong
coupling in the absorption channel. A sheet with, for example,
low conductivity can be made to achieve maximal A by
arranging an angle of incidence θ = arccos(σ2DZ0/2) in S

polarization. If this impedance-matching condition is satisfied
with positive conductivity, then ξ = 2 and A = 0.5. Such large
absorption in a thin layer could help improve the economics
of solar cells, for instance.

With an inverted, or negative-conductivity, sheet, achieving
the corresponding maximal coupling condition, ξ = −2,
gives extraordinary behavior. In this case T , A, and R are all
divergent, with T and R positive and A negative (see Fig. 2).
As ξ → −2 the sheet effectively becomes an amplifying
50:50 beam splitter with large gain in both the transmitted
and the reflected beams.

As in the case of positive conductivity, the effective conduc-
tivity ratio ξ can be tuned geometrically, perhaps to achieve a
certain impedance match [8]. If for technical reasons creating a
highly conductive, inverted medium is difficult, larger negative
ξ can still be achieved by working at glancing incidence in S

polarization. For both conductivity cases the geometric tuning
is nontrivial, i.e., not a Lambertian cosine dependence resulting
from changes in the sheet’s projected area [9].

Normally one thinks of gain as being equivalent to negative
absorption. While true, this viewpoint easily leads to the erro-
neous conclusion that weakly absorbing materials have limited
potential for producing large, single-pass gain. Here we might
expect that the 50% absorption limit would imply a maximum
gain of ×1.5 or ×2. In contrast with this naı̈ve expectation,
the amplification produced by an inverted medium can be
much larger than the corresponding attenuation produced by
the uninverted medium. Changing the sign of the conductivity
is not equivalent to changing the sign of the absorption.

Qualitatively the two-dimensional (2D), negative-
conductivity sheet with ξ < −1 has a unique feature: it gives
gain which cannot be accredited to the process of transmission
through an inverted medium but rather occurs during
reflection at an interface. A quantum-mechanical description
of this process must necessarily identify reflection as a form
of stimulated emission. Typically stimulated emission is
considered to create a new photon with quantum numbers
identical to those of the incident photon, but with reflection this
identity can no longer hold; one component of the new photon’s
momentum must have sign opposite that of the incident photon.

The potential divergence seen in Eq. (3) is reminiscent
of the one occurring in a Fabry-Perot resonator with cavity
gain greater than its round-trip losses, where it is indicative
of self-oscillation [10]. In this analogy the amplifying beam
splitter corresponds to the zero mode of a Fabry-Perot etalon,
with no cavity or resonant structure. As in a laser, the pump
process maintaining the negative conductivity only supplies
energy at a limited rate, so in an actual physical implementation
divergent gain will not be achieved. The magnitude of ξ will
decrease as the amplification rate approaches the pump rate.
Nonetheless exploring the origin of this infinity is instructive.
As is so often the case, the formal divergence here can
be traced to an unphysical geometric assumption: we have
taken the conducting sheet to have zero thickness, while
requiring that its conductivity remain finite. While at times
a conducting sheet can be considered to be infinitely thin in

the first approximation, this simplification gives quantitatively
inaccurate results near ξ = −2.

III. SLAB

To treat the problem more realistically we apply the method
of transfer matrices [11] to a slab of conducting material of
finite thickness. (We use the terms sheet and slab as shorthand
for the infinitesimally thin layer calculated above and the
finite thickness case treated below respectively.) Using this
method the relationship between the incident, reflected, and
transmitted electric fields can be written as(

Et

0

)
= M

(
Ei

Er

)
. (5)

The 2 × 2 matrix M effecting the transformation is built up
from a series of matrices, each describing the transfer across
an interface or through some thickness of a medium. For
the case of an incident wave from a medium (1) entering
a second (2) and continuing on to a third (3), the transfer
matrix has the form M = I23T2I12, where the translation
matrix T and the interface matrices I account for the slab
and boundaries designated by the respective subscripts. The
procedure for generalizing such an expression to allow for
an arbitrary number of finite-thickness slabs with different
electromagnetic properties follows from induction and can be
deduced by inspection. The matrix that evolves the wave across
the j th slab of thickness dj and index nj is

Tj =
(

eiδj 0
0 e−iδj

)
, (6)

where δj = (ω/c)djnj cos θj . For S polarization the matrix
enforcing the boundary conditions at an interface between two
distinct media j and k is

IS
jk = 1

2

(
1 + nj cos θj

nk cos θk
1 − nj cos θj

nk cos θk

1 − nj cos θj

nk cos θk
1 + nj cos θj

nk cos θk

)
. (7)

Here the n’s and the θ ’s refer to the refractive indices
and propagation angles (determined by Snell’s law) in the
respective media. For P polarization IP

jk has a similar form,

IP
jk = 1

2

(
nj

nk
+ cos θj

cos θk

nj

nk
− cos θj

cos θk

nj

nk
− cos θj

cos θk

nj

nk
+ cos θj

cos θk

)
. (8)

Explicit though lengthy expressions for T , A, and R are easily
found using Eqs. (5)–(8) given above.

To see the approach to the case of a conducting sheet in
vacuum discussed previously, we take n1 = n3, and the slab’s
refractive index n2 = ñ + ik̃ to be given by

n2
2 = ε̂2 ≡ εr + iεi = εr + i

4πσ3D

ω
= εr + i

λ

2π
σ3DZ0, (9)

where ε̂2 is the complex permittivity and λ is the vacuum
wavelength of the incident radiation. The three-dimensional
(3D) conductivity σ3D → σ2D/d in the limit d → 0. For S

polarization, which is the more interesting case since invertible
materials generally have small conductivities,

(tS,rS) = [2x,i(x2 − 1) sin δ2]

2x cos δ2 − i(x2 + 1) sin δ2
(10)
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with x ≡ n2 cos θ2/n1 cos θ1. Assuming an index match (εr =
n2

1) and a small phase δ2 (i.e., a thin slab) gives

(tS,rS) � (2, − ξ ′)
(2 + ξ ′)(1 − a2/2) − ia(2 + ξ ′ + ξ ′2/6 − a2/3)

,

(11)

where ξ ′ ≡ σ3Dd2Z0/n1 cos θ1, a ≡ (ω/c)d2n1 cos θ1, and we
have kept terms to third order in δ2 in the denominator. At
ξ ′ = −2, which corresponds to the infinite gain condition (ξ =
−2) of the sheet case, this expression gives, to leading order,
T = R ≡ G, where

G �
(

3

a

)2

=
(

3λ

πd2
2σ3DZ0

)2

=
(

3εi

2n2
1 cos2 θ1

)2

. (12)

Arranging εr − n2
1 sin2 θ1 = (1/3)n2

1 cos2 θ1 gives an even
larger G � 25(3/a)4, a result found by keeping terms to
fifth order in δ2. Thus the gain G from a slab is finite
for nonvanishing thickness d2 and diverges as d2 → 0 with
d2σ3D → σ2D fixed.

The reflection gain of the slab arrangement (12) contrasts
with the analogous result for the interface of two semi-infinite
media, where the second one is active. There R � 1 in all
cases [12,13]. An infinitely thick inverted medium produces
zero gain in reflection, while a thin, inverted medium can
produce large R.

That a thin slab can produce large T is also surprising,
since in typical optical amplifiers the small signal gain (in
transmission, of course) grows exponentially as the gain
medium thickness increases [10,14]. This last point highlights
the utility of an extended concept of impedance matching
for negative-conductivity systems. Here, as a function of the
conductivity and the thickness, the gain peaks at the negative
analog of the best impedance match.

The role of impedance matching provides another perspec-
tive on the distinction between the amplifying beam splitter
and previously described optical amplifiers. The active mirror,
for instance, is inherently a multipass transmission device [4]
that relies on an impedance mismatch to produce reflection.
Likewise, amplifier designs based on total internal reflection,
from fiber lasers [5] to whispering-gallery-mode microsphere
lasers [15], require an impedance mismatch in the form of an
index discrepancy to produce reflection. The amplifying beam
splitter works best in the limit where an impedance half match,
modulo a sign, is achieved.

IV. REAL MATERIALS

Although arranging the inversion and geometry to give
ξ = −2 in a thin layer might be technically challenging, in a
physical implementation with real materials the gain described
by Eq. (12) could be made large. As a first example we consider
graphene, the canonical example of a thin conductor or
“quantum membrane” [16]. Graphene has a two-dimensional
optical conductivity

σ2D = (πα/Z0)(nv − nc), (13)

where α � 1/137 is the fine structure constant, and nv

and nc are the occupations of the valence and conduction
bands respectively [9]. If doping and thermal excitations are

negligible, then nv = 1 and nc = 0 and this expression reduces
to the famous result connecting the optical conductivity e2/4�

to the absorption πα [17,18]. Partial inversion of graphene has
been achieved with strong photoexcitation [19,20]. Assuming
a complete inversion, a graphene thickness of 0.34 nm, and
incident radiation with λ = 800 nm, Eq. (12) gives gains
in transmission and reflection of ∼1010. While such an
inversion is unlikely to be realized in graphene, transition-
metal dichalcogenides and other 2D layered semiconductors
(e.g., WSe2) are similarly thin, with similar conductivities [16],
and can support practical inversions [21]. Thus such direct
band-gap materials show promise for realizing large gain.

Compared to many invertible materials, these 2D layered
semiconductors are good conductors at optical frequencies, but
graphene—to continue using this example—only achieves the
maximum coupling condition in S polarization at the glancing
angle θ1 � 89.3◦. If low conductivity makes θ1 inconveniently
close to 90◦, the angle of incidence corresponding to maximal
coupling can be decreased by working in very low index
materials, e.g., photonic crystals [22,23], or by increasing the
ratio of n1 to n3. Moving into the total internal reflection
regime, however, gives an impedance mismatch that destroys
the beam splitter and spoils the system gain.

Standard invertible materials are characterized by their
gain coefficients g, which are related to optical conduc-
tivities by g � σ3DZ0/n when εi � εr [see Eq. (9)] [1].
Ruby, neodymium-doped yttrium aluminum garnet (Nd:YAG),
neodymium-doped yttrium orthovanadate (Nd:YVO4), and
titanium-doped sapphire have gain coefficients in the range
1–10 cm−1 [14,24], making them more than 104 times less
conductive than graphene. The resulting angles of incidence
are so near 90◦ that a physical optics picture may be required.
However, semiconducting materials can have gain coefficients
as large as 104–105 cm−1 [25], and crystalline monolayers are
starting to see use as laser gain media [21]. Taking 20 nm
of index-matched, low-temperature gallium nitride (GaN, n =
2.5, g = 105 cm−1, λ = 359 nm) as an example [26], we find
G � 1200 at θ � 84.3◦, an angle that can be straightforwardly
arranged. Decreasing the thickness or the gain coefficient gives
larger gain at a larger angle; d = 5 nm gives G � 2.9 × 105 at
θ � 88.6◦, while g = 104 cm−1 gives G � 1.2 × 105 at θ �
89.4◦. Known materials have the optical properties required
to create a thin (δ2 � 1), amplifying beam splitter with large
gain.

Despite appearances in these glancing incidence examples,
waveguide effects are not involved: with a good inverted
conductor one could achieve large gain at normal incidence.
Lead telluride (PbTe) has ε̂ � 0.33 + 50i near λ = 620 nm
[27], corresponding to a skin depth λ/2πk̃ � 20 nm. At normal
incidence such material in a slab of thickness d = λ/πεi �
3.9 nm in vacuum would give A = 50%, and G > 108 if it
could be fully inverted. As mentioned earlier, saturation effects
limit the gain in practical situations, so such large G should be
taken to indicate nearly ideal coupling only.
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