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Excitable solitons in a semiconductor laser with a saturable absorber
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Self-pulsing cavity solitons may exist in a semiconductor laser with an intracavity saturable absorber. They
show locally the passive Q-switching behavior that is typical of lasers with saturable absorbers in the plane-wave
approximation. Here we show that excitable cavity solitons are also possible in a suitable parameter range and
characterize their excitable dynamics and properties.
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I. INTRODUCTION

In recent years, optical dissipative solitons have been the
object of extensive research in many different systems [1,2].
They are single-peaked optical localized structures, often
called cavity solitons. Among the different optical systems
where they may exist, semiconductor devices are particularly
interesting in view of potential applications to telecommuni-
cations and optical information storing and processing [3,4].

A cavity soliton laser is an optical system which is able
to emit cavity solitons in the absence of an injected coherent
field. Different experimental realizations have been proposed
where the amplifier is a semiconductor and the bistability
mechanism can be induced either by a saturable absorber (both
in intracavity [5,6] and in coupled-cavity configurations [7,8])
or by frequency selective feedback [9].

The semiconductor laser with an intracavity saturable
absorber is the most interesting for applications, due to its
compactness and the possibility of integration in an all-optical
circuit. In such a system, cavity solitons were first predicted
in Ref. [10], and the model was afterwards refined to include
quadratic radiative recombination [11].

While most of the interest was initially concentrated in
demonstrating the existence of stationary cavity solitons (CSs),
more recently a drift instability leading to spontaneous soliton
motion was predicted [12–14] and later an oscillatory instabil-
ity affecting CSs was reported. These oscillating solitons and
their interaction were studied in Ref. [15], where the existence
of chaotic localized states was also numerically demonstrated.

On the other hand, excitability is a general dynamical
behavior common to many different dynamical systems,
consisting of a well-defined thresholdlike response upon
perturbation, followed by a return to the initial (stable) state
[16–19]. In optics, examples of excitable systems include
optical amplifiers [20], lasers with optical feedback [21,22],
lasers with saturable absorbers [23,24], lasers with optical
injection [25], and active photonic crystals [26].

In the great majority of the existing literature, excitable
optical systems have been analyzed in the plane-wave approx-
imation, that is, in the absence of spatial effects. Noticeable
exceptions are the studies on propagation of excitable pulses in
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the transverse space in a laser or absorber with optical injection
[27,28] and a scheme which combines excitability and drifting
localized states in a laser with a saturable absorber in the
coupled-cavity configuration [29,30]. Another system that
links excitability to localized structures is the Lugiato-Lefever
model of a Kerr cavity, where excitability mediated by CSs
has been demonstrated in Refs. [31,32].

Our aim here is to investigate the existence of excitable
solitons in a semiconductor laser with an intracavity saturable
absorber. As we show, such excitable solitons exist in a
parametric region slightly below the laser threshold where,
for some values of the parameters, the limit cycle in the phase
space associated with the oscillating solitons becomes unstable
and the only stable state is the laser-off solution. Under those
conditions, a suitable localized address pulse is able to excite
a transient solitonic pulse, provided its amplitude exceeds a
certain excitability threshold. We stress that our system is
excitable also in the plane-wave approximation [23,33], in
contrast with Refs. [31,32].

In Sec. II we review the model describing a vertical cavity
surface emitting laser (VCSEL) with a saturable absorber,
and in Sec. II A we analyze the stability of stationary and
oscillating CSs. In Secs. III and III A we study excitable CSs
by analyzing the dependence of their peak intensity and of
the delay time on the amplitude of the perturbation and by
analyzing the dependence of the excitability threshold on the
distance from the laser threshold. In Sec. III B we demonstrate
that the shape of the excitable pulses is independent of the
width of the perturbation so that, in addition to the usual
temporal pulse reshaping, our excitable solitons also provide
spatial reshaping. In Sec. III C we show that by tuning the
injected field to the cavity soliton a large reduction of the
excitability threshold can be achieved. Section IV is devoted
to the conclusions.

II. MODEL AND SELF-PULSING CAVITY SOLITONS

The dynamical equations for a VCSEL with an integrated
absorber stage are [10]

Ḟ = [(1 − iα)D + (1 − iβ)d − 1]F + i∇2
⊥F, (1)

Ḋ = −b1[D(1 + |F |2) − μ], (2)

ḋ = −b2[d(1 + s|F |2) + γ ]. (3)
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The dimensionless variables F , D, and d are, respectively, the
slowly varying envelope of the electric field, the carrier density
of the amplifier medium, and the carrier density of the absorber
medium. The transverse Laplacian operator ∇2

⊥ = ∂2
xx + ∂2

yy

represents diffraction in the paraxial approximation. The
parameters α and β are the linewidth enhancement factors
of the semiconductor materials; μ and γ are the pump and
absorption parameters for the active and passive material; b1

and b2 are the ratio of the photon lifetime to the carriers
lifetimes in the two materials, and s is the saturation parameter.
Time is scaled to the cavity lifetime and the transverse
coordinates x and y are scaled to the diffraction length. This
means that, for VCSELs, the time unit (t.u.) is of the order
of 10 ps and the spatial unit (s.u.) is of the order of a few
microns. We also define the parameter r as the ratio of the
carrier lifetimes in the amplifier and in the absorber:

r = b2

b1
= τamp

τabs
. (4)

The parameters r and and μ vary in our studies while the other
parameters are kept fixed:

γ = 0.5, s = 10, α = 2, β = 0.2, b1 = 0.01. (5)

All values are the same as those in Ref. [10] except β, which
here is set more realistically different from zero. Notice,
however, that for larger positive values of β the CSs are
invariably unstable. The consolidated technique to excite CSs
in the position (x0,y0) is to inject a suitable field for a short
period, τinj. We use a field of the form

Finj = |Finj|eiφinje−iωinjt e
− (x−x0)2+(y−y0)2

2σ2
inj , (6)

i.e., a field with Gaussian profile in space with amplitude
|Finj|, width σinj, phase φinj, and frequency ωinj. In a laser
with saturable absorber, however, the phase is irrelevant, since
the laser is in the off state before injection. The other injection
parameters are chosen as in [10]

ωinj = 0, σinj = 3, |Finj| = 1.5, τinj = 100. (7)

The frequency ωinj = 0 corresponds to the cavity resonance.
The peak intensity and the frequency of the stationary CSs
obtained for r = 0.45 are plotted in Fig. 1 as functions of
the active material pump parameter μ. The zero and nonzero
homogenous plane-wave solutions (modulationally unstable
for this set of parameters) are also shown for comparison.
We were able to switch-on CSs in the interval 1.415 � μ �
1.49 where they coexist with the stable homogenous nonlasing
solution.

The stability analysis of CSs in the plane of the parameters
(μ,r) reveals a scenario similar to that reported in Ref. [12]
for a slightly different model which includes the effects of
carrier radiative recombination [11,34]. The stability domain
of CSs is shown in the Fig. 2(a). With respect to Ref. [12],
the stability domain is shifted towards smaller values of r . As
a consequence, no stable CS exists when the recombination
times of the two materials are very close to one another (r ≈ 1).

For a given μ, the stationary CSs are stable in a range
of r which lies inside the stability domain of the lasing
homogeneous solution with respect to a Hopf instability,
whose boundary is given approximately by the condition

FIG. 1. (Color online) Homogenous stationary solution (dashed
line), peak intensity (black lower solid line), and frequency of
stationary CSs (blue upper solid line) as functions of μ. The symbols
indicate the stable CSs. The system parameters are those in Eq. (5)
with r = 0.45. The CSs are switched-on by the injected field in
Eq. (6) with injection parameters as in Eq. (7). The laser threshold is
μ = 1.5.

μ < r2γ s or r >
√

μ/γ s [10,35]. Below the lower limit of
the CS stability domain (Fig. 2(a), red line and symbols) a
drift instability associated with real eigenvalues gives rise to
spontaneously moving solitons [12]. Above the upper limit
there is a region where oscillating CSs are stable [15], which
is shown enlarged in Fig. 2(b).

A. Self-pulsing cavity solitons

We characterize the CS oscillations by measuring the period
and the maximum and minimum values of the peak oscillations
as a function of μ. The values measured for r = 0.5 are shown
in Fig. 3. Both the amplitude of the peak oscillations and the
period increase with decreasing μ.

The same study can be done by fixing the value of μ (for
example, μ = 1.45) and by letting the parameter r vary. Here,
on the contrary, both the amplitude of the peak oscillations and
the period increase with r ([36]).

As shown in Fig. 3, for μ = 1.465 the CS is stationary so
the intensity is constant. For smaller μ (about μ = 1.4635) the
stationary CS undergoes a Hopf bifurcation. The amplitude of
the oscillations increases rapidly as μ decreases and very soon
a regime of nonlinear pulses similar to Q switching is reached:
the intensity is close to zero for most of the time except for
short periodic intervals [see inset of Fig. 3(a)]. The maximum
pulse intensity is about seven times the intensity of a stationary
CS for μ = 1.45 and it grows as μ decreases.

The period is around 125 t.u. at the onset of the oscillations
(roughly 1.25 ns) and it increases rapidly over 270 t.u. (roughly
2.7 ns), showing a clear divergence as μ approaches the left
boundary for the existence of self-pulsing CS (the last point in
Fig. 3 is μ = 1.4472). In particular, as shown by the red dashed
line in Fig. 3(b), the period of the oscillating CS diverges as the
logarithm of the distance from the bifurcation, indicating that
the oscillations disappear through a saddle-loop or homoclinic
bifurcation.

For smaller values of μ, the period of the oscillations
initially increases, then the pulsing CS destabilizes and after
some tens of oscillations (in the proximity of the critical value)
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FIG. 2. (Color online) (a) Stability domain of the stationary CSs
(gray region), in the plane of parameters r and μ. The black
continuous line limits the region where the homogeneous solution
is Hopf unstable. In the region between the black (upper) solid lines
with symbols self-pulsing CSs are stable. In correspondence with
the red (lower) line with symbols the CSs undergo a drift instability.
(b) Zoom of the upper part of the diagram showing the stability
domain of the self-pulsing CSs. Below the displayed lower boundary,
CSs are stationary; beyond the upper boundary, they decay either
to the nonlasing state (smaller μ) or to a complex spatiotemporal
state (larger μ). The horizontal dashed line corresponds to the value
r = 0.5, used in Fig. 3.

it switches-off spontaneously. Such a bifurcation from a stable
limit cycle (self-pulsing CS) to a fixed point (homogeneous
nonlasing state) makes our system a candidate for exhibiting
excitability.

III. EXCITABLE CAVITY SOLITONS

Excitability is a feature of a nonlinear dynamical system
defined by the response to an external perturbation. Perturba-
tions smaller than a given threshold are exponentially damped
and the system remains in its stable state. If the perturbation
exceeds that threshold the system performs a large excursion
in the phase space before coming back to its initial stable state.

For the fixed pump value μ = 1.47 we apply a perturbation
to the zero-intensity homogeneous solution and compare the
response of the system for three different values of r . One
value (r = 0.48) lies within the stability domain of stationary

FIG. 3. (Color online) (a) Maximum and minimum values of the
peak intensity of an oscillating CS as a function of μ for r = 0.5.
The inset is the time trace for μ = 1.45. (b) Corresponding period of
the intensity oscillations. The dashed red line is a fit of the six leftmost
points with the function T = T0| ln [(μ − μhom)/a]|. The calculated
values of the fitting parameters are T0 = 39.134, μhom = 1.4465, and
a = 0.70323. The dashed vertical line indicates the position of the
homoclinic bifurcation μ = μhom. Other parameters are as in Eq. (5).

CSs, another one (r = 0.51) lies within the stability domain
of self-pulsing CSs, and the third one (r = 0.56) lies outside
both stability domains. We use the same perturbation as in
Eq. (6), with |Finj| = 1.25, τinj = 50, and σinj = 3.

In Fig. 4(a) the time evolution of the intensity in the
central point of the applied perturbation is displayed. Three
different behaviors are observed, depending on the value of r:
(i) for r = 0.48 (red line), the system reaches, through damped
oscillations, the stationary CS solution (the process takes about
5000 t.u.); (ii) for r = 0.51 (blue line), the system approaches
the self-pulsing CS solution through growing oscillations; and
(iii) for r = 0.56 (black line), the system emits a short pulse
and goes back to the zero-intensity solution.

In Fig. 4(b) we show the corresponding trajectories in
the sub-phase-space (D + d − 1, |F |2). The combination
D + d − 1 represents the net gain (difference of gain and
nonlinear and linear losses). In cases (i) and (ii) the system
has two stable attractors: the nonlasing state (A) and the
stationary CS (C) in case (i), and the nonlasing state (A) and
the limit cycle corresponding to the self-pulsing CS solution
in case (ii). The system can go from one attractor to the
other provided the applied perturbation makes it go over the
saddle point, approximately given by the unstable CS (B).
In case (iii), instead, only the nonlasing state is stable and
the trajectory (black line) presents the typical behavior of
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FIG. 4. (Color online) Response of the system to a local Gaussian
perturbation for three different values of r: 0.48 (red dotted lines),
0.51 (blue dashed lines), and 0.56 (black solid lines), and μ = 1.47.
The perturbation parameters are |Finj| = 1.25, τinj = 50, and σinj = 3.
(a) Time evolution of the intensity in the central point of the applied
perturbation. (b) Corresponding trajectories in a phase-space section:
intensity |F |2 vs net gain (D + d − 1). A is the nonlasing state, B

is the unstable CS belonging to the negative slope branch, and C

is the CS solution belonging to the positive slope branch, which is
stable for r = 0.48 and unstable for both r = 0.51 (oscillating CS
stable) and r = 0.56 (oscillating CS unstable). (c) Spatial profiles
of the stationary (r = 0.48), self-pulsing (r = 0.51), and excitable
(r = 0.56) CSs. The curves are normalized to their maximum value.
No matter what is the temporal behavior, light emission is localized
in the same spatial profile.

excitability. The system, once it has overtaken the saddle,
performs a large trajectory around the limit cycle which is no
longer stable and it finally comes back to the stable nonlasing
state. Finally, Fig. 4(c) shows that the normalized spatial
profiles of the stationary, oscillating, and excitable CSs (the last
two measured in correspondence with the maximum intensity)
are almost undistinguishable.

A. Excitability threshold and delay

In order to characterize the excitable behavior of case (iii)
we investigate the dependence on the injected pulse amplitude
of the peak pulse intensity and of the time delay, measured

FIG. 5. (Color online) (a) Time evolution of the peak intensity
in response to perturbations with different amplitudes. For a weak
perturbation (|Finj| = 1.122) the system relaxes into the nonlasing
state (red or light gray line); for larger perturbations a pulse is emitted
before coming back to the nonlasing state. The intensity oscillations
during injection (before the dashed vertical line) are due to the beating
between the perturbation frequency and the CS frequency. The laser
parameters are μ = 1.47 and r = 0.56. The perturbation parameters
are τinj = 50 (dashed vertical line) and σinj = 3. (b) Intensity of the
pulse emitted by the system as a function of the amplitude of the
injected beam |Finj| and corresponding delay time of the emitted
pulse measured from the end of the injected pulse.

from the end of the applied perturbation. In Fig. 5(a) the red
line shows the response to a perturbation with insufficient
amplitude (|Finj| = 1.122), which causes just a small hump
in the intensity before it relaxes to zero, while the black
lines are the excitable pulses observed with amplitudes from
1.25 to 1.7. The peak intensity of the emitted pulse and
the delay between pulse injection and pulse emission as
functions of the perturbation amplitude |Finj| are depicted
in Fig. 5(b). Typically, excitability is characterized by a
pulse height almost independent of the perturbation ampli-
tude and a delay diverging at threshold and monotonically
decreasing as the perturbation amplitude is increased. While
the latter feature is present in Fig. 5(b), we observe that
the peak intensity of the pulse increases approaching the
excitability threshold and remains almost constant for larger
perturbations.

We interpret this phenomenon as a consequence of the
fact that the triggering pulse is not perfectly matched neither
in spatial shape nor in frequency with the excitable pulse.
Close to threshold this double mismatch is in part dynamically
compensated by the system during the relatively long buildup
stage of the pulse, and the emitted intensity can reach
the largest values. Conversely, well above the excitability
threshold the response of the system is very fast, so that
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FIG. 6. The excitability threshold as a function of the pump
parameter μ for r = 0.56 and injection at the cavity frequency ω = 0.
The injection parameters are τinj = 50 and σinj = 3.

the effects of the mismatch are not compensated for and the
emitted intensity is consequently reduced.

The excitable behavior is found for all the considered values
of the pump parameter: 1.43 � μ � 1.475 at r = 0.56. The
excitability threshold decreases as the current is increased as
shown in Fig. 6. This can be understood from the fact that for
higher pumping of the amplifier, the unstable CSs get closer
to the nonlasing solution (they collide at the laser threshold).

The interesting aspect is that the excitable behavior is
confined in a region of the transverse plane that matches the
stationary CS profile. Therefore we claim that we are observing
excitable CSs (or excitable localized structures) to distinguish
our case from the plane-wave excitable behavior reported in
lasers with a saturable absorber [23,33].

Localized excitable structures have been investigated in
Kerr cavities [31,32,37]. With respect to those works we stress
that we use a different, and more realistic, procedure to excite
the pulses, consisting of a perturbation of a stable state (the
nonlasing state) instead of a perturbation of an unstable state
(the localized structure in the unstable negative slope branch).

B. Temporal and spatial beam reshaping

One useful application of excitability in optics consists
of the fact that the temporal profile of the excited pulse is
independent of that of the applied perturbation. Therefore, for
instance, Gaussian, rectangular, and δ-like perturbations all
yield pulses with the same shape [33].

Our localized excitable structures have the additional
property of reshaping the spatial profile of the perturbation.
We demonstrate this by injecting three Gaussian-shaped pulses
with different widths, σinj = 2, 3, and 4, and the same
rectangular profile of duration τinj = 50. The amplitude |Finj|
is chosen close to the excitability threshold in order to have
a similar temporal response in all cases. It is reasonable to
assume that the excitability threshold is related to the injected
energy,; i.e., it is proportional to the quantity |Finj|2σ 2

injτinj.
Since in these simulations τinj = 50 is kept constant, the
threshold amplitude should be inversely proportional to the
beam width σinj. Actually, this proportionality law is a good

FIG. 7. (Color online) Three different injected pulses and the
resulting responses. (a) Spatial intensity profiles of the injected
Gaussian pulses. (b) Time evolution of the peak intensity from the
beginning of the injection. (c) Normalized spatial intensity profile
corresponding to the peak of the excitable response. The injection
parameters are σinj = 2 and |Finj| = 1.666 (red dotted lines); σinj = 3
and |Finj| = 1.13 (black solid lines); and σinj = 4 and |Finj| = 0.89
(blue dashed lines). For all of them τinj = 50 and ωinj = 0.

approximation of reality. In our simulations the amplitude |Finj|
is such that |Finj|σinj = 3.33, 3.39, and 3.56 for σinj = 2, 3,
and 4, respectively. The spatial intensity profile of the three
perturbations is shown in Fig. 7(a).

The temporal and spatial profiles of the excited pulses are
illustrated for comparison in Figs. 7(b)and 7(c). The three
temporal profiles shown in 7(b) are very similar, although the
delay times are slightly different. They can be approximated
by a Gaussian of temporal HWHM ≈13 and a height between
9.34 and 9.58. The three scaled spatial profiles taken at the
pulse maximum are shown superimposed in Fig. 7(c). They
are undistinguishable and well approximated by a Gaussian
with a spatial HWHM ≈1.35, i.e., narrower than all three
perturbations.

C. Low threshold excitability in response to a perturbation
frequency matched with the CS

The injection frequency is a key parameter in nucleation
processes, and experimentally a frequency matched perturba-
tion is much more efficient [38]. It was shown in Ref. [39]
that, in the case of a stationary CS, injection of a writing
beam at the soliton frequency ωCS allows one to reduce
the energy threshold with respect to injection at the cavity
frequency (ωinj = 0). We show that this result also applies to
the excitability threshold.

The frequency of the CS for μ = 1.47 is ωCS = 2.578
(see Fig. 1). By injecting a perturbation oscillating at that
frequency we were able to reduce both the injection time and
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FIG. 8. (Color online) Excitable response for ωinj = ωCS. Panels
(a) and (b) are the same as in Fig. 5. The other injection parameters
are σinj = 3 and τinj = 5.

the amplitude of the perturbation by an order of magnitude,
resulting in an injected energy which is 3 orders of magnitude
smaller.

Figure 8 must be compared with Fig. 5 obtained with ωinj =
0. The width of the injected field is σinj = 3 in both figures
but in Fig. 8 the injection time is tinj = 5 instead of 50 and,
nonetheless, the excitability threshold is found at a smaller
value of the injected amplitude |Finj| = 0.223 instead of 1.122.

On the other hand the dependence of the peak intensity and
of the delay time, as reported in Figs. 5(b) and 8(b), is very
similar. Here the increase in the emitted pulse intensity close
to the excitability threshold is less pronounced than that in
Fig. 5, which corroborates our previous interpretation of this
phenomenon because now the frequency mismatch is removed
(see Sec. III A).

In Fig. 9 we show how the excitability threshold increases
as we move away from the laser threshold μ = 1.5. This
figure must be compared with the analogous Fig. 6 obtained
with a perturbation oscillating at the cavity frequency ω = 0.
Injection at the CS frequency results in a linear dependence
of the threshold on the pump μ and, as observed before
for μ = 1.47, in a substantial reduction of the switching
energy.

We were not able to calculate numerically the excitability
threshold in the vicinity of the laser threshold because,
as shown in Fig. 1, no stable CS exists in that interval.
Notice, however, that a linear interpolation of the data shows
that the excitability threshold could not vanish at the laser
threshold μ = 1.5 (the interpolated value is |Finj|thr ≈ 0.13).
This represents a marked difference with respect to the plane-
wave model [33]. It implies that the excitation of a localized
pulse from noise in a spatially extended system is much less
likely than in a pure temporal one.

FIG. 9. The excitability threshold as function of the pump
parameter μ for r = 0.56 and injection at the CS frequency ωCS.
The injection parameters are τinj = 5 and σinj = 3.

IV. CONCLUSIONS

We have studied numerically the stability of CSs in a
VCSEL with a saturable absorber using the ratio of the
carrier lifetimes in the passive and in the active material (r)
and the pump parameter in the active region (μ) as control
parameters. In a certain parameter region, stationary CSs
develop a Q-switching instability, and self-pulsing CSs are
found to be stable and to coexist with the homogeneous
nonlasing solution.

Beyond the bifurcation from the self-pulsing CS regime
to the nonlasing solution, we have demonstrated the exis-
tence of excitable laser CSs. They appear as a short laser
pulse localized in space, arising from the stable nonlasing
state in response to a local perturbation that exceeds a
characteristic threshold. After the emission of the pulse,
the system comes back to the initial nonlasing stable state.
The spatial profile of the emitted pulse matches the profile
of stable stationary or self-pulsing CSs found in the same
system.

We refrain from characterizing this excitable behavior
with a numeric label, since it is known that at least 72
different possibilities exist [18]. According to the classification
of Ref. [18] we are in the “subHopf/homoclinic” case,
because the quiescent state loses stability through a subcritical
Andronov-Hopf bifurcation and the oscillating regime through
a homoclinic bifurcation.

Notice, however, that in our case the oscillating state is
local, whereas the quiescent state is global. Therefore in our
system pulses can be excited in any position of the transverse
plane, and several pulses can be excited simultaneously.

We have shown that excitable laser CSs can also be used for
pulse reshaping by proving that the shape of the output pulse
does not depend on the shape of the input pulse. The output
pulse does not depend on the input frequency either. We were
able to trigger an excitable localized structure with input pulses
at the cavity frequency and at the CS frequency. Injection at
the CS frequency allows one to reduce the energy of the trigger
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pulse by a factor 1000 with respect to the injection at the cavity
frequency.

We note that in experiments on distant coupled absorber-
amplifier systems no excitability has been observed in the
absence of drift, contrary to the present results [38]. We believe
this can be explained by very slow time scale of the field
variable in the coupled system.

Excitable CSs may represent a new tool in all-optical
processing of information [40]. They have been already
predicted in an optical cavity filled with a Kerr medium
[31]. There, excitability is said to be mediated by localized
structures, because it is strictly related to the presence of the

spatial degrees of freedom and it disappears in the plane wave
(PW) case. Here on the contrary, we are dealing with a system
that is known to be excitable even in the PW limit [33]. We
believe that the results presented here could also serve in the
interpretation of experiments in coupled arrays of micropillar
lasers with saturable absorbers.
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