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Polarization modulation instability in a Manakov fiber system
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The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary
stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and
Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the
widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical
relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in
1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than
soliton formation. Here, we report experiments in optical fiber that provide evidence of passband and baseband
polarization modulation instabilities in a defocusing Manakov system. In the spontaneous regime, we also reveal
a unique saturation effect as the pump power increases. We anticipate that such observations may impact the
application of this minimal model to describe and understand more complicated phenomena in nature, such as
the formation of extreme waves in multicomponent systems.
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I. INTRODUCTION

In complex wave systems, we have to deal with more than
only one variable (i.e., more than a single wave amplitude),
which often requires multicomponent generalizations of a
single nonlinear partial differential equation. For instance,
consider a system of coupled nonlinear Schrödinger equa-
tions (NLSEs) to describe the nonlinear interaction between
wave packets in dispersive conservative media. Such coupled
systems are of physical relevance in various domains such
as nonlinear optics, hydrodynamics, plasma physics, multi-
component Bose-Einstein condensates, and financial systems
[1–5]. The first multicomponent NLSE type of model with
applications to physics is the well-known Manakov model [6].
For two components, the corresponding set of two coupled
NLSEs is completely integrable through a special choice of
the nonlinear parameters, thus providing suitable conditions
for soliton propagation. In this context, the mathematical prop-
erties of such a model have been investigated in detail, since
solitons and their interactions in multicomponent systems
represent a fascinating topic in many fields of physics [7,8].
In particular, when considering the two coupled orthogonally
polarized components of the optical field, the Manakov system
admits trivial two-component stable solutions formed by two
incoherent bright (self-focusing case) or dark (self-defocusing
case) solitons. More generally, the Manakov system has at-
tracted enormous attention as it is considered to be a promising
model for the description of interactions between wavelength-
division-multiplexed (WDM) channels of long optical fiber
transmission systems [9], polarization-division-multiplexed
systems (PDM) [10,11], or even space-division-multiplexed
(SDM) systems using multimode or multicore fibers [12].
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A sufficient condition for the integrability of the two
coupled NLSEs is the following: The dispersion coefficient
should be the same for both modes; moreover, the ratio
between the self-phase modulation (SPM) and the cross-phase
modulation (XPM) has to be equal to unity, and the SPM
coefficients need to be equal for the two components [6,13].
Moreover, one has to check that the coupled wave system does
not exhibit any coherent nonlinear energy exchange between
components, also known as four-wave mixing (FWM) [14].
Theoretical studies have predicted that such requirements are
well statisfied when considering the orthogonally polarized
components of a vector field propagating in standard optical
fibers exhibiting a rapidly varying, low birefringence, as
those which are typically used nowadays for fiber-based
telecommunication systems [15,16]. Indeed, random changes
in fiber birefringence occur on a very short length scale when
compared with the nonlinear length in optical transmission
links, so that an average nonlinear effect can be approximated,
thus reducing the cross-phase modulation coefficient to unity,
in contrast to the case of homogeneous birefringent fibers.
However, the first experimental observation of Manakov (vec-
tor) solitons in a strict mathematical sense has been reported
in the spatial domain with crystals by Kang et al. [17]. In that
work, the authors arranged Manakov conditions in real cubic
crystals by using TE and TM polarizations in an AlGaAs planar
waveguide operating at a wavelength below half its band gap.
Despite extensive mathematical studies [18–21], experiments
have been limited to only a small number of systems such as
optical waveguides and Bose-Einstein condensates [22–24].
There is a need for more studies to quantitatively characterize
nonlinear wave propagation described by the Manakov model,
besides the soliton evidence and its qualitative application
to the design of optical networks [16,25], and a vector
extension of the well-known modulation instability (MI) in
the anomalous dispersion regime of telecom fibers, leading to
high-repetition-rate pulse trains [26]. As a result, the peculiar
nonlinear dynamics and the associated instabilities [27,28] that
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can be predicted by using the Manakov model have remained
so far largely quantitatively untested.

In this contribution, we point out and experimentally
demonstrate that fundamental nonlinear instabilities can be
quantitatively well predicted by the Manakov model when
using relatively long spans of randomly birefringent, low-
polarization mode dispersion (PMD) telecom fibers. We ana-
lyze the particular case of polarization modulation instability
(PMI) in the normal dispersion regime (i.e., the defocusing
regime in the equivalent spatial case), which can be of a
passband or baseband nature [29,30]. The MI of two WDM
pumps with an orthogonal state of polarization is induced
by spontaneous (or quantum) noise. Wave propagation is
governed by two incoherently coupled nonlinear Schrödinger
equations of the Manakov type. In the spontaneous MI regime,
we reveal a saturation effect of the peak gain, and verify
the predicted existence of an optimum frequency of the
modulation instability as the pump power increases.

This work is organized as follows. In Sec. II, we first
provide a theoretical analysis describing PMI in a defocusing
Manakov system. In Sec. III, we describe our experimental
setup for observing PMI. Next, we present the experimental
results of PMI in the spontaneous regime, and compare them
with numerical simulations based on the coupled system of
nonlinear Schrödinger equations of Manakov type. In Sec. IV,
we conclude this work.

II. THEORETICAL ANALYSIS OF POLARIZATION
MODULATION INSTABILITY

The coupling between two laser beams in nonlinear dielec-
tric media may lead to a large and diverse set of fascinating
physical effects. Typical examples of such effects are FWM
and MI processes. In optical fibers, the conservative interaction
between nonlinear and dispersive effects leads to phenomena
such as MI, whereby a continuous or quasicontinuous wave
undergoes a modulation of its amplitude or phase in the
presence of noise or any other weak perturbation [14,31–34].
The perturbation can originate from quantum noise (spon-
taneous MI) or from a weak frequency shifted signal wave
(induced MI). MI has been observed for the first time for a
single pump wave propagating in a standard nonbirefringent
fiber (scalar MI) [33]. In this framework, it was shown
that scalar MI only occurs in the focusing regime, or in
the anomalous group-velocity dispersion (GVD) regime.
However, the extension of MI to the normal dispersion
regime was first pointed out by Berkhoer and Zakharov, by
considering the nonlinear coupling between two different
(e.g., polarization) modes via XPM [34]. Subsequently, several
experiments with two polarization modes were performed in
order to observe cross-polarization modulation (XPolM) in
birefringent fibers [35–37]. It has long ago been predicted that
XPM-induced MI should also be observable in the normal
GVD regime thanks to the nonlinear interaction among two
different WDM pumps with parallel states of polarization [38],
but the process can be hampered by the simultaneous presence
of FWM [39–41]. The situation is completely different when
two WDM pumps with orthogonal states of polarization
are involved [37]: Whenever the group-velocity mismatch
between the two orthogonal modes is large, the XPolM-

MI gain is relatively narrowband, and the FWM among
orthogonally polarized pumps is effectively suppressed. In
all of the previous experiments on MI, fiber birefringence
was such that the ratio between SPM and XPM was different
from unity, which does not correspond to the coupled system
of Manakov type. However, this condition should be well
statisfied when studying orthogonally polarized components of
a vector field propagating in standard optical fibers exhibiting
a rapidly varying low birefringence, as it occurs in the
fibers which are typically used nowadays for long-distance
optical communication links. From the point of view of
telecom applications, XPolM-MI can be an essential source
of nonlinear impairments for WDM systems with polarization
interleaving or polarization multiplexing [42–45]. Also on a
more fundamental level, MI is a generic nonlinear process
that occurs in many areas, and it is at the origin of very
important fundamental phenomena, such as optical soliton
generation [46,47], supercontinuum generation [48], and rogue
wave formation [29,30,49–51].

The propagation of two orthogonally polarized optical
pump waves at a relative frequency offset, say, � = �ω/2π ,
in the normal dispersion regime of a randomly birefringent
telecom fiber with relatively low-polarization mode dispersion
is described in terms of the two incoherently coupled nonlinear
Schrödinger equations (CNLSEs):
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Equation (1) is equivalent to the Manakov system [6,15,16],
once the group-velocity mismatch term is removed by the
transformation u(z,t) = ũ(z,t) exp[i δ

(2β2) t − i δ2

(8β2)z], v(z,t) =
ṽ(z,t) exp[−i δ

(2β2) t − i δ2

(8β2)z]. In Eq. (1) z and t denote the
propagation distance and retarded time (in a reference frame
traveling at the group velocity evaluated at the central carrier
frequency ωo) coordinates; u and v are the complex slowly
varying amplitudes of the two pump waves at frequencies
ωu,v = ωo ± π�, respectively; and δ is associated with their
group-velocity mismatch (GVM), owing to normal group-
velocity dispersion. In fact, the u (v) pump is a slow (fast)
wave with respect to the waves at the carrier frequency ωo. β2

and γ are the group-velocity dispersion and the effective Kerr
nonlinear coefficient at frequency ωo, respectively. Note that
in Eq. (1) the variations of β2 and γ as a function of frequency
are neglected, which is reasonable for the frequency detunings
that are considered in our experiments (� � 500 GHz). The
GVM parameter is then simply defined as δ = β2�, whereas
the nonlinear coefficient is written as γ = 8n2ωo

9cAeff
, where c is

the light velocity in vacuum, n2 = 2.6 × 10−20 m2/W is the
nonlinear index coefficient, and Aeff designates the effective
core area at the carrier angular frequency ωo. The factor 8/9
takes into account random variations of the intrinsic fiber
birefringence [16]. We would like to emphasize the fact that
coherent coupling terms [16] have been neglected in Eq. (1),
since they only play a role in a very small parameter range
(small values of �), which is outside the operating conditions
considered in our experimental study. On the other hand, we
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would like to mention that Raman effects are not considered
in Eq. (1), since our experimental conditions were selected in
a manner that Raman scattering is negligible. The validity
of Eq. (1) in representing the MI of polarized waves or
PMI in a randomly birefringent, low-PMD fiber was recently
qualitatively confirmed in the anomalous GVD regime [26].

The linear stability analysis (LSA) of the steady-state
solution of Eq. (1) leads to the eigenvalue equation [M][Y ] =
K[Y ], with the eigenvector defined as [Y ]T = [ua,u

∗
s ,va,v

∗
s ],

where us and ua are the amplitudes of the Stokes and anti-
Stokes sidebands for the pump wave of amplitude u (more
details about LSA can be found in Ref. [37]), whereas vs

and va represent the Stokes and anti-Stokes sidebands for the
pump wave of amplitude v. Throughout this work we assume
that the power P injected into the fiber is equally distributed
among the two pumps, i.e., |u(z = 0,t)|2 = |v(z = 0,t)|2 =
P/2. The stability matrix of the system [M] is then defined
as

[M] =

⎛
⎜⎜⎜⎝

−a + b + p/2 − k p/2 p/2 p/2

−p/2 −a − b − p/2 − k −p/2 −p/2

p/2 p/2 a + b + p/2 − k p/2

−p/2 −p/2 −p/2 a − b − p/2 − k

⎞
⎟⎟⎟⎠, (2)

with a = π�β2	, b = 1
2β2	

2, and p = γP, where 	 is the
angular frequency of the perturbation related to the wave
number K by the dispersion relation det([M] − K[I ]) = 0.
The MI phenomenon occurs when the wave number K of
the perturbation possesses a nonzero imaginary part, and
manifests itself with an exponential growth of the amplitude
of the perturbation, whose importance is measured by a power
gain coefficient G defined by G(	) = 2|Im(K)|. From (2) one
obtains the following dispersion relation:

K2 = a2 + b2 + bp −
√

b[4a2(b + p) + bp2], (3)

which yields the condition for MI to occur, that is,

max

[
0,

(
�2 − p

π2β2

)]
�

(
	

2π

)2

� �2. (4)

Figures 1(a)–1(d) show the gain spectrum for different
powers, the peak gain vs total pump power P , the optimum
modulation frequency (OMF) defined as the frequency at
which the gain is maximum, and the intensities of the eigen-
vectors of the system, respectively. These figures have been ob-
tained for the following parameter values: γ = 2.4 W−1 km−1,
and β2 = 18 ps2 km−1 [or D = −14 ps (nm km)−1]. As can be
seen from Fig. 1(a), whatever the input power, the high cutoff
frequency is fixed and it remains equal to the pump spacing,
whereas the low cutoff frequency depends on the input power
level. Po = 9π2�2β2

8γ
denotes the power for which the low cutoff

frequency vanishes (e.g., Po = 0.134 W for � = 40 GHz).
One remarkable point is that in the defocusing case, contrary
to the focusing case, distinct passband and baseband MI
regimes exist: the bandwidth of PMI 0 � 	1 < 	 < 	2, in
which G(	) �= 0, is passband if 	1 > 0, while it is baseband
if 	1 = 0 [29,30]. Another noticeable point is that, contrary
to the highly birefringent fiber case [37], there is no critical
power beyond which the PMI disappears. To the contrary, in
the present case there is a monotonic increase of the peak
gain with input power, and a gain saturation as the power
grows above about 10Po [see Fig. 1(b)]. The asymptotic
solution to the dispersion relation [Eq. (3)] that is found in
the limit of large values of p leads to the saturation value of
the peak gain Gsat = 2π2�2β2 and to the OMF fsat = �√

2
.

Figure 1(c) shows that the OMF decreases monotonically

to attain the asymptotic minimum value fsat as P increases
(OMF/� → 1/

√
2 = 0.707). The eigenvectors of the system,

which are shown in Fig. 1(d), reveal that the PMI generates two
dominant sidebands: an anti-Stokes sideband ua at frequency
ωu + 	 polarized along the pump ωu, and a Stokes sideband vs

at frequency ωv − 	 polarized along the pump ωv . However,
as the input pump power increases, we can see the appearance
of two secondary sidebands: a Stokes sideband us at frequency
ωu − 	 polarized along the pump ωu, and an anti-Stokes
sideband va at frequency ωv + 	 polarized along the pump
ωv . Also note that the intensities of the four sidebands saturate
at high power levels with an asymptotic value of the intensity
of the secondary sidebands of about 16% that of the main
sidebands.

FIG. 1. (Color online) (a) PMI gain vs sideband detuning for total
pump powers in the range 0.2 P0–50 P0. (b) PMI peak gain vs power
(the blue dashed line represents the saturation level of the peak gain).
(c) OMF vs total pump power. The black line gives the results obtained
from the linear stability analysis [dispersion relation (3)], whereas the
red dash-dotted line is obtained via the phase-matching condition (5).
The blue dashed line represents the saturation limit. (d) Intensities
of the MI sidebands obtained from the eigenvectors of the system vs
total pump power. The blue solid (green dashed) line corresponds to
the primary (secondary) sidebands.
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Some of the previously described features can also be un-
derstood by considering the PMI phenomenon as a four-photon
mixing process ωu + ωv − (ωu − 	) − (ωv + 	), whereby
two pump photons are transferred to the two prominent
symmetric sidebands whose frequencies are given by the
following phase-matching condition:

�kL + �kNL = −2π�β2	 + β2	
2 + γP = 0. (5)

The first term of the right-hand side of Eq. (5) represents
the role of the GVM between the two pumps; the second
term describes the role of GVD, and the last term represents
the role of the Kerr nonlinearity. Since in optical fibers
the nonlinear coefficient is positive (because of the self-
focusing nature of the Kerr effect in glass), the phase-matching
condition (5) requires a negative linear phase mismatch. Let
us remark from Eq. (5) that, as the pump detuning � vanishes
(single-frequency regime), MI only occurs for negative GVD
(anomalous dispersion). In the general case of two WDM
pumps (� �= 0), Eq. (5) leads to complex values of the detuning
	 for pump powers P > Po. Whenever P < Po, Eq. (5)
provides an analytical expression of the OMF:

fopt = �

2

(
1 +

√
1 − P

Po

)
. (6)

The corresponding graph is represented by the red (dash-
dotted) line in Fig. 1(c). Note that the analytical expression
of Eq. (6) provides a good approximation of the OMF at
low pump powers (typically P/Po < 0.5), but it significantly
deviates from the exact OMF which can be derived from the
Manakov equations [Eq. (1)] at larger values of the pump
power (0.5 < P/Po < 1). This discrepancy can be explained
by the influence of the non-phase-matched waves (secondary
pair of sidebands) [37] [see Fig. 1(d)].

III. EXPERIMENTS ON THE SPONTANEOUS
NOISE-DRIVEN PMI

The experimental setup that we used for observing the
Manakov PMI in the normal dispersion regime of a telecom
fiber span is shown in Fig. 2(a). Two continuous pump waves
were generated from two laser diodes emitting polarized light
at different wavelengths λ1 and λ2, which can be tuned around
the central wavelength (λ0 = 1554.7 nm) with a frequency
detuning � ranging from 50 to 500 GHz. The two pump
waves were superposed by means of a polarization maintaining
fiber optic coupler with a 50:50 coupling ratio. In order to
significantly increase the peak pump powers involved in our
experiment, we temporally carved both pump waves thanks
to an electro-optic modulator driven by a pseudorandom
binary sequence generator. More precisely, 100-ns square
pulse trains were generated with a duty cycle of 1:10. We
would like to emphasize that in our experiments such pulses
provide a quasi-cw condition for the demonstration of the MI
phenomenon, since the pulse duration is about four orders
of magnitude larger than the expected modulation period.
Moreover, to suppress stimulated Brillouin scattering (SBS)
that may occur in the optical fiber, a phase modulator was
inserted into the setup in order to increase the spectral linewidth
of the two pump waves. The phase modulator was driven by a

FIG. 2. (Color online) (a) Experimental setup: red and green
lines depict the two wavelength-division-multiplexed and orthog-
onally polarized pumps. ECL: external-cavity diode laser; 50/50
and 90/10: fiber couplers; EDFA: erbium-doped fiber amplifier; IM:
intensity modulator; PC: polarization controller; PM: phase modu-
lator; PBS: polarization beam splitter; PRBS: pseudorandom binary
sequence generator; PwM: power-meter; OPF: optical programmable
filter; OSA: optical spectrum analyzer. (b) Impact of the input
polarization states of the two-pump system with 200 GHz frequency
spacing on the observation of PMI. (Left: input spectra. Right: output
spectra.)

67-MHz rf signal, thus enabling us to work at relatively high
pump powers, while still being far below the SBS threshold.
At this stage, the two pump waves were spectrally separated by
means of a programmable optical filter (Finisar WaveShaper),
while a pair of polarization controllers (PCs) allowed us to
obtain two orthogonal linear states of polarization. The two
pump waves were finally recombined after their independent
amplification by high-power erbium-doped fiber amplifiers
before injection into the optical fiber. The optical fiber used
in our experiment was a reverse TrueWave fiber with a
length of 5 km, a chromatic dispersion of −14 ps/nm/km, a
nonlinear coefficient γ = 2.4 W−1 km−1, and the attenuation
of 0.25 dB/km at λ0 = 1554.7 nm. This fiber has the very
low nominal PMD of 0.017 ps km−1/2. At the fiber output,
a polarization beam splitter (PBS) selected the output light
propagating in the two orthogonal linear polarizations. The
two resulting waves were simultaneously analyzed in the
spectral domain by means of two optical spectrum analyzers
(OSAs). Note that the orthogonal polarization states were
continuously tracked before injection into the fiber thanks to
power measurements after their separation with a polarization
beam splitter. To highlight the fundamental impact of the initial
polarization state of the two-pump system on the observation of
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FIG. 3. (Color online) Output spectra vs
input pump power on u and v axis. (a,b)
numerical simulation of the CNLSEs (1) with
loss; (c,d) experiments.

PMI, Fig. 2(b) reports spectral measurements both at the fiber
input and at the fiber output for three distinct configurations
of the relative polarization of the input pumps (parallel, any,
and orthogonal). Our results clearly confirm that PMI was
only observed in the single case of orthogonally polarized
pumps, as predicted by our theory. Note that some narrow
FWM sidebands cannot be completely suppressed before
injection into the telecom fiber, thus leading to their subsequent
amplification upon propagation.

Figure 3 compares the numerical output spectra emerging
from the two orthogonal polarization states of the fiber (left
column) with the experimental spectra, as a function of the
input power Pu and Pv of the two pumps, which are linearly
polarized along orthogonal u and v directions of the fiber,
respectively. Note that the orientation of these polarization
directions is completely arbitrary, since the fiber is nominally
circular; hence it does not exhibit two principal axes of
polarization. Here the frequency spacing between the two
pumps was set to 200 GHz, corresponding to Po = 3.3 W
and Gsat = 62 dB/km. We consider the passband PMI regime.
As it can be seen from Fig. 3, for pump powers above
0.5 W, a broadband PMI spectrum develops as a mirror (and
orthogonally polarized) image of each pump. Figure 3 reveals
the excellent agreement between the numerical solutions of
the CNLSEs (1) with added loss and the experimental results.
Moreover, Fig. 3 shows the emergence of secondary outer
sidebands, as predicted by the linear stability analysis at the
highest powers as P = 2Pu = 2Pv approaches Po. Note that
the growth of these secondary sidebands is reinforced by the
cascaded FWM between each pump and the parallel primary
PMI sideband. We can also observe from Fig. 3 that the gravity
center of the primary sideband approaches the pump as the
pump power increases, in good qualitative agreement with the
analytical predictions of the linear stability analysis.

A more precise quantitative assessment of the agreement
among theory and experiments is provided by Fig. 4, where
we compare the cumulated PMI gain as a function of the
input pump power Ptot, for both the primary and the secondary
sidebands, as predicted by the CNLSEs (solid curves) and by
the experiments (empty dots). Figure 4 also shows (with a set of
stars) the analytical PMI gain obtained from the linear stability
analysis of Eq. (1). The numerical and experimental gains are
both reduced with respect to the analytical predictions, since a
nonlinear saturation of the PMI gain occurs for powers above
1.5 W. The observed PMI gain saturation is due to the influence
of FWM between each pump and the parallel primary PMI
sideband, as well as to pump depletion.

We also experimentally studied the dependence of PMI
gain upon the frequency spacing among the two pumps.

FIG. 4. (Color online) Dependence of cumulated PMI gain (pri-
mary and secondary sidebands) on input total pump power.
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FIG. 5. (Color online) Variation of output spectra as a function
of the pump frequency spacing. (a,b): numerical simulation of
the CNLSEs (1) with loss; (c,d): experiments. The emergence
of the mirror image of the MI spectrum is revealed in subfigure
(a) as the broad pedestal indicated by blue dashed arrow around the
pump spectrum (red arrow). The primary MI sideband is highlighted
by the red dashed circle.

Figure 5 compares numerical (left column) and experimental
output spectra (right column) emerging from orthogonal
polarizations, as the pump spacing � is decreased from
500 GHz (Po = 20.8 W, Gsat = 386 dB/km) up to 100 GHz
(Po = 0.837 W, Gsat = 15.4 dB/km). Hereafter the pump
powers are fixed to 0.8 W on each fiber axis (total pump
power P = 2Pu = 2Pv = 1.6 W). Figure 5 clearly reveals the
existence of the passband PMI regime (for 200 GHz � � �
500 GHz) and of the baseband MI regime (� = 100 GHz). It
is important to note that the existence of a baseband MI regime
is closely linked with the mechanism leading to rogue wave
formation [29]. Besides the excellent quantitative agreement
between theory and experiments, Fig. 5 also reveals, for pump
frequency spacings around 200–300 GHz, the unexpected
emergence of a mirror (or frequency-conjugate) image of the
MI spectrum which appears as a broad pedestal around each
(relatively narrowband) pump spectrum.

A quantitative overview of the agreement between the
analytical PMI gain predictions resulting from the linear
stability analysis of Eq. (1), their full numerical solutions
including a weak noise seed and loss, and the experiments
is illustrated in Fig. 6. As it can be seen, the analytical
PMI gain predictions are in good quantitative agreement with
both simulations and experiments for pump detunings below
150 GHz only. In fact, the PMI gain saturates slightly above
40 dB because of the transfer of power into the secondary
sidebands, owing to cascade FWM.

FIG. 6. (Color online) Comparison between analytical predic-
tions and numerical or experimental results for the variation of
cumulated MI gain as a function of the frequency spacing among
the pumps.

IV. CONCLUSION

In this work we have demonstrated the generation of PMI
sidebands in the normal dispersion regime of a relatively
long span of dispersion-compensating fiber with relatively
low PMD. PMI is induced by XPolM among orthogonally
polarized and intense quasi-cw WDM pumps. We have
presented an extensive investigation of the pump power and
pump frequency spacing dependence of the PMI gain, with
excellent quantitative agreement with numerical solutions of
the Manakov system. We have also shown that for a pump
spacing larger than about 150 GHz, cascade FWM leads to a
nonlinear saturation of the PMI gain. This work opens the way
to further studies devoted to exploiting the relatively large
PMI gain for parametric signal amplification. We envisage
that the present results may have significant consequences for
the design of nonlinear transmission systems, and may have
important applications to optical signal processing devices
and fiber lasers. Moreover our observations may impact the
application of the Manakov model to describe the formation
of extreme waves in multicomponent systems [29,30].
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