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Total transmission of inhomogeneous electromagnetic waves at planar interfaces
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We present the total transmission effect of inhomogeneous electromagnetic waves between dissipative media.
The total transmission of a p-polarized plane wave at the interface between two lossless dielectrics happens at
the Brewster angle. However, when a dielectric-conductor interface is considered, the effect cannot be achieved
and there is only a minimum, different from zero, of the reflection coefficient. We prove that, by considering an
inhomogeneous plane wave, the total transmission can be obtained both at the interface between two dissipative
media and at the dielectric-conductor interface.
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I. INTRODUCTION

The Brewster [1] angle is the angle of total transmission of
a p-polarized plane wave at the interface between two lossless
dielectrics [2]. In fact, if the second medium presents losses,
i.e., the plane boundary is a dielectric-conductor interface,
then the Fresnel reflection coefficient cannot be zero for any
incident angle. In this case, the so-called pseudo-Brewster
angle has been introduced. In the literature, two different
definitions of the pseudo-Brewster angle have been given
[3–5]: In one case it is the angle for which the reflection
coefficient in p polarization is minimum; in the other case,
called the second Brewster angle, it is the angle for which the
ratio between the reflection coefficients in p and s polarization
is minimum. Moreover, another angle, called the principal
angle or third Brewster angle, can be defined as the angle
at which the change of the phase difference between the
parallel and perpendicular components of the wave after the
reflection is 90◦ [6,7]. The electromagnetic interaction with
an interface between dissipative materials has been widely
studied in the literature [8,9], and the analysis of the complex
Fresnel coefficients at the dielectric-conductor interface is an
important topic in terms of both theory and application and it
has already been the subject of recent works [10].

In this paper we analyze the interaction between an
inhomogeneous wave and a planar boundary between dis-
sipative media. This topic has been widely studied in the
literature because of its applications, concerning surface-wave
propagation, surface polaritons, and lateral and leaky-wave
excitation [11]. We analyze the possibility of obtaining the total
transmission of an inhomogeneous wave both at the boundary
between two dissipative media and at a dielectric-conductor
interface. Such total transmission can be obtained only if
the incident wave is suitably inhomogeneous, i.e., the angle
between the constant-phase and the constant-amplitude planes
assumes a well-defined value, and at a critical angle, which can
be defined as a Brewster angle, similarly to the case of lossless
materials. The connection between the Brewster angle and the
propagation of inhomogeneous waves bounded to the interface
has been pointed out in the literature [12]. Here we show how
the effect can be obtained with waves propagating far away
from the interface. The effect is of extreme interest especially
in the case of the dielectric-conductor interface, when an
inhomogeneous incident wave is considered. Such an incident

wave can be obtained, for example, through a leaky-wave
antenna, i.e., an antenna able to generate an inhomogeneous
wave in free space. Such antennas have been widely studied in
the literature, in both microwave and optics regimes [13,14].

II. THEORETICAL FORMULATION

Let us consider a Cartesian reference frame (x,y), with the
y axis on the interface between two media. The half space
x < 0 is filled with medium 1, with relative permittivity ε1,
while the half space x > 0 is filled with medium 2, with
relative permittivity ε2 (see Fig. 1). In the following, where
we talk about permittivity, we always intend the relative
one. We suppose nonmagnetic and dissipative media, i.e.,
with relative permeabilities μ1 = μ2 = 1 and with complex
relative electric permittivities εs = ε′

s + ιε′′
s with ε′

s ,ε
′′
s ∈ R

and s = 1,2. We consider a linearly polarized plane wave, in
s or p polarization, coming from medium 1, incident on the
interface between the two media. Because the incident plane
wave propagates in a dissipative medium, it is characterized
by a phase and an attenuation vector β1 and α1, respectively.
Here we suppose that the phase and attenuation vectors and
the unit vector perpendicular to the interface are coplanar.
This hypothesis is not needed for our purpose, but allows
us to give simple analytical expressions of the transmitted
angles. The phase vector forms an angle ξ1 with the x axis,
while the attenuation vector forms an angle ζ1 with the
same axis (see Fig. 1). We define η1 = ζ1 − ξ1 as the angle
between the phase and the attenuation vectors, sometimes
called the inhomogeneity angle, because when η = 0 the wave
is homogeneous. If the medium 1 is lossy, then the magnitudes
of the phase and attenuation vectors β1 and α1 are related
to the medium parameters and to the inhomogeneity angle
by well-known relations [15]. In these conditions, also the
transmitted wave has a propagation vector composed of a phase
and an attenuation vector β2 and α2, respectively, characterized
by the angles ξ2, ζ2, and η2. The expressions of the magnitudes
and of the angles of the transmitted wave have been presented
in [16,17].

To find the total transmission effect, we have to impose
the cancellation of the reflection coefficient. The expressions
of the Fresnel coefficients in the case of lossy media are
exactly the same as in the lossless case [7]. If we write the
reflection coefficient in the s polarization, it can be seen that
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FIG. 1. (Color online) Geometry of the problem.

it cannot be equal to zero for any incident angle, as in the
lossless case. On the other hand, imposing the cancellation
of the Fresnel reflection coefficient in the p polarization, an
expression of the tangential component of the wave vector
can be found. Such a condition is well known in the literature,
because it is the same expression of the wave vector of a surface
wave [18]

k1y = k0

√
ε1ε2

ε2 + ε1
= k0γ. (1)

The analysis of this expression is important and requires us
to consider different aspects. First of all, we have to establish
whether the first medium is lossless or lossy. In the former
case, if the incident wave is homogeneous, then the left-hand
side of the equation is a purely real number: As a consequence,
if the second medium is dissipative, i.e., its permittivity is a
complex number, the equation cannot be satisfied. On the other
hand, if the incident wave is inhomogeneous, the left-hand side
can be a complex number and the equation can be satisfied.
In the latter case, both sides of the equation can be complex
numbers and the equation can be satisfied. Let us consider the
real and imaginary parts of Eq. (1) separately:

β1 sin ξB = k0γ
′, (2)

α1 sin ζB = k0γ
′′, (3)

where γ ′ and γ ′′ are the real and imaginary parts of the
complex number γ , respectively. We start from the case of
two dissipative materials, i.e., we suppose that both ε1 and ε2

are complex numbers. Inserting Eqs. (2) and (3) in the real
and imaginary parts of the dispersion equation of a dissipative
free-space [15], we obtain

γ ′2

sin2 ξB

− γ ′′2

sin2 ζB

= ε′
1, (4)

ε′′
1 sin ξB sin ζB

2 cos (ζB − ξB)
= γ ′γ ′′. (5)

With some algebra, we can find the following expressions:

cot2 ζB = γ ′2 − (ε′
1 − γ ′2 + γ ′′2) tan2 ξB

γ ′′2 tan2 ξB

, (6)

(ε′′
1 − 2γ ′γ ′′) tan ξB = 2γ ′γ ′′ cot ζB. (7)

Squaring Eq. (7) and substituting the expression (6), a
biquadratic equation for tan ξB can be obtained:

[Im(ε1−γ 2)]2 tan4 ξB+4γ ′2Re(ε1 − γ 2) tan2 ξB − 4γ ′4 = 0.

(8)

Solving for tan2 ξB and with some algebra, the following
expression can be found:

tan2 ξB = −2γ ′2Re(ε1 − γ 2)

[Im(ε1 − γ 2)]2

{
1 −

√
1 +

[
Im(ε1 − γ 2)

Re(ε1 − γ 2)

]2}
.

(9)

In the square root the tangent of the phase φ of the complex
number ε1 − γ 2 appears. With some algebra, the expression
(9) assumes the form

tan2 ξB = 2γ ′2

|ε1 − γ 2|
1 − cos φ

sin2 φ
. (10)

Noting that ε1 − γ 2 = ε2
1/(ε1 + ε2) and that γ ′ = |γ | cos φγ ,

where φγ is the phase of the complex number γ , we obtain the
following expression:

tan ξB =
∣∣∣∣n2

n1

∣∣∣∣
√

2 cos φγ

1 + cos φ
, (11)

where n1 and n2 are the complex refractive indices of the
two media. Similarly, an expression for the angle of total
transmission of the attenuation vector can be found by inserting
Eq. (11) into Eq. (6), obtaining

tan ζB =
∣∣∣∣n2

n1

∣∣∣∣
√

2 sin φγ

1 − cos φ
. (12)

Expressions (11) and (12) are of extreme interest: In fact,
when the media are lossless, the permittivities become real
and the arguments φ and φγ become zero. As a consequence,
the formula (11) reduces to the well-known expression of the
Brewster angle, while formula (12) becomes indeterminate,
because the angle of the attenuation vector cannot be defined
for a homogeneous wave in a lossless material.

Equation (11) can be seen as a generalized expression
of the Brewster angle in the case of two dissipative media.
It is important to say that, once the angles ξB and ζB are
fixed, the angle ηB = ζB − ξB is fixed too. Now, while the
angles ξB and ζB depend on the direction perpendicular to
the interface, the inhomogeneity angle is an intrinsic property
of the incident wave [19]. Therefore, given two dissipative
media, only a particular inhomogeneous wave, with a fixed
value of the angle ηB , depending on the properties of the
materials, can be totally transmitted from medium 1 to medium
2. An expression of tan ηB can be found starting from Eq. (5):
With the trigonometric identity cot ξB − cot ζB = sin(ζB −
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ξB)/ sin ξB sin ζB , the following expression can be obtained:

tan ηB = 2γ ′γ ′′

ε′′
1

(cot ξB − cot ζB). (13)

An inhomogeneous wave, with inhomogeneity angle ηB , is
totally transmitted if its incident phase vector impinges at an
angle given by Eq. (11). For these reasons, we can call the
angle ξB the Brewster angle for a plane wave incident at the
interface between two dissipative dielectrics.

The interaction at the interface between two lossy media,
studied above, can be interesting in several applications, e.g.,
in the surface-polariton propagation in stratified structures.
However, the case of a dielectric-conductor interface, i.e.,
when medium 1 is lossless, is of extreme interest too. If we
consider the expression of the tangential component of the
incident wave vector (1) and we consider a homogeneous
incident wave, then the left-hand side of the equation is
real and the right-hand side of the equation is complex.
This is the reason why the total transmission is not possible
at the dielectric-conductor interface when a homogeneous
incident wave is considered. On the other hand, if an incident
inhomogeneous wave is considered, the left-hand side of
Eq. (1) is complex and the condition can be matched. Before
analyzing this scenario, let us point out that an inhomogeneous
wave in a lossless medium is not a novelty in the literature.
In fact, the possibility of having an inhomogeneous wave in
a dielectric, with α1 �= 0 and η1 = π/2, is well known [20].
These waves are often called leaky waves, because they can
be obtained by some leakage effects on a guiding structure.
The generation of leaky waves is a widely studied topic in the
literature and there are examples of leaky-wave antennas in
both microwave and optical regimes [13,14,21]. It is important
to recall that the same expressions for the magnitude β1 and
α1 that we apply in the lossy case do not hold for the leaky
waves. When an inhomogeneous wave propagates in a lossless
medium, these magnitudes depend on the antenna. This means
that by designing the antenna we fix, for example, β1, and the
relevant α1 is obtained by the dispersion equation.

Now we show how the total transmission in a dissipative
medium can be obtained considering an inhomogeneous plane
wave incident from a lossless material. Equations (2) and (3),
when the first medium is lossless and for an inhomogeneous
incident wave, i.e., with the conditions ε1 ∈ R, α1 �= 0, and
η1 = π/2, can be written as follows:

β1 sin ξB = k0γ
′, (14)

α1 cos ξB = k0γ
′′. (15)

Squaring Eqs. (14) and (15) and summing side to side, we
obtain

(
k0γ

′

β1

)2

+
(

k0γ
′′

α1

)2

= 1. (16)

If one considers the dispersion equation in a lossless free space,
Eq. (16) becomes a biquadratic equation in β1. The solution

of such an equation is the following expression:

βB = k0

√
ε1 + |γ |2

2

√√√√
1 +

√
1 − ε1

(
2γ ′

ε1 + |γ |2
)2

. (17)

It can easily be proved that this magnitude always exists
if γ ′′ �= 0, i.e., if medium 2 is dissipative. Equation (17)
represents the magnitude of the phase vector that an incident
inhomogeneous wave from a lossless dielectric must have in
order to be totally transmitted in a dissipative material; for this
reason we can call it the Brewster magnitude. At this point we
can obtain the total transmission angle from the ratio between
Eqs. (14) and (15), giving

tan ξB = αB

βB

cot φγ , (18)

where αB is the magnitude of the attenuation vector relevant
to the Brewster magnitude. At a dielectric-conductor interface
there is only one inhomogeneous wave that can be totally
transmitted from medium 1 to medium 2 and it is the one with
β1 = βB . This condition is analogous to the condition η1 = ηB

in the case of two dissipative media.
Finally, from the above considerations, the following ques-

tion can be asked: Is it possible to obtain the total transmission
of an inhomogeneous wave at the interface between two
lossless dielectrics? As is well known, it is possible for
homogeneous waves, but, as we saw, the inhomogeneous
waves show behaviors extremely different from them. To
answer the question, we just have to consider again Eq. (1). If
medium 1 is lossless, then η1 = π/2. Moreover, if medium 2
is lossless too, then γ ∈ R, i.e., γ ′′ = 0. With these conditions,
the following result can be found:

βB = k0γ, (19)

ξB = π/2. (20)

These are the characteristics of a surface wave, with a fixed
magnitude of the phase vector. It is extremely interesting to
note that this magnitude is the magnitude of the tangential
component of the wave vector of a surface polariton [22].
The connection between surface waves at the planar boundary
between two lossless dielectrics and the Brewster angle has
been already studied in the literature [12].

III. RESULTS

In this section we propose some examples of total transmis-
sion of inhomogeneous plane waves at the interface between
two dissipative materials and at dielectric-conductor inter-
faces. As a first example, let us consider an interface between
aluminum and gold in the infrared range and in particular at
the wavelength λ = 7.7 μm, where the two materials have,
respectively, the following permittivities: ε1 = 0.12 + i 0.04
and ε2 = 0.84 + i 1.91 [23]. Computing the inhomogeneity
Brewster angle, we find ηB = 31.22◦. In Fig. 2 the reflection
coefficient as a function of the angle of the incident phase
vector is shown in two cases: when the incident wave is
homogeneous, with η1 = 0, and when it is inhomogeneous,
with η1 = ηB . We see that when the incident wave is
homogeneous, the reflection coefficient in p polarization has
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FIG. 2. Magnitude of the Fresnel reflection coefficient for an
interface between aluminum and gold at λ = 7.7 μm, with permit-
tivities ε1 = 0.12 + i 0.04 and ε2 = 0.84 + i 1.91, respectively. Two
cases are considered: when the incident wave is homogeneous (solid
line) and when the incident wave is inhomogeneous with η1 = ηB

(dashed line).

a minimum, different from zero, for the pseudo-Brewster
angle ξPB = 76.04◦. However, when the incident wave is
inhomogeneous, with η1 = ηB , the reflection coefficient has
a minimum in zero, for the Brewster angle ξB = 76.32◦. On
the one hand, we see that the pseudo-Brewster angle and the
Brewster angle are close to each other. On the other hand, we
can see that simply changing the inhomogeneity angle, the
reflection coefficient decreases and the minimum reaches zero
for η1 = ηB .

In order to give another example, we consider the interface
between seawater and a loamy wet soil, at a frequency of
100 MHz. At such a frequency the permittivities and conduc-
tivities of the materials are the following [24]: ε1 = 81, σ1 =
100 S m−1 and ε2 = 15, σ2 = 0.1 S m−1. With these media,
the Brewster inhomogeneity angle is ηB = −1.40◦. In Fig. 3
the reflection coefficient for two different incident waves,
with η1 = 0 and η1 = ηB , respectively, is shown. We see
again that the homogeneous wave has a slightly pronounced
minimum at the pseudo-Brewster angle ξPB = 1.76◦, while
the inhomogeneous wave presents an extremely pronounced
minimum at the Brewster angle ξB = 2.64◦. Again, the two
angles are very close. In the last case the reflection coefficient
is close to unity for almost all the incident angles because of
the large difference between the electric densities of the two
media. This fact makes the total transmission effect extremely
peaked. From Fig. 3 we see how different the behaviors of
a homogeneous and an inhomogeneous wave can be at the
planar interface between two media.

Now we show some examples of total transmission of
inhomogeneous plane waves when the first medium is lossless.
Let us consider the interface between air, i.e., ε1 = 1, and
gold at λ = 7.7 μm, with permittivity ε2 = 0.84 + i1.91. The
normalized Brewster magnitude with respect to the vacuum
wave number is βB/k0 = 1.04. This magnitude is extremely
close to unity, as it is in the conventional leaky-wave antennas
[13]. In Fig. 4 the reflection coefficient in p polarization
is shown for a homogeneous incident wave and for an

FIG. 3. Magnitude of the Fresnel reflection coefficient for an
interface between seawater and a loamy wet soil, with permittivities
and conductivities ε1 = 81, σ1 = 100 S m−1 and ε2 = 15, σ2 =
0.1 S m−1, respectively. Two cases are considered: when the incident
wave is homogeneous (solid line) and when the incident wave is
inhomogeneous with η1 = ηB (dashed line).

inhomogeneous wave with the Brewster amplitude β1 = βB .
We computed the reflection coefficient by the analytical
expression and by an electromagnetic simulation implemented
on the software COMSOL MULTIPHYSICS. We can note, in
the case of an air-conductor interface, a behavior similar
to the previously mentioned case of two lossy media. When
the incident wave is homogeneous, the reflection coefficient
presents a minimum different from zero. This minimum
is exactly at the pseudo-Brewster angle ξPB = 52.57◦, well
known in the literature. However, when the incident wave is
inhomogeneous, i.e., it is a leaky wave, then the minimum

FIG. 4. Magnitude of the Fresnel reflection coefficient for an
interface between air and gold at λ = 7.7 μm, with permittivity
ε2 = 0.84 + i 1.91. Two cases are considered: when the incident
wave is homogeneous (dashed line) and when the incident wave
is inhomogeneous with β1 = βB (solid line). In both cases the
reflection coefficient has been computed by an electromagnetic
simulation (circles).
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FIG. 5. (Color online) Two-dimensional maps (plotted on the same scale) of the real part of the magnetic field of a plane wave in p

polarization incident at the interface between a vacuum and medium 2 with relative permittivity ε2. (a) Medium 2 is lossless, with ε2 = 0.84,
the incident wave is homogeneous, and the incident angle is the Brewster angle. (b) Medium 2 is dissipative, with ε2 = 0.84 + i1.91 (gold at
wavelength λ = 7.7 μm), the incident wave is homogeneous, and the incident angle is the pseudo-Brewster angle. (c) Medium 2 is dissipative
[as in (b)], the incident wave is inhomogeneous with β1 = βB , and the incident angle is the Brewster angle.

goes to zero and we find that an incident angle ξB = 57.11◦
exists for which the wave is totally transmitted.

In Fig. 5 two-dimensional maps relevant to plane waves
in p polarization, obtained by electromagnetic simulations,
are shown. The real part of the magnetic-field component
orthogonal to the plane of incidence is represented. Three
cases are considered: Medium 2 is lossless, with ε2 = 0.84,
the incident wave is homogeneous, and the incident angle
is the Brewster angle [Fig. 5(a)]; medium 2 is dissipative,
with ε2 = 0.84 + i1.91 (gold at wavelength λ = 7.7 μm),
the incident wave is homogeneous, and the incident angle
is the pseudo-Brewster angle [Fig. 5(b)]; and medium 2 is
dissipative [the same as in Fig. 5(b)], the incident wave is
inhomogeneous with β1 = βB , and the incident angle is the
Brewster angle [Fig. 5(c)]. We note that when the incident
wave is homogeneous and medium 2 is lossless, the wave in
the first medium, on the left-hand side of Fig. 5(a), presents
undistorted constant-phase planes, since there is no reflected
wave. In contrast, when the incident wave is homogeneous and
medium 2 is dissipative, the wave in the first medium, on the
left-hand side of Fig. 5(b), is the superposition of the incident
and the reflected waves; as a consequence, the distortion of the
constant-phase planes is apparent. On the other hand, when the
incident wave is inhomogeneous and medium 2 is dissipative,
the wave in the first medium, on the left-hand side of Fig. 5(c),
presents again undistorted constant-phase planes, the reflected
wave being absent.

As another important example, let us consider the inter-
face between air (ε1 = 1) and seawater at the frequency of
100 MHz, with permittivity and conductivity ε2 = 81 and σ2 =
100 S m−1, respectively. In this case the Brewster magnitude is
βB/k0 = 1.000 014, the Brewster angle ξB = 89.70◦, and the
pseudo-Brewster angle ξPB = 89.58◦. In Fig. 6 the reflection

coefficient is shown in both cases of a homogeneous and an
inhomogeneous incident wave. We find that both the Brewster
and the pseudo-Brewster angles are near the grazing incidence.
Moreover, at the Brewster angle the reflection coefficient
presents an extremely narrow peak. Both these facts are due to
the extremely high ratio between the refractive indices of the
seawater and the air at the working frequency.

For the sake of completeness, we want to analyze two
more scenarios. The first is the case in which medium 1 is
dissipative and medium 2 is lossless. The same procedure

FIG. 6. Magnitude of the Fresnel reflection coefficient for an
interface between air and seawater at a frequency of 100 MHz (ε1 = 1,
ε2 = 81, and σ2 = 100 S m−1). Two cases are considered: when the
incident wave is homogeneous (solid line) and when the incident
wave is inhomogeneous with β1 = βB (dashed line).

053853-5



FABRIZIO FREZZA AND NICOLA TEDESCHI PHYSICAL REVIEW A 92, 053853 (2015)

followed for two lossy media can be adopted. Actually, we
obtain that the expressions of ξB and ζB , given in Eqs. (11)
and (12), respectively, are still valid. However, in this case, we
find two different behaviors of the transmitted wave. If, on the
one hand, the incident wave, from the lossy medium, has the
attenuation vector perpendicular to the interface, i.e., ζ1 = 0,
then the transmitted wave will be a homogeneous wave in a
lossless medium, i.e., α2 = 0. On the other hand, if ζ1 �= 0,
then the transmitted wave will be an inhomogeneous wave in
a lossless medium, i.e., with η2 = π/2.

IV. CONCLUSION

In this paper we generalized the concept of the Brewster
angle for the case of plane waves incident on the interface
between dissipative materials. In the case of two dissipative
materials the total transmission is possible when the incident

plane wave is p polarized and for a suitable inhomogeneous
angle, i.e., the angle between the phase and the attenuation vec-
tors. When such a condition is satisfied, the total transmission
occurs for a particular angle of incidence of the phase vector,
which we called Brewster angle. On the other hand, when
the first medium is lossless and the second medium is lossy,
then the total transmission can be obtained when the incident
wave is inhomogeneous. Examples of inhomogeneous plane
waves in a lossless dielectric are those generated by leaky-wave
antennas. In this case the total transmission occurs when the
magnitude of the incident phase vector assumes a particular
value that we called the Brewster magnitude. When such a
condition is satisfied, then the wave is totally transmitted for
a particular incident angle of the phase vector. We showed
examples of total transmission in both cases of two dissipative
media and of the dielectric-conductor interface on both optical
and radio-frequency regimes.
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