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Elliptic solitons in optical fiber media
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We examine the evolution of a time-varying perturbation signal pumped into a monomode fiber in the anomalous
dispersion regime. We establish analytically that the perturbation evolves into a conservative pattern of periodic
pulses whose structures and profiles share a close similarity with the so-called soliton-crystal states recently
observed in fiber media [see, e.g., A. Haboucha et al., Phys. Rev. A 78, 043806 (2008); D. Y. Tang et al., Phys.
Rev. Lett. 101, 153904 (2008); F. Amrani et al., Opt. Express 19, 13134 (2011)]. We derive mathematically and
generate numerically a crystal of solitons using time-division multiplexing of identical pulses. We suggest that
at very fast pumping rates, the pulse signals overlap and create an unstable signal that is modulated by the fiber
nonlinearity to become a periodic lattice of pulse solitons that can be described by elliptic functions. We carry
out a linear stability analysis of the soliton-crystal structure and establish that the correlation of centers of mass
of interacting pulses broadens their internal-mode spectrum, some modes of which are mutually degenerate.
While it has long been known that high-intensity periodic pulse trains in optical fibers are generated from the
phenomenon of modulational instability of continuous waves, the present study provides evidence that they can
also be generated via temporal multiplexing of an infinitely large number of equal-intensity single pulses to give
rise to stable elliptic solitons.
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I. INTRODUCTION

Optical sources able to generate wavelength tunable ultra-
short pulse trains with high quality and high-repetition rates
have attracted a great deal of attention in the past two decades
[1,2]. These specific structures have found important applica-
tions in optical networks combining wavelength division mul-
tiplexing and optical time domain multiplexing transmission
techniques [1,2]. Traditionally, soliton operations in optical
media have been associated with a net negative dispersion,
given that the balance between a negative dispersion and the
nonlinear optical responses (Kerr and non-Kerr) of the media is
more likely to promote nonlinear transform-limited pulses [3].

Although a full description of most real optical fiber
networks as well as fiber laser media generally requires taking
into account several complex processes interfering in the
system dynamics (high-order dispersion processes, loss and
gain dynamics, and so on), the fundamental optical soliton
(pulse-shape signal) observed in these systems is generic from
the nonlinear Schrödinger equation [4]. Multisoliton com-
plexes are among other possible optical soliton structures that
can also be derived from the nonlinear Schrödinger equation,
due to their suitability for high-bit and high-repetition rate
data transfer technology. These include harmonically-mode-
locked vector solitons, soliton crystals, and bound soliton
states representing a periodic lattice of pulses distributed in
a one-dimensional chain, which have recently been the subject
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of intense theoretical investigations, in connection with a broad
range of optical-wave transmission phenomena [5–11].

Our main point of focus in this work is the periodic trains
of high-intensity signals [12–16] that have been reported in
passively-mode-locked double-clad fiber lasers, where each
pulse in the trains appears to be a double-time-scale comblike
signal consisting of a pulse soliton hosting a quasiperiodic
pattern of solitons at its apex and whose self-ordering may
stem from the phase locking of wave components modulated
by gain variation [14,15]. To this last point, theoretical
investigations of the stability of a steady wave spread in
optical fibers have long predicted [1,2] that the nonlinear
Schrödinger equation could admit a family of periodic soliton
solutions represented by Jacobian elliptic functions. On the
other hand, it is well established that in the anomalous regime
of dispersion, modulational instability can generate a web
of bound pulses whose interpulse length is controlled by an
external mechanism [17]. In general, high-power input pulses
are necessary to trigger a pulse interaction but the effect
is relatively unstable and the bound pulse train eventually
splits into independent pulses after a few kilometers of
propagation. Methods to compensate for this inconvenience
might be enclosing the fiber in a Fabry-Pérot resonator or
using dispersion-managed systems. The gain acquired by
modulational instability in the first method or by timing-jitter
reduction, as illustrated in [18] in the second case, provides
enough energy for a pulse interaction. Pulse repetition control
can be achieved by means of self-starting laser pumps [19,20]
able to generate ultrashort high-energy pulses in the fiber.

In this paper we examine the intimate structure (width, tails,
and mutual separation between pulses) of the periodic trains of
pulses reported in fiber lasers and called soliton-crystal signals
[12–16]. In particular we wish to establish unambiguously the
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connection between the elliptic-wave solution of the cubic
nonlinear Schrödinger equation and the pattern formed by
means of time-division multiplexing of pumped pulses [4],
thus emphasizing the minor role of the gain dynamics in the
formation mechanism of soliton crystals. In contrast, the gain
is expected to hold a more major role in the pulse interaction
strengths and the soliton-crystal stability in general.

In Sec. II we present the model consisting of a cubic
nonlinear Schrödinger equation for a single-mode fiber and
find an exact nonlinear periodic-wave solution representing
elliptic-soliton structures. In Sec. III we revisit a familiar
reconstruction scheme (see, e.g., [4,16]) in order to identify
the pulse distribution in the soliton crystal. In this respect
we consider a standard ansatz [4,16] describing a multiplex
state of periodically spaced solitons, which can be obtained by
repetitively pumping an infinitely large number of pulses into
the fiber. We expand the ansatz and find an analytical wave
function that permits a direct comparison with the elliptic-
soliton solution of the nonlinear propagation equation. Next
a numerical implementation of the time-division multiplexing
of identical pulses is carried out with a finite number of pulses
to illustrate the consistency of the proposed theoretical recon-
struction scheme with experimental results [12,13]. In Sec. IV
we carry out a linear stability analysis to check the robustness
of the soliton-crystal structure against small-amplitude noises.
In this context we point out the implication of the multiplexing
of equal-intensity pulses on the stability of individual pulses
as well as the multiplex state. A summary follows in Sec. V.

II. MODEL AND ELLIPTIC-SOLITON STRUCTURES

The propagation of slowly varying wave envelopes in opti-
cal fibers exhibiting weak dispersion and weak nonlinearity is
governed by the cubic nonlinear Schrödinger equation

i
∂q(z,t)

∂z
− 1

2
β2

∂2q(z,t)

∂t2
+ γ |q(z,t)|2q(z,t) = 0, (1)

where z is the spatial coordinate of the envelope, t is the
propagation time, β2 is the group-velocity dispersion of
the fiber material, and γ is the nonlinear Kerr coefficient
accounting for self-phase modulation. The slowly varying
wave envelope q(z,t) is normalized such that the square of
its magnitude represents the power transmitted throughout the

fiber. For weak fields, nonlinear effects are neglected and the
solution to Eq. (1) is a steady-state wave that disperses along
the fiber core and vanishes in the cladding.

We assume that the slowly varying amplitude q(z,t)
injected by the pump is a strong time-varying perturbation
that temporally awakens nonlinear effects in the fiber. In
this respect we set q(z,t) = a(t)eiβz, where β is the wave
parameter. The amplitude a(t) of the signal governing the
temporal evolution of the envelope then obeys the equation(

da

dt

)2

= −2β

β2
a2 + γ

β2
a4 + C, (2)

where C is the constant of energy integral that determines
profiles of the amplitude a(t). For a localized profile we expect
a rapid evanescence of the wave outside its time bandwidth
such that the constant C tends to zero. In the anomalous
dispersion regime (β2 < 0), the localized-wave solution is a
single hyperbolic secant pulse given by

a(t) =
√

2β

γ
sech

[√
−2β

β2
(t − t0)

]
, (3)

the shape of which is independent of the autocorrelation trace
and propagation distance such that its soliton identity is always
preserved. When the constant C is nonzero and negative,
energetic conditions become detrimental to the hyperbolic
secant pulse. However, we can still find nonlinear solutions
to the amplitude equation as

a(t) =
√

2β

γ (2 − k2)
dn

[√
−2β

β2(2 − k2)
(t − t0),k

]
. (4)

In formula (4) dn is the Jacobi elliptic δ function of modulus
k (0 < k � 1) and t0 is an arbitrary initial time.

The Jacobi elliptic dn function is periodic in its time
argument t with a time period

τ = 2K(k)

√
β2(2 − k2)

−2β
, (5)

with K(k) the elliptic integral of the first kind. In Fig. 1 we
sketched the autocorrelation trace of the Jacobi elliptic δ-
function signal (4). Possible numerical values for characteristic

(a) (b)

FIG. 1. (Color online) Elliptic-soliton solution to the nonlinear amplitude equation (2) for two different values of the parameter of
pulse dispersion k. (a) Periodic network of sharp pulse signals for a large dispersion parameter (k = 0.98). (b) Elliptic-wave decay into a
quasicontinuous signal for a small dispersion parameter (k = 0.6).
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parameters are β = 1.55 μm, β2 = −15 ps2/km, and γ =
25 W−1/km and correspond to typical data common in most
fiber laser setups [12–15]. As Fig. 1 shows, the dn function
describes bound states of periodically spaced pulses forming a
soliton crystal [6–10]. Remarkably small values of the modulus
k tend to increase the pulse density in the crystal, whereas
large values of this parameter isolate each pulse. As a matter
of fact, when k = 1 the soliton crystal breaks down and the
single-pulse regime is favored. Its turns out that the modulus
k can be readily regarded as the parameter of pulse dispersion.

The presence of the autocorrelation propagation parameter
of the envelope and its conservative nature manifested in the
distance-independent power transmitted are relevant charac-
teristics providing the envelope equation (4) with a soliton
feature. We can therefore conclude that the Jacobi dn function
stands for a good mathematical representation of a soliton
crystal. Since the generic wave equation (1) is integrable,
all physical features arising from the propagation of waves
will be intrinsic to such a system such that the soliton crystal
structure is clearly an essential profile of light envelopes in
Kerr nonlinear optical media.

III. SOLITON-CRYSTAL RECONSTRUCTION

A. Analytical reconstruction

It has long been established [2,17,18] that nonlinear-wave
generation in optical fibers results from the modulational
instability of continuous waves. The modulational instability
in this case can lead either to a single pulse [19], for instance, a
strong hyperbolic secant pulse produced by the superposition
of continuous waves oscillating at a constant frequency shift, or
to a train of pulses [21,22]. It would however be interesting to
examine the structure of a periodic train of pulses constructed
by time-division multiplexing [4] of an infinitely large number
of pulses, which in fact would be the output signal resulting
from the interaction of pulses pumped into the fiber by a pulse-
mode laser at a given period. For this last goal we consider a
laser pump injecting pulses into a standard monomode fiber at
finite wavelengths in the weak anomalous dispersion regime
β2. Let the hypothetical time multiplexed output signal A(t)
be expressed as [4,16]

A(t) =
∞∑

n=−∞

√
2βm

γ
sech

[√
−2βm

β2
(t − t0 − nτA)

]
, (6)

where the subscript m refers to the propagation mode and
τA is the period at which pulses are pumped into the fiber.
As emphasized in Ref. [4], when pulses are injected at a
constant period such that their propagation channels are equal
in addition to having the same amplitudes, their intrinsic phase
shifts will be the same while their relative phase shifts is zero
when there is no collision between pulses. In this case the
spatial modulation of individual pulses is uniform (βm = β)
and the sum in Eq. (6) becomes exact, forming the bound states

A(t) = 2

√
β2

γ

K(k)

τA

dn

[
2K(k)

t

τA

,k

]
. (7)

According to Eq. (7) as well as Fig. 2, pulses periodically
pumped into the optical fiber interact instantaneously to form a

FIG. 2. (Color online) Autocorrelation trace of the periodic train
of bound solitons, obtained from analytical reconstruction by time-
division multiplexing of identical pulses [Eq. (7)].

periodic pattern of identical pulse solitons under the anomalous
regime of dispersion. Because of the similarity between
formula (7) and the elliptic-wave solution to the nonlinear
amplitude equation obtained in the previous section, we can
state unambiguously that the soliton-crystal state created by
time-division multiplexing has the same structural feature as
the elliptic-wave solution to the propagation equation. Namely,
we also expect the time-division multiplexed pulse state to
decay into a quasicontinuous wave signal when the dispersion
parameter k decreases from its maximum k = 1, while pulses
in the soliton crystal will be sharp and well separated as k

tends to one. It is relevant at this step to stress that from the
standpoint of an exact mathematical treatment the sum of an
infinite number of secant hyperbolic pulses as given by formula
(6), to obtain the elliptic-wave structure formula (7), must be
supplemented with the existence condition

τA = πK(k′)
λK(k)

, (8)

where

λ =
√

−2β

β2
, k′ =

√
1 − k2, (9)

which links the pumping period τA to the width at half height
of individual pulses λ in the pulse multiplex. This existence
condition also determines the stability of the soliton-crystal
state. Indeed, when k tends to one τA tends to infinity, which is
consistent with the fact that dn tends to sech when k → 1. On
the other hand, as k decreases τA also decreases such that the
separation between pulses is not large enough for the pulses to
preserve their full identity in the soliton-crystal state, causing a
decay of the soliton crystal into quasicontinuous wave signals.

Experimental evidence of soliton-crystal structures
[12–16] has established that high pumping rates favor soliton
interactions and increase the intensity of the soliton crystal.
When the group-velocity dispersion is sufficiently high, the
input pulses overlap and become a bound state that is
modulated by the fiber nonlinearity into a chain of periodic
pulses [23]. It is remarkable from formula (7) that the
amplitude of the time-division multiplexed signal is inversely
proportional to the pumping period τA, which depends solely
upon the pump. In particular, this formula suggests that to
generate a regular well-shaped pulse train practically it is

053850-3
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(a) (b)

FIG. 3. (Color online) Numerically reconstructed signal at the pumping rate τA = 23.248 ns−1. (a) Double-time-scale comblike pulse. (b)
Apex of the large pulse for a soliton crystal of finite length.

desirable to pump high-energy pulses with the shortest widths
possible; passively-mode-locked lasers are suitable for such
a pump because they can repetitively generate pulses of
the order of femtoseconds [19,20]. Titanium-doped sapphire
lasers passively mode locked by the use of slow saturable
absorbers, for instance, are able to generate 10- to 30-fs pulses.
Furthermore, self-starting passively-mode-locked lasers that
continuously generate trains of pulses once turned on appear
to be good candidates for pumping periodically a large number
of pulses in the process of time-division multiplexing [4,20]. In
this context the separation between pulses would theoretically
correspond to the round-trip time of the laser cavity as observed
in the harmonic mode-locking-induced periodic bunching of
pulse signals [12,24].

B. Numerical reconstruction

In experiments on multipulse processing it can be neces-
sary to reconstruct the observed periodic pattern of pulses
analytically as well as numerically for a better understanding
of their fundamental properties. Indeed, unlike the analytical
reconstruction scheme where we need to sum an infinite
number of pulses to be able to find a single function comparable
to the elliptic-wave solution to the propagation equation, in
the numerical reconstruction we consider a large but finite
number of pulses; comparing the structure obtained from
this numerical sum over a finite number of pulses with the
elliptic-wave signal is also relevant.

For the numerical reconstruction we use the ansatz

A(t) =
N/2∑

n=−N/2

√
2βm

γ
sech

[√
−2βm

β2
(t − t0 − nτA)

]
, (10)

where N is the number of pumped pulses. By considering
100 identical pulses (βm = β) a two-time-scale signal is
produced, as shown in Fig. 3: a slow-time-scale large pulse
and a fast-time-scale soliton crystal. Suppose each pulse in
the crystal is 44 ps wide and is separated from its neighbor
by 	t = 40 fs. Evaluating the number of pulses in the crystal
whose total length is 5 ns, taking into consideration the pulse
width and pulse separation, yields 113 pulses in the soliton
crystal. The excess in the number of pulses comes from
the nonlinear gain induced by the modulational instability
of the interacting input pulses. The pulses are not as sharp
as those experimentally observed in rare-earth-doped fiber

lasers [14–16], because in the latter context the immediate
response of the medium to the laser gain dynamics modifies
the propagation and the interaction of pulses in the crystal.
This is not the case for our optical fiber model where we
neglected the laser gain dynamics, so pulses are less intense
and the autocorrelation compels them to a broader profile. In
fact, the formation of the analytically obtained time-division
multiplexed signal, confirmed by the numerical reconstruction,
perfectly agrees with the theory that pulse interaction caused
by the overlap of pulses at the fiber input end generates an
unstable signal that is reformed into a one-dimensional lattice
of pulses. The pattern owes its periodic nature to the constant
rate at which identical pulses are pumped into the fiber. A close
observation of the periodic pattern behavior, however, reveals
a peculiar behavior: Pulse interaction is inversely proportional
to the pumping period and we expect it to be minimal when the
pumping period falls below the temporal width of each pulse
such that a pulse entering the optical fiber collides with its
predecessor. However, the numerical reconstruction illustrated
in Fig. 4 shows a strong modulational instability when the
pumping period is of the order of the pumped pulse width.
The strength of the modulation can be qualitatively evaluated
by the amplitude difference between the floor of the giant pulse
and the lowest point of the soliton crystal. From a theoretical
standpoint, pulses start to interact when their tails overlap and
we numerically determined that for our system this interaction
starts when the separation time between pulses is a dozen times
the width of each pulse as shown in Fig. 4(b). This observation
is a manifestation of the wide bandwidth pulse solitons display
in optical fibers.

IV. LINEAR STABILITY ANALYSIS OF
THE SOLITON-CRYSTAL STRUCTURE

Another relevant issue related to the study of nonlinear
structures in optical media is their stability, once their existence
is proven. This issue has been investigated at length for single-
pulse and dark-soliton signals, particularly within the frame-
work of linear stability analysis, which provides an interesting
way of testing their robustness against small-amplitude noises
(see, e.g., [25]). For single-soliton signals the linear stability
analysis of the wave equation (1) leads to an eigenvalue
problem for which the discrete spectrum consists of three
localized modes with nonzero spatial modulations. From the
standpoint of physics these localized modes describe internal
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(a) (b)

FIG. 4. (Color online) Autocorrelation trace of the reconstructed signal. (a) Strong modulation illustrated by the amplitude gap between
the soliton crystal and the large pulse. (b) Minimal modulation at the threshold frequency.

oscillations in the structure of the soliton signals that propagate
together with the signals; because of their nonzero energies
they can be associated with radiation-carrying excitations in
the propagating pulse background.

In the case of time-division multiplexed pulse states the
interaction between pulses holds a key role in the stability
of the structure as emphasized, for instance, in Ref. [26].
To this last point, for the soliton-crystal structure obtained
in the previous section, the separation between individual
pulses must be equal and therefore it is necessary to minimize
their mutual interactions as well as the Gauss-Haus effect, two
phenomena that tend to promote strong correlations between
the centers of mass of the interacting pulses. To explain the
shape preservation (referred to as noncoalescence in Ref. [26])
of individual pulses as well as their propagation in a fixed
time slot within the soliton-crystal structure, Buryak and
Akhmediev [26] suggested the possibility of oscillating tails on
pulses that would compensate for the energy cost in pulse inter-
actions with neighbor pulses through some effective potential.

In our investigation of stability of the soliton-crystal
structure we proceed through the linear stability analysis. By
following this approach we expect to find additional internal
modes, besides the bound states proper to each individual
pulse, which would be consistent with new internal degrees
of freedom due exclusively to the correlation of the centers of
mass of the interacting pulses.

Proceeding, consider a small disturbance a1(t) moving
bound to the pulse-lattice envelope (4) of the soliton crystal,
which we now denote by a0(t). With this let

a(t) = a0(t) + a1(t) (11)

be the soliton-crystal envelope dressed with the noise a1(t),
replacing a(t) in the envelope equation derived from (1). To
linear order we find the following eigenvalue equation:[

∂2

∂τ 2
− 6k2sn2(τ )

]
a1(τ ) = E(k)a1(τ ),

E(k) = 2
3β2λ

2 + β

β2λ2
. (12)

This is Lamé’s eigenvalue problem of second order [9,10] in
which sn(τ ) is another Jacobi elliptic function of argument
τ = λ t . The eigenvalue problem (12) possesses both discrete
and continuous modes, all describing radiative modes of the
soliton-crystal profile. Discrete modes are of particular interest

since they represent localized excitations in the background of
the soliton crystal. For Eq. (12) there are five distinct localized
modes [27], namely,

a11(τ ) = a11(k)cn(τ )dn(τ ), β11 = (5 − k2)|β2|λ2/2, (13)

a12(τ ) = a12(k)cn(τ )sn(τ ), β12 = (2 − k2)|β2|λ2/2, (14)

a13(τ ) = a13(k)sn(τ )dn(τ ), β13 = (5 − 4k2)|β2|λ2/2, (15)

a14,15(τ ) = a14(k)

[
sn2(τ ) − 1 + k2

3k2
∓

√
1 − k2(1 − k2)

3k2

]
,

β14,15 =
[

2 − k2 ±
√

1 − k2(1 − k2)

2

]
|β2|λ2, (16)

where a1j=1,2,3,4,5(k) are their (constant) amplitudes. In Fig. 5
we sketched the five modes for k = 0.97 (left column) and
k = 1 (right column).

Graphs in the right column of Fig. 5 are particularly
instructive given that when k = 1, the separation between
pulses becomes infinite and the soliton crystal decays into a
single pulse. Thus, according to shape profiles in the right
column of Fig. 5, the single-pulse signal possesses three
distinct localized modes including a single-pulse, a symmetric
two-pulse, and an asymmetric two-pulse bound state, all with
positive spatial modulations β1j . Actually this feature of the
localized-mode spectrum of the single pulse suggests that the
two additional modes appearing when k is smaller that one,
as shown in the right column of Fig. 5, are related to the
correlation of the centers of mass of the interacting pulses.

It is relevant to stress that the linear stability analysis
provides a very efficient way of probing soliton stability and
particularly its shape invariance under translation. To this last
point, for the single-pulse signal one of the three localized
modes is precisely the translation mode while the two others
are related to localized excitations in the internal structure
of the pulse due its interaction with small-amplitude noise.
We can determine which among the three bound states is the
translation mode by simply slightly translating the pulse by τ0

from some temporal position τ , which yields

a1s(τ + τ0) ∝ a1s(τ ) + τ0a
′
1s(τ ) + 0(τ 2

0 ), (17)
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FIG. 5. (Color online) Wave profiles of the five bound states a1j (j = 1,2,3,4,5) given by Eqs. (13)–(16) for k = 0.98 (left column) and
k = 1 (right column).

where a′
1s(τ ) refers to time derivative of the field. For the

single pulse the second term on the right-hand side of formula
(17) is proportional to −sech(τ )tanh(τ ), which is actually the
function formula (14) and the first graph in the right column

of Fig. 5. Similarly, an infinitesimal translation of the soliton
crystal as a hole by τ0 leads to the same expression (17) with
a translation mode proportional to sn(τ )cn(τ ). However, if we
translate individual pulses prior to temporal multiplexing we
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find an additional localized mode proportional to sn(τ )dn(τ ),
coinciding with the second bound state in (15). From (14) and
(15) it can be checked that the two modes tend to the same
limit (same wave profile and same eigenvalue) as k → 1, so we
can readily conclude that the correlation of the centers of mass
of individual pulses due to their interactions broadens their
internal-mode spectrum while inducing mode degeneracies.

V. CONCLUSION

We have established that in the regime of anomalous
dispersion, soliton crystal patterns can emerge in a nonlinear
optical medium through a time-division multiplexing process.
We proceeded with its reconstruction by considering an ex-
perimental setup consisting of periodically pumping identical
pulses at high repetition rates. The Jacobi elliptic δ function
was found to provide a good representation of the temporal
envelope signal in the soliton-crystal state. The numerical
reconstruction of the signal by time-division multiplexing of a
large but finite number of pulses has led to a comblike signal
similar to those observed in passively-mode-locked fiber lasers
and confirmed that modulational instability of pulses fuels
the formation of soliton crystals. At some threshold pumping
limit a pulse train is formed and evolves into a more stable
double-time-scale signal as the pumping frequency increases.
The self-preserving features of the pulse-soliton lattice offer

a suitable means of a long-distance signal convoy in fiber
waveguides, as widely illustrated in several past studies. It is
instructive to stress that the issue of theoretical reconstruction
of bound-soliton states observed experimentally in fiber laser
media has already been addressed in a few previous works.
Among these past studies, the account given in Ref. [5] on
the formation of pulses and their subsequent evolution into
multipulse soliton states is consistent with our theoretical
results. Indeed, the authors of [5] observed that while the
formation of fundamental pulses is governed mainly by the
balance of nonlinearity and the anomalous group-velocity
dispersion, higher-energy pulses will split into identical lower-
energy multisolitons with exactly the same physical properties.
They found that the separation of neighboring pulses in the
bound-soliton states was variational in the temporal domain,
which suggests a time-division multiplexing of identical pulses
to form a periodic multisoliton structure with temporal and
spectral characteristics having a sizable dependence on the
laser cavity round-trip.
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