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Effects of self- and cross-phase modulation on photon purity
for four-wave-mixing photon pair sources
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We consider the effect of self-phase modulation and cross-phase modulation on the joint spectral amplitude
of photon pairs generated by spontaneous four-wave mixing. In particular, the purity of a heralded photon from
a pair is considered in the context of schemes that aim to maximize the purity and minimize correlation in
the joint spectral amplitude using birefringent phase matching and short pump pulses. We find that nonlinear
phase-modulation effects will be detrimental and will limit the quantum interference visibility that can be achieved
at a given generation rate. An approximate expression for the joint spectral amplitude with phase modulation
is found by considering the group velocity walk-off between each photon and the pump but neglecting the
group-velocity dispersion at each wavelength. The group-velocity dispersion can also be included with a numerical
calculation, and it is shown that it has only a small effect on the purity for the realistic parameters considered.

DOI: 10.1103/PhysRevA.92.053849 PACS number(s): 42.65.Lm, 42.50.Dv, 03.67.Bg

I. INTRODUCTION

Single-photon sources are a vital component of developing
quantum technologies such as quantum cryptography [1],
linear optical quantum computing [2], and quantum metrology
[3], and improved sources need to be developed to enable
these applications. In addition to requiring high-efficiency,
on-demand single photons, many applications require that
the photons be generated in a single mode, with well-
defined spatial characteristics and a Fourier-transform-limited
spectral-temporal shape. This allows two separate photons to
be indistinguishable and to undergo high-quality quantum
interference [4]; this, in turn, makes possible fundamental
operations such as teleportation of the photon [5] and two-
photon logic gates [6].

Photon pairs generated in a nonlinear medium by spon-
taneous parametric downconversion (SPDC) or four-wave
mixing (FWM) are often used as a source of single photons,
with one of the photons detected to give a heralding signal,
indicating the presence of the other [7,8]. Although this method
is inherently nondeterministic, through the multiplexing of
many such sources and the use of active switching, it is, in
principle, possible to construct a source arbitrarily close to a
deterministic source [9,10]. However, the photons of a pair are
generally correlated in frequency or time, which means that the
single photons will arrive in a statistical mix of multiple modes.
Narrow spectral filtering of the single photons can force them
into a single mode but at a cost to the overall transmission
and heralding efficiency, which reduces the usefulness of
the source. Possible solutions to this problem have been
demonstrated based on consideration of the joint spectral
amplitude (JSA) of a pair: with careful choice of wavelengths
or by engineering the dispersion properties of the nonlinear
medium, the degree of correlation can be minimized, allowing
quantum interference to take place without narrow filtering
[11]. For SPDC in bulk crystals interference visibilities as
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high as 94.5% have been observed without filtering [12]. For
FWM in birefringent optical fibers unfiltered visibilities have
tended to fall short of theoretical estimates, often in the range
70%–80%, which is far from sufficient for scalable use in
communications or computing [13–16]. It has been suggested
that inhomogeneity along the length of fibers due to fabrication
imperfections is responsible for the shortfall in visibility, and
it has been shown theoretically that a large inhomogeneity
can reduce the visibility [17]. However, it is also expected
to create a broadening and modulation in the spectra of the
individual photons, which should be easily detected, and
in some situations a small amount of inhomogeneity could
actually improve the interference visibility [18].

Here, we consider the effects of parasitic nonlinear pro-
cesses on the JSA and the interference visibility, namely,
self-phase modulation (SPM) and cross-phase modulation
(XPM), which are not present in a χ (2) nonlinear medium such
as the crystals used for SPDC but are potentially significant in a
χ (3) nonlinearity such as fiber [19]. Previous calculations of the
JSA have tended to account for SPM and XPM in a simplistic
form which is only exact in a continuous-wave (cw) regime,
whereas the relevant schemes to make the JSA uncorrelated
rely on the use of short pulses. We show that these effects can
cause a reduction in interference visibility, especially when a
source is operated at a high pair generation rate, beginning
from an analytic explanation then progressing to a numerical
model fully accounting for SPM, XPM, and dispersion.

II. JOINT SPECTRAL AMPLITUDES

In pair production through FWM, a bright pump laser is
used to power the process. As the pump pulse propagates
through a χ (3) medium, two pump photons may be sponta-
neously annihilated, with a correlated signal-idler photon pair
created. The frequencies of the signal and idler are constrained
by the conservation of energy and momentum:

�ω = 2ωp − ωs − ωi = 0,
(1)

�β = 2βp − βs − βi + (2γp − 2γs − γi)P = 0.
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ωp,s,i refer to the frequencies of pump, signal, and idler
and βp,s,i refer to the wave vectors. The γp,s,iP terms arise
from SPM and XPM, as the intense pump in the nonlinear
medium will slightly modify the wave vectors, with γp,s,i being
effective nonlinear coefficients for pump, signal, and idler and
P being the peak power of the pump.

These conditions are not exact, and the photons will have
some bandwidth centered on an exact solution. The finite
bandwidth of the pump will introduce some uncertainty to
the �ω condition, and for a fiber of finite length, there is some
uncertainty in the phase matching which permits small values
of �β. The JSA can be simply expressed as the product of an
energy-matching and a phase-matching function [11,20]:

Aspec(ωs,ωi) = F × G, (2)

with Aspec the JSA function and with

F =
∫∫

dωp1dωp2E(ωp1)E(ωp2)δ(ωp1 + ωp2 − ωs − ωi),

(3)

G = ei�βL/2sinc

(
�βL

2

)
. (4)

Here, E(ω) is the spectral amplitude of the pump, and the two
pump photon frequencies ωp1 and ωp2 are integrated over. It
can usually be assumed that the two are approximately equal;
then F is just the convolution of E(ω) with itself, and the δ

function, which results from energy conservation, fixes ωp =
(ωs + ωi)/2. For instance, if the pump amplitude is a Gaussian,

E(ωp) = E0e
− (ωp−ωp0)2

2σ2 , then

F = E2
0e

− (ωs+ωi−2ωp0)2

16σ2 . (5)

Another useful simplification is to consider the different
group velocities at the pump, signal, and idler frequencies
but ignore higher-order dispersion terms. Then, for small
departures from an exactly phase matched solution �ωs and
�ωi , the phase mismatch can be expressed as

�β = �ωs(β1p − β1s) + �ωi(β1p − β1i) − 2γP, (6)

with β1m = dβ/dωm = 1/vg , one over the group velocity at
each frequency, m = p,s,i. It can be seen that the differences
in 1/vg between pump, signal, and idler are an important
factor in determining the JSA and its degree of correlation,
or its factorability. Figure 1 shows three JSAs calculated
approximately in this fashion. In Fig. 1(a), the group velocities
are chosen arbitrarily with β1p > β1i > β1s , resulting in a
highly correlated JSA. In Fig. 1(b), the idler is group velocity
matched to the pump, resulting in an uncorrelated JSA, as the
main peak now has its axes horizontal and vertical, although
the ripples to either side, resulting from the sinc function in G,
remain correlated. This is the asymmetric scheme to generate
a factorable JSA [13]. In Fig. 1(c), β1s and β1i are roughly
equally spaced above and below β1p, the symmetric scheme
for a factorable JSA [16]. Here, the bandwidth of the pump
must be exactly tuned to make the main peak circular in shape
and uncorrelated. The conditions on the group velocities are
generally met by using birefringent phase matching, with the

(a)

(b)

(c)

ωs (rad s-1)

ωi
(rad s-1)

ωi
(rad s-1)

ωi
(rad s-1)

FIG. 1. (Color online) Joint spectral amplitudes calculated sim-
ply from the pump, signal, and idler group velocities. (a) General
example with β1p > β1i > β1s results in a highly correlated signal and
idler, indicated by the diagonal nature of the main peak, (b) β1p = β1i

results in the central peak becoming vertical and uncorrelated, and
(c) when β1p − β1s ≈ β1i − β1p , the phase-matching condition lies
at +45◦ while the energy matching lies at −45◦. Tuning the pump
bandwidth can make the central peak circular and uncorrelated. All
JSAs are plotted as absolute values, ignoring the complex phase, and
are shown normalized to have a maximum of 1.

pump polarized on the slow birefringent axis and the photons
on the fast axis.

For a given JSA, the degree of correlation can be calculated
using the singular value decomposition function in MATLAB.
This provides a Schmidt decomposition of the JSA:

Aspec(ωs,ωi) =
∑

j

λjfj (ωs)gj (ωi), (7)

where fj (ωs) and gj (ωi) are a set of orthogonal spectral modes
for signal and idler and λj are real amplitude coefficients. We
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define the purity as

P =
∑

j

λ4
j , (8)

which is an upper limit on the quantum interference visibility
possible between two photons from separate pairs [21].

For the JSAs in Fig. 1, the purities are found to be 23%
for the correlated JSA in Fig. 1(a), 95% for the asymmetric
uncorrelated case in Fig. 1(b), and 83% for the symmetric
case in Fig. 1(c). In Fig. 1(c), the purity is mainly limited by
the correlation in the sinc function ripples to either side of the
main peak. These can be removed by filtering, resulting in high
purities with relatively little cost to transmission efficiency
[16].

The nonlinear correction −2γP to �β, which has been
ignored in the calculations above, depends on the pump power.
For a pulsed pump, P is a function of position and time
and cannot be simply expressed in the frequency domain;
previously, the peak power has been used. Instead, we take
SPM and XPM into account by working in the time domain
and developing expressions for the joint temporal amplitude
(JTA), which is linked to the JSA by two-dimensional (2D)
Fourier transform.

III. EQUATIONS OF MOTION IN A NONLINEAR FIBER

To model photon pair production through FWM with SPM
and XPM included exactly, we use the equations of motion
with position and time for the pump, signal, and idler fields in a
χ (3) medium. The electric field associated with the pump pulse
can be split into positive and negative frequency components
as

E = eX(x,y)
(
E+

p ei(βp0z−ωp0t) + E−
p e−i(βp0z−ωp0t)

)
. (9)

Here, e is the polarization vector of the electric field.
X(x,y) is the transverse mode shape, normalized such that∫∫

X(x,y)2dxdy = 1. Complex oscillatory terms have been
separated out at a central frequency ωp0 and wave vector βp0.
This leaves E+

p as a complex envelope function describing the
pulse, dependent on time t and position z along the propagation
axis z. E−

p is the complex conjugate of E+
p .

Assuming the pulse envelope varies slowly (the length of
the pulse contains many optical cycles, or equivalently, the
bandwidth of interest is small compared to the frequency ωp0)
and that the nonlinearity is a small perturbation to the linear
evolution of the pulse, E+

p obeys the nonlinear Schrödinger
equation [22]:

∂E+
p

∂z
+ β1p

∂E+
p

∂t
+ iβ2p

2

∂2E+
p

∂t2
= iγp|E+

p |2E+
p . (10)

The β1p term corresponds to the group velocity of the pump
pulse. In the following it is removed from the equation as we
consider all quantities in a moving reference frame. The β2p

term gives rise to dispersion; higher-order dispersion terms
are neglected here but can be included as higher-order time
derivatives. The term on the right-hand side is the nonlinearity
associated with SPM of the pump, with γp = γ (ωp0) being an

effective nonlinear coefficient:

γ (ω) = 3χ (3)ω

2cnωA
, (11)

where nω is the refractive index at the frequency ω and A is
the effective area of the transverse mode.

Analogous equations of motion for the signal and idler
fields can be written as

∂E+
s

∂z
+ β1s

∂E+
s

∂t
+ iβ2s

2

∂2E+
s

∂t2
= iγs(2|E+

p |2E+
s + E+2

p E−
i ),

(12)

∂E+
i

∂z
+ β1i

∂E+
i

∂t
+ iβ2i

2

∂2E+
i

∂t2
= iγi(2|E+

p |2E+
i + E+2

p E−
s ).

(13)

In the moving reference frame, β1s and β1i are taken to be group
velocity terms relative to the pump (i.e., β1s → β1s − β1p and
β1i → β1i − β1p). The first term on the right-hand side of
these equations is XPM, as the pump modifies the refractive
index experienced by the signal and idler. The second term
relates to FWM, with the strong pump field creating a coupling
between the signal and idler fields. For simplicity, the central
frequencies of the signal and idler have been chosen to be a
point of exact phase matching with the central frequency of
the pump, so that

2ωp0 − ωs0 − ωi0 = 0,
(14)

2βp0 − βs0 − βi0 = 0.

Note that since the pump field is many orders of magnitude
brighter than the signal and idler, which on average will
contain less than one photon, terms representing SPM of the
signal and idler and XPM from the signal or idler to other
fields are ignored. Similarly, depletion of the pump due to
FWM is neglected.

The χ (3) coefficient will generally be three times smaller in
nonlinear effects coupling fields of orthogonal polarization
compared to fields which are all copolarized [22]. In the
birefringent phase-matching schemes considered, the signal
and idler are orthogonally polarized to the pump, so this is
incorporated by defining γs = γ (ωs0)/3 and γi = γ (ωi0)/3.

Although the pump laser can continue to be treated
classically, the signal and idler fields should be quantized.
We use the following quantization, similar to [23,24]:

Ê+
s =

∫
dω

√
�ω

4πε0cnω

âωe−i(βs0z+ωt−ωs0t), (15)

where âω are annihilation operators for a photon at position z

with frequency ω, with Hermitian conjugate creation operators
â†

ω. An identical expression applies to the idler, with the
integral taken to be over a different range of frequencies, so that
the two remain distinct. The frequency modes are continuous,
so the creation and annihilation operators have a commutation
relation [âω,â

†
ω′ ] = δ(ω − ω′), and the number density opera-

tor â†
ωâω should be integrated over a frequency interval in order

to refer to the actual number of photons within that interval.
It is convenient to consider the signal and idler in terms

of the creation and annihilation operators for a photon at a
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particular time and position, φ†(z,t) and φ(z,t), which are the
Fourier transforms (from frequency to time) of â†

ω and âω.
If the frequencies of interest for the signal and idler lie in a
narrow bandwidth about ωs0 and ωi0, the electric fields have a
simple approximate relation to the new operators:

Ê+
s =

√
�ωs0

2ε0cns

φs, Ê+
i =

√
�ωi0

2ε0cni

φi . (16)

Like Ê+
s,i , φs,i have the quickly varying oscillations with z

removed.
These equations of motions do not have convenient so-

lutions, even the classical equation for the pump, which is
independent of the signal and idler, unless we neglect the
dispersion terms β2. Fortunately, as above, the purity largely
depends on the different group velocities for the pump, signal,
and idler, and the approximate solutions ignoring dispersion
are still instructive. To include dispersion properly, numerical
methods can be used, as described later.

IV. APPROXIMATE SOLUTIONS

Once the β1 term is removed from Eq. (10) using a moving
reference frame and the β2 term is ignored, the pump pulse
will retain its temporal shape as it propagates down the fiber,
only accumulating a nonlinear phase due to SPM:

E+
p (z) = E+

p (0)eiθp , (17)

where

θp = γpz|E+
p (0)|2. (18)

Below, E+
p is taken to mean the pump amplitude as a function

of time at z = 0. The signal and idler equations still include
a group velocity term in addition to XPM and FWM terms.
In the interaction picture of quantum mechanics, the group
velocity and XPM parts of the evolution, which affect signal
and idler individually, are applied to the operators, while the
FWM interaction between the signal and idler is applied to
the wave function |ψ〉. We first write the solutions φs,i to the
group velocity and XPM terms, ignoring FWM:

φs(z,t) = φs(0,t − β1sz)eiθs , (19)

where the nonlinear phase acquired due to XPM is

θs = 2γs

β1s

∫ t

t−β1s z

|E+
p |2dt, (20)

with an analogous solution for φi . Note that because the signal
(or idler) experiences group-velocity walk-off from the pump,
it accumulates phase from the pump at a range of different
times, hence the integral. If the signal were group velocity
matched to the pump, β1s = 0, the phase would become
θs = 2γsz|E+

p (t)|2.
The evolution of the wave function according to FWM is

now given by

d

dz
|ψ〉 = iĤ |ψ〉, (21)

with

Ĥ = √
γsγi

∫
dtE+2

p φ†
s φ

†
i e

2iθp + E−2
p φsφie

−2iθp . (22)

Since the pair rate per pulse will generally be small, to avoid
multipair emission, we take the interaction to first order,
beginning with the signal and idler modes in the vacuum state:

|ψ〉 = |vac〉 + i
√

γsγi

∫∫ L

0
dtdzE+2

p φ†
s φ

†
i e

2iθp |vac〉, (23)

with L being the fiber length. To extract the JTA from this wave
function, we take the overlap between |ψ〉 and a signal-idler
pair at times ts , ti :

Atemp(ts ,ti) = 〈vac|φs(L,ts)φi(L,ti)|ψ〉. (24)

With Atemp the JTA function. Substituting in Eq. (19) and
simplifying, we have, for β1s 	= β1i ,

Atemp(ts ,ti) =
{

i
√

γsγi

β1s−β1i
ei�E+

p (tc)2 if 0 < zc < L,

0 otherwise,
(25)

with zc being the point in the fiber at which the pair was
created. This is defined for a particular ts , ti because the signal
and idler must be created at the same time, tc, and the extent
to which they have walked off from each other identifies the
length they have propagated through after creation. Similarly,
tc is defined by the differing arrival times of the signal and
idler:

zc = L − ts − ti

β1s − β1i

, tc = β1s ti − β1i ts

β1s − β1i

. (26)

� is the total nonlinear phase, given by

2γpzc|E+
p (tc)|2 + 2γs

β1s

∫ ts

tc

|E+
p |2dt + 2γi

β1i

∫ ti

tc

|E+
p |2dt.

(27)
This is the source of the distinguishability arising from phase-
modulation effects and is clearly dependent on pump intensity.
The first term in this expression for � relates to the SPM of
the pump. Any phase accumulated by the pump before the pair
is generated at zc is passed on to the photons, increased by a
factor of 2 due to the quadratic dependence on the pump field.
The second and third terms relate to XPM, affecting the signal
and idler, respectively. XPM is accumulated only after the pair
is created until the end of the fiber, so the integral is between
tc and ts,i . The total probability of generating a pair, or the
generation rate per laser pulse, is given by

R =
∫∫

|Atemp|2dtsdti = γsγiL

|β1s − β1i |
∫

|E+
p |4dt, (28)

which is proportional to pump intensity squared. When
dispersion is included, it will affect R by causing the pump
pulse to broaden or compress in time, respectively decreasing
or increasing the generation rate. In the following, R is
calculated by numerical integration of a JTA over ts and ti .

It can be seen that if R is increased by increasing the
pump intensity, the nonlinear phase shift � will also increase.
Similarly, if a larger length L is used to increase R, the
nonlinear phase becomes more significant, as both the average
value of zc increases and ts , ti will, on average, become further
from tc. In the next two sections, we consider the decrease in
P due to the nonlinear phase modulation as R is increased for
realistic physical parameters. Plotting P as a function of R

means that all factors affecting nonlinearity and the brightness
of the FWM are taken into account, allowing fair comparisons
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to be made between fibers of different lengths or pump pulses
of different durations.

A. Asymmetric scheme

When the idler and pump are group velocity matched, β1i =
0, tc = ti . Also the last term in �, representing XPM from the
pump to idler, becomes

2γi(L − zc)|E+
p (ti)|2 (29)

because there is no walk-off between the pump and idler.
Figure 2 shows the joint temporal amplitude for three

different lengths of fiber, with a Gaussian pump shape E+
p ∝

e−t2/2τ 2
. It can be seen that for short lengths, the photons are

highly correlated in time, with hard edges to the JTA due to the

(a)

(b)

(c)

ts (s)

ti (s)

ti (s)

ti (s)

FIG. 2. (Color online) Joint temporal amplitudes when the idler
and pump are group velocity matched. For increasing fiber length
compared to the length of the pump pulse τ , the group velocity walk-
off of the signal smears out the JTA. (a) β1sL/τ = 2, (b) β1sL/τ = 5,
and (c) β1sL/τ = 10.

condition 0 < zc < L. As the length is increased, the signal
walk-off smears out the JTA, making it closer to rectangular
and less correlated. The fiber length is not important in itself
as much as the ratio between the fiber length and the length
of the pump pulse τ , as changing both by a constant factor
is simply a rescaling of the JTA. It will appear uncorrelated
if β1sL/τ � 1, although in practice this may be limited by
dispersive effects which have been ignored so far since they
will become more significant for longer lengths and shorter
pulses.

The JTAs are shown as absolute values and so are not
affected by the nonlinear phase. The effects can be seen in
the JSA obtained by taking the Fourier transform of the JTA;
in Fig. 3, the JSA is shown for increasing probability of pair

(a)

(b)

(c)

ωs (rad s-1)

ωi
(rad s-1)

ωi
(rad s-1)

ωi
(rad s-1)

FIG. 3. (Color online) JSA for increasing generation rates R,
showing the correspondingly increasing effects of SPM and XPM.
The initial effect is to broaden the idler, eventually leading to a
splitting and distortion of the JSA which reduces the purity P . (a)
R approaching zero, P = 89%. (b) R = 0.1, P = 83%. (c) R = 0.2,
P = 78%.
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P ytiru
P

FIG. 4. (Color online) Purity plotted against generation rate for
four choices of fiber parameters. As R increases, SPM and XPM
become significant and reduce P . Red: β1sL/τ = 40. Green:
β1sL/τ = 20. Blue: β1sL/τ = 10. Purple: β1sL/τ = 5. The black
dashed line shows the purity at a given generation rate after numerical
optimization of β1sL/τ . It can be seen that a large value of β1sL/τ is
desirable at low rates, but for higher rates it will cause a more rapid
falloff in purity.

creation R in a pulse, in each case with β1sL/τ = 10. As
R increases, the idler is broadened significantly by phase
modulation and begins to distort in profile. This causes the
purity to decrease, from 89% at R = 0 to 83% at R = 0.1 to
78% at R = 0.2 (0.2 pair per pulse may be unrealistically high
for an experiment but allows the distortion of the JSA to be
seen clearly).

In Fig. 4, the purity is plotted against the pair generation rate
R for different choices of fiber parameters. It can be seen that
for larger values of β1sL/τ , the purity will be high at very low
R but will decrease rapidly as R increases, whereas a smaller
value of β1sL/τ will decrease more slowly and may be optimal
for a given R. Note that, even after optimizing the purity
with the fiber parameters, the purity will be more detrimental
to quantum interference quality than multipair emission over
the range shown, 0 < R � 0.1. (The probability of multipair
emission is estimated as R2, which, when compared to the
rate of single-pair emission R, can reduce the interference
visibility by at most R.) This is potentially significant if the end
goal is to build a deterministic photon source by multiplexing
together many of these sources [9], then to achieve high-quality
interference without filtering for quantum communication or
computing applications. It is usually assumed that the end
quality will be high as long as multipair emission is kept
low from the individual sources, but this shows that, at least
for this asymmetric scheme using FWM, the effects of phase
modulation are likely to be the limiting factor for the generation
rate.

Inspection of Eq. (27) does suggest a solution to this
problem. The nonlinear phase factor ei� becomes a factorable
function of ts and ti over the extent of the JTA as long as
the pump field E+

p is a square function in time. The phase
is correlated only because |E+

p (tc)|2 varies across the JTA.

However, the effects of group-velocity dispersion acting on
a short, square pulse over a large length may be unpleasant.
Using realistic dispersion parameters based on the birefringent
microstructured fiber in [25,26] with a length 50 cm and
calculating the JSA from Eq. (2), without phase-modulation
effects, the maximum value of P using a square pulse of
optimal duration is found to be 80%. Prechirping the pulse to
compensate the dispersion so that it is square at the midpoint of
the fiber yields a slight improvement to 81%. So this is unlikely
to be helpful unless the dispersion is particularly small.

Another solution would be to have γp = γi , although this is
not possible using the birefringent phase matching considered
because of the reduction in the effective nonlinearity by a factor
of 3 when the fields are orthogonally polarized. However if the
nonlinear phase could be made factorable, a high purity could
again be achieved with a large value of β1sL/τ .

B. Symmetric scheme

We now consider the symmetric scheme for avoiding
correlations, with β1s = −β1i = β1. This implies that zc =
L − ts−ti

2β1
and tc = ts+ti

2 . Figure 5(a) shows the JTA in this
case, where the temporal width τ of a Gaussian pump
has been optimized to minimize correlation. Figure 5(b)
shows the corresponding JSA without the effects of phase
modulation, with R approaching zero, while Figure 5(c) shows
the broadening and distortion from phase modulation when
R = 0.2. Here, the broadening introduces spectral correlation,
but it can be partly compensated by beginning with a longer
pump pulse (increasing τ ). Figure 6 shows the purity plotted
against generation rate, both for a fixed value of β1L/τ and
with τ reoptimized as R is increased.

The predicted purities of around 80% here are somewhat
low, even when R is kept small. A realistic experimental
strategy may be to increase the purity above this by applying
some spectral filtering to one photon of the pair, with
transmission T defined as the probability of the filtered photon
passing through the filtering. If the filtered photons are used
as the heralds, the heralded photons will not experience any
loss, just a reduction in effective generation rate, which is the
product of R and T . Figure 7 shows the purity after one of the
photons has been filtered with a top-hat transmission window
of variable width as a function of RT . Five different values
for the original generation R are shown, from 0.02 to 0.1. The
purity initially rises rapidly as the filter removes the sinc ripples
without too much attenuation (10%). However, we see a knee
in the curve where filtering does not lead to great improvement
without strong attenuation. The detrimental effect of phase
modulation can be seen from the level of purity achievable
before the knee, which falls as a function of R. However, for a
given value of RT , a higher value of R still results in a higher
purity.

Since a larger R appears to be beneficial for the purity after
filtering, as a function of RT , this suggests there will be a trade-
off between achieving higher purity and keeping multipair
emission low, which occurs with probability approximately R2

[21]. If photon-number-resolving detectors become available,
they could be used on the heralds to detect and filter out
multipairs. Otherwise, it may not be possible to simultaneously
achieve a high-purity, highly effective generation rate and
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FIG. 5. (Color online) (a) Joint temporal amplitude when the
signal and idler are equally spaced in β1 about the pump. The pump
duration is optimized to avoid correlation, but the hard edges to the
JTA caused by the sudden beginning and end of the nonlinearity
mean that some correlation is inevitable. (b) Corresponding JSA with
a low generation rate. (c) Corresponding JSA at a higher generation
rate, R = 0.2, showing the effects of SPM and XPM. The JSA is
broadened in one direction.

low multipair emission using this scheme. In future work, it
would be useful to consider similar schemes where two pump
frequencies are used, with mismatched group velocities [27].
This can, in principle, remove the sinc ripples from the JSA
and hence most of the correlation, although phase modulation
may still have an effect.

V. NUMERICAL MODEL

To include the effects of group-velocity dispersion accu-
rately, it is necessary to go to a numerical model involving
finite steps along the fiber length. A common method for
modeling the propagation of a laser pulse through a nonlinear

0 0.02 0.04 0.06 0.08 0.1
0.72

0.74

0.76

0.78
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0.82

Generation Rate R

P ytiru
P

FIG. 6. (Color online) Purity against generation rate for the
symmetric scheme. Blue (dark gray): τ is kept constant. Green
(light gray): τ is increased with R to reoptimize. Again, the phase
modulation reduces P as R is increased, although here P is lower
to start with than in the asymmetric scheme because there is more
correlation in the sinc ripples of the JSA.

and dispersive medium is a split-step Fourier (SSF) simulation
[22]. Here, the length is divided into small steps �z, and
for each step, the nonlinearity and the dispersion are applied
separately. For instance, the effect of propagating through
the nonlinearity of �z could be applied first, in the time
domain where this is a simple calculation, then the pulse could
be Fourier transformed to the frequency domain, where the
effect of the dispersion can easily be applied using Ẽ+(z,ω) =
Ẽ+(0,ω)eik(ω)z, followed by inverse Fourier transform back
to the time domain. Since the effects of the nonlinearity
and dispersion are generally noncommuting, this is only
approximate but is accurate for small �z. In fact, it is better to

0 0.02 0.04 0.06 0.08 0.1
0.75

0.8

0.85

0.9

0.95

1

Effective Generation Rate RT

P ytiru
P

R=0.1R=0.02 R=0.04 R=0.06 R=0.08

FIG. 7. (Color online) Purity as a function of the effective gen-
eration rate RT when filtering is applied to one of the photons (the
herald) resulting in transmission T . Unfiltered generation rates R are
shown from 0.02 to 0.1.
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apply half a step of dispersion, then a full step of nonlinearity,
followed by the other half step of dispersion because then the
size of the errors due to the approximation varies with �z3

rather than �z2 [22].
To model the pair-production process along similar lines,

we use a SSF simulation for the propagation of the pump pulse
and incorporate spontaneous FWM into the nonlinear part of
each step. The steps in position are kept small compared to
the resolution in time, so that β1s,i�z < �t . This means the
signal and idler are initially in the same time bin as each other
and as the component of the pump which created them, which
simplifies the calculation for each step. To propagate the state
of pairs created in previous steps, the half step of dispersion
is applied to the JSA, which is then converted to a JTA by
2D Fourier transform so that XPM can be applied, before it is
transformed back to a JSA for the next half step of dispersion.
The state of the new pairs is coherently added for each step.

In the previous sections, the purity was determined by
two parameters: the group velocities relative to the fiber
length and pulse duration, β1L/τ , and, when nonlinear phase
modulation was taken into account, the total probability of
pair generation R. Here, the group-velocity dispersions at
each wavelength introduce additional relevant parameters:
β2L/τ 2 for the pump, signal, and idler. If the fiber length
and pulse duration are increased in proportion, the effect of
group-velocity dispersion decreases.

We again consider dispersion parameters taken from the
birefringent microstructured fiber used in [25,26]. This fiber
makes use of the asymmetric scheme to avoid correlations,
with the pump pulse at 726 nm group velocity matched to
the idler at 864 nm. The signal, phase matched at 626 nm,
experiences walk-off with β1s = 1.14 × 10−11 m−1 s. The
pump, signal, and idler experience group-velocity dispersion
with β2p = 2.1 × 10−26 m−1 s2, β2s = 3.6 × 10−26 m−1 s2,
and β2i = −1.3 × 10−26 m−1 s2. The nonlinear parameters
were estimated from the nonlinear refractive index of silica,
approximately 2.7 × 10−20 m2/W, and the effective mode
area, 3 μm2. Figure 8 shows the JSA produced from a 50-cm
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(rad s-1)
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FIG. 8. (Color online) JSA from the numerical model including
dispersion for realistic fiber parameters with a length of 50 cm and a
pump bandwidth 2 nm. The dispersion causes some curvature of the
JSA, which may introduce correlation.
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FIG. 9. (Color online) Purity against generation rate R for dif-
ferent strengths of dispersion, with an initial pump bandwidth of
1 nm. R = 0 corresponds to the case with no non-linear phase
modulation. (a) L = 0.5 m and (b) L = 1 m. In each case, black
circles indicate no dispersion, blue squares show realistic dispersion,
and red triangles illustrate double-strength dispersion. Surprisingly,
at higher rates the dispersive case sometimes does better than the case
with no dispersion.

fiber with a 2-nm initial pump bandwidth, corresponding to
τ ≈ 230 fs, and with the generation probability R = 0.05.
The dispersion introduces some curvature to the JSA, so that
it will become correlated for large bandwidth pulses.

In Fig. 9, the purity is plotted against the generation
probability using the numerical model for different amounts of
dispersion: no dispersion, dispersion using the realistic param-
eters, and double-strength dispersion. Physically, doubling the
strength of the dispersion while keeping the other parameters
constant could be achieved by halving the length of the fiber,
halving the laser pulse duration, and adjusting the laser power
to keep R constant. In Fig. 9(a), β1sL/τ is approximately
12. It can be seen that for a very low generation rate, where
phase modulation is negligible, the dispersion causes only a
slight reduction in purity. The zero R intercept is close to
our previous modeling results which ignore nonlinear phase
modulation [15]. However, as R is increased, dispersion has a
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FIG. 10. (Color online) Purity against generation rate with
anomalous dispersion for an initial pump bandwidth of 2 nm. (a)
L = 0.5 m and (b) L = 1 m. In each case, black circles indicate
no dispersion, and blue squares show realistic dispersion. Here, a
very slight benefit can be seen at the low rate for the dispersive case
compared to the case without dispersion.

larger effect, suggesting that dispersion and phase modulation
are combining to create more of a reduction in purity than
either would alone. Surprisingly, for higher values of R, this
trend reverses, and the case with some dispersion actually does
better than the case with no dispersion. This can be seen more
prominently in Fig. 9(b), where the fiber length was doubled
to 1 m, so that β1sL/τ ≈ 24. It seems that for some choices of
parameters, the nonlinear phase modulation and the dispersion
begin to compensate one another, although here the effect is
too small to change the trends seen before, with the purity still
decreasing as the generation rate is increased and with a larger
value of β1sL/τ creating a better purity at a low rate but a
worse purity at high rates.

Finally, we consider a different set of fiber parameters,
corresponding to a birefringent microstructured fiber pumped
at 1064 nm, in its anomalous dispersion region, generating
phase-matched photons at 810 and 1550 nm [28]. The pump
is polarized on the fast axis of the fiber, while the signal and
idler are polarized on the slow axis, such that the signal is now

group velocity matched to the pump, while the idler walks off
with β1i = 1.2 × 10−11 m−1 s. The dispersion parameters are
β2p = −8.7 × 10−27 m−1 s2, β2s = 1.0 × 10−26 m−1 s2, and
β2i = −6.4 × 10−26 m−1 s2. Figure 10(a) shows the purity
plotted against generation rate for a 50-cm length of this
fiber with an initial pump bandwidth of 2 nm, resulting in
β1sL/τ ≈ 12, and Fig. 10(b) shows the case when the length
is increased to 1 m, so β1sL/τ ≈ 24. It can be seen that at low
R, the dispersion improves the purity slightly compared to the
case without dispersion but with phase modulation. However,
for larger generation rates the combination of dispersion and
phase modulation has a significant deleterious effect, as can
be seen clearly in Fig. 10(b).

VI. CONCLUSION

We have seen that for schemes seeking to minimize the
correlation between photon pairs generated by four-wave
mixing, the effects of self-phase modulation and cross-phase
modulation may be a limiting factor for the photons’ purity
which is not usually considered. For the asymmetric scheme,
where one of the generated photons is group velocity matched
to the pump pulse, it would otherwise be expected that, with
a long interaction length and a wide pump bandwidth, very
high purity could be achieved. However, when these additional
nonlinear effects are included, the purity is degraded as the
generation rate is increased, which may limit sources to low
rates when a particular purity or quantum interference visibility
is required. This can be seen both in an analytical model in
the time domain, where group-velocity dispersion is neglected,
and in a numerical model which includes both nonlinear effects
and dispersion.

The symmetric scheme to generate pure photons is also
considered, with the signal and idler group indices equally
spaced above and below the pump group index. Again,
the nonlinear effects significantly degrade the purity as the
generation rate is increased, although here the main source
of impurity is the correlation in the sinc ripples of the
phase-matching function. These ripples can be eliminated with
narrow filtering, but the purity only tends to unity as the
transmission through the filter becomes small. In future work
it would be interesting to consider the case with two pump
fields at different wavelengths, where the sinc ripples can, in
theory, be eliminated without filtering, but it seems likely that
nonlinear effects will also be detrimental there.

The numerical model demonstrates that the impurities from
nonlinear effects and from dispersion do not combine trivially,
sometimes leaving a lower purity than would be expected when
the effects are taken individually but in some regimes being
slightly higher. It is possible that for particular choices of pump
pulse power, duration, and shape, the effects of dispersion
and nonlinearity could be made to cancel in a soliton-like
manner and leave a high purity, although it is not expected that
having the pump pulse alone propagating as a soliton would
achieve this. It has also been shown that parametric gain can
tend to equalize or lock group velocities, potentially leading
to improved group-velocity matching in a dispersive medium
[29].

We conclude that the discrepancy between previous mod-
eling results and measured visibilities in heralded photon
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interference experiments [13,15] can be largely explained by
including nonlinear phase modulation. We also note that this
effect limits the fidelity of cluster states generated by fusing
entangled states [25,26] and thus could limit the scalability
of cluster-state quantum computation based on FWM. This
highlights a difference which has been overlooked between
photon pair sources based on FWM in χ (3) materials compared
to SPDC in χ (2) materials, where nonlinear phase modulation

is not present, and means that demonstrations of high purity
in the latter cannot be expected to translate directly to the
former.
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