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Theory of Maxwell’s fish eye with mutually interacting sources and drains
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Maxwell’s fish eye is predicted to image with a resolution not limited by the wavelength of light. However,
interactions between sources and drains may ruin the subwavelength imaging capabilities of this and similar
absolute optical instruments. Nevertheless, as we show in this paper, at resonance frequencies of the device, an
array of drains may resolve a single source, or alternatively, a single drain may scan an array of sources, no matter
how narrowly spaced they are. It seems that near-field information can be obtained from far-field distances.
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I. INTRODUCTION

Attempts to overcome or circumvent Abbe’s diffraction
limit of optical imaging [1,2], the limit of about half the
wavelength in optical resolution, have traditionally been
greeted with controversy [3]. Controversy arises partly because
neither imaging nor resolution is an unambiguously defined
term and partly because of the long history of ways around the
resolution limit [4]. Perfect lensing with negative refraction [5]
was no exception [6], and neither was perfect imaging [7,8]
with absolute optical instruments [2,9,10]. In the latter, the
controversy [11–28] focused on the role of detection: a perfect
image appears only when it is detected.

In this paper, we consider absolute optical instruments
[2,9,10] with positive refraction and investigate the role of
interacting sources and detectors in perfect imaging. Our paper
generalizes the simple, one-dimensional model [29] that has
already explained the data of the experiment [30] and draws
further conclusions: we establish limitations and prospects that
arise from interactions and resonances (Fig. 1). Those factors
are fundamentally decisive even before practical matters such
as losses in the device [31] and noise and uncertainty in the
data [32] are taken into account.

The crucial role of detection becomes clear in Feynman’s
argument [33–35] against the diffraction limit [1,2]: as
Maxwell’s electromagnetism is invariant upon time reversal,
the electromagnetic wave emitted from a point source may
be reversed and focused into a point with pointlike precision,
not limited by diffraction [1,2]. However, for this the entire
emission process must be reversed, including the source:
in place of the point source, a point drain must sit at the
focal position [34,35]. The time-reversed source, the drain, is
the detector taking the image of the source. Without getting
absorbed at the detector, the focused wave will rebound; the
superposition of the focusing and the expanding, rebounding
wave will produce a diffraction-limited spot [34,35].

Experiments with microwaves [36] have confirmed the role
of detection in perfect focusing. Here the emitted radiation was
actively time reversed, upon which it focused at the point of
emission where the time reversal of the source current localized
it with a precision much better than the diffraction limit [1,2].
Absolute optical instruments [2,9,10] may perform the time
reversal of the field with perfectly passive materials and may
send the reversed wave to a spatial position other than the

source. As in the case of the microwave experiments [36], a de-
tector is required to sharpen the image, but this detector may be
as passive as the device. Absolute optical instruments [2,9,10]
may thus perform passive perfect imaging [7].

Two sets [30,37] of microwave experiments appeared to
have confirmed the idea [7] of perfect imaging with absolute
optical instruments [2,9,10]. The first experiment [37] clearly
demonstrated the need and the effect of a detector at the focus
of the radiation emitted from a single source. In the second set
of experiments [30], the detector was movable. Close to the
resonance frequencies of the absolute optical instrument the
detector did only record the field when moved close to
the correct imaging position, much closer than the diffraction
limit [1,2]. The movable detector could scan the single source
from a far-field distance. In the first set of experiments [37],

FIG. 1. Scheme: absolute optical instrument with mutually in-
teracting sources and drains. Radiation enters and leaves the device
via cables that act as sources and drains. The instrument shown is
Maxwell’s fish eye [9] surrounded by a mirror [7] with radiation
at resonance. In the figure one source faces two drains. Only the
drain opposite the source couples the radiation out; the other does not
transmit. In this case the two drains resolve the position of the source.
The roles of sources and drains may be reversed: the figure may also
represent two sources scanned by one movable drain. Only when the
drain is at the image position of one of the sources does it transmit,
even if the sources were much closer than the wavelength. Note that
the imaging and scanning regimes work only near resonances.
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the radiation of two sources was also sent to an array of
detectors that appeared to have resolved them when they were
significantly closer than the wavelength. However, problems
with the validity of the published results were published in
Ref. [28].

Perfect imaging with absolute optical instruments [7,8]
seems therefore restricted by some qualifications: so far it has
worked only for a single-source, single-drain configuration
and near the resonance frequencies of the device. On the
other hand, Feynman’s argument appears to be universally
valid. What is the problem? In the experiments [30,37] the
sources and drains are interacting with each other. They are
cables coupling in and out microwave radiation to and from the
device (Fig. 1). They establish an equilibrium of radiation that
depends on their transmission and reflection coefficients. In
Feynman’s argument, however, the detector ceases to operate
when the field is detected, and the drain definitely does not act
on the source: the future does not act back to the past.

In this paper, we investigate what mutually interacting
detectors can do nevertheless. As we are going to show, an
array of detectors can image a point source with arbitrary
precision, and a single detector can scan an array of near-field
sources from a far-field distance with perfect fidelity. However,
for this the radiation has to be at resonance, and the number of
detectors or sources must not exceed the number of waves (in
a sense we will make precise).

Our analysis becomes possible thanks to a theoretical model
for mutually interacting sources and drains we develop in
this paper. Modeling such sources and drains analytically
has been a major challenge [18,27,38–40]; full numerical
simulations [24,25] have been difficult due to the large
difference in the scales involved (the field localization near the
sources and drains versus the wave propagation in the device).
Our analytic theory draws from a simple, one-dimensional
model [29] that has explained the experimental data [30].
Inspired by the Lagrangian of the electromagnetic field
interacting with a current [41], we construct a Lagrangian
that reproduces the one-dimensional model [29] and has the
advantage of being extendable to higher dimensions, in our
case two, where imaging takes place. Our Lagrangian theory
represents a device-independent, idealized model beyond
numerical simulations.

II. MODEL

A. Lagrangian

Consider the electromagnetic field in both the device and
the cables that act as the input and output channels (Fig. 1).
The field shall be polarized such that only one component A of
the vector potential is relevant. We describe the field dynamics
by the Lagrangian density

L = L0 +
∑
m

Lm, (1)

which consists of the Lagrangian density L0 of the field inside
the device,

L0 = 1
2 [n2(∂tA)2 − (∇A)2], (2)

FIG. 2. Stereographic projection. The plane of Maxwell’s fish eye
is the stereographic projection of the surface of the sphere (shown
in a cut). Experiments [37] in the z plane with the refractive index
profile of Eq. (4) are equivalent to experiments [30] on the sphere
with n = 1.

and the Lagrangian densities Lm of the field in the cables and
their interaction at their ports of entrance to the device:

Lm = 1
2 [(∂tA)2 − (∂mA)2] − gA(∂mA)δ(z − zm) . (3)

Here n denotes the refractive-index profile in the device. The
archetype of the absolute optical instrument [2] is Maxwell’s
fish eye [9,42] with the profile

n = 2

1 + |z|2 . (4)

We consider wave propagation in two-dimensional space de-
scribed by the complex coordinate z = x + iy on the Cartesian
(x,y) plane (Fig. 1). The wave propagation with refractive-
index profile (4) is equivalent [42] to the free wave propagation
on the unit sphere (X,Y,Z) = (sin θ cos φ, sin θ sin φ, cos θ ).
They are related to each other by stereographic projection
(Fig. 2):

z = X + iY

1 − Z
= eiφ cot

θ

2
. (5)

In the language of transformation optics [42] the unit sphere
represents the virtual space, and the plane with the profile of
Eq. (4) represents the physical space. We shall mentally switch
between the two pictures whenever one is more convenient
than the other. As the unit of length, we take the radius of the
device, and as the time unit, we use the round-trip time divided
by 2π .

In the model of the field in the cables, Eq. (3), we assume
that the same field A as in the inside of the device extends to
the cables. The cables are idealized to be one-dimensional; we
denote the propagation coordinate along the mth cable by sm

and the derivative with respect to sm by ∂m. The port of entrance
we put at sm = 0. For the interaction term gA(∂mA)δ(z − zm)
we have assumed that the flux of the field in the cable ∂mA

generates with coupling strength g a current j localized at the
port of entrance. The current interacts with the field according
to the standard electromagnetic coupling jA in the Lagrangian
density [41]. In short, we have assumed the cables act as point
antennas.
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B. Field equations

Having established the Lagrangian, we obtain the field
equations from the Euler-Lagrange equation [41]. We separate
them into the field equation inside the device and the equation
in the cables and get

(
n2∂2

t − ∇2
)
A = −g

∑
m

(∂mA)δ(z − zm) , (6)

(
∂2
t − ∂2

m

)
A = gA(zm) ∂mδ(sm) . (7)

For the field equation in the cables we have read δ(z − zm)
from the perspective of the cables, i.e., as δ(sm). We consider an
equilibrium of the radiation in the device and the cables, and so
we write A as a monochromatic field oscillating with circular
frequency k (that, thanks to our choice of units, agrees with
the free-space wave number). Furthermore, we decompose the
field into a stationary component � localized in the device and
the components χm localized in the cables:

A =
(

� +
∑
m

χm

)
e−ikt . (8)

We obtain from Eqs. (6) and (7) the stationary wave equations

(∇2 + n2k2)� = g
∑
m

(∂mχm)δ(z − zm) , (9)

(
∂2
m + k2

)
χm = −g�(zm) ∂mδ(sm) . (10)

From Eq. (10) it follows that χm jumps by −g�(zm) at sm = 0.
After the jump χm is zero because the χm components of the
field are required to be localized in the cables. Consequently,
the field at the end of each cable must be equal to g times the
field in the device:

χm(0) = g�(zm) . (11)

In the cables we have the oscillatory solutions

χm = ameiksm + a′
me−iksm . (12)

The coefficients am describe the incoming amplitudes; the
coefficients a′

m describe the outgoing amplitudes. For a drain
representing a detector the incoming amplitude am is zero
(Fig. 3).

C. One-dimensional model

Let us briefly compare our Lagrangian theory with the one-
dimensional model of sources and drains (and a device with
n = 1) developed earlier [29]. Consider one port at position
z = 0, and there the wave amplitudes a = am and a′ = a′

m in
the cable. In one dimension and for n = 1, we can write the
solution of the wave equation (9) as

� =
{
a′

+eikz + a−e−ikz, z > 0,

a+eikz + a′
−e−ikz, z < 0 .

(13)

The a± describe the waves incoming at the port from within
the device, and a′

± describe the corresponding outgoing
waves. We obtain from Eq. (9) that � is continuous at zm,
but ∂z� must jump by g ∂mχm at sm = 0. We obtain from

FIG. 3. Scattering problem. We regard the imaging in an absolute
optical instrument such as Maxwell’s fish eye as a scattering problem.
Radiation is fed in and out with amplitudes am and a′

m through the
ports of cables that represent channels (Fig. 1). Some of the ports
act as sources; the others act as detectors. For a detector port we
require that am = 0, while |a′

m|2 gives the detected signal. We use the
stereographic projection (Fig. 2) to represent the device (Fig. 1).

Eqs. (11)–(13)

a′
+ + a− = a+ + a′

− ,

a′
+ − a− − a+ + a′

− = g(a − a′) , (14)

a + a′ = g(a′
+ + a−) .

These relations constitute a system of three linear equations for
the outgoing amplitudes in terms of the ingoing ones. We verify
that its solution agrees with Eq. (7) of Ref. [29], which proves
that our Lagrangian theory reproduces the one-dimensional
model that has explained the experimental data [30].

D. Green’s function

Having confirmed the validity of our Lagrangian in the
case of one-dimensional propagation, we return to the case of
two-dimensional imaging. We obtain from Eqs. (11) and (12)

am + a′
m = g�(zm) . (15)

We assume that the field in the device is generated only through
the cables; there is no initial field remaining inside. Then we
can write the solution of Eq. (9) in terms of the Green’s function
G(z,z0) as

� = ikg
∑
m

G(z,zm) (am − a′
m) . (16)

For Maxwell’s fish eye and, equivalently, the surface of the
sphere, the Green’s function is given by the expression [22]

G = Pν(ζm)

4 sin νπ
(17)

in terms of the Legendre function Pν [43] with the index

ν = 1
2 (

√
4k2 + 1 − 1) . (18)

At resonances ν are integers; the resonances correspond to the
standing waves on the surface of the sphere. The ζm depend
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on the coordinate z and the position zm of the mth port [22]:

ζm = |z′|2 − 1

|z′|2 + 1
, z′ = z − zm

z∗
mz + 1

. (19)

If the fish eye is surrounded by a mirror (Fig. 1) at |z| = 1, the
stereographic projection of the equator of the sphere, we need
to use the Green’s function [7,22]

G′ = G(z,z0) − G(1/z∗,z0) . (20)

The mirror serves the purpose of making Maxwell’s fish
eye practically applicable, as it confines the refractive-index
profile of Eq. (4) within |z| � 1, where the refractive index
varies maximally by a factor of 2. Here we are primarily
interested in the fundamental capabilities and limitations of
perfect imaging with interacting sources and drains, and so
we consider only Maxwell’s original fish eye with the Green’s
function in Eq. (17), but our results are easily generalizable.

Note that near a port the Green’s function must diverge
logarithmically [7] because the port acts as a δ-function source
for a two-dimensional wave. For Maxwell’s fish eye we obtain,
for z ∼ zm, where ζm ∼ −1, the asymptotics

G ∼ 1

4π

[
ln

(
ζm + 1

2

)
+ 2γ + 2ψ(ν + 1) + π cot νπ

]
,

(21)

where γ denotes Euler’s constant and ψ is the digamma
function [43]. The logarithmic divergence is a consequence
of the dimensionality mismatch between the device and the
cables leading radiation to and from it: two-dimensional
radiation originates or disappears at the ports of entry of
one-dimensional cables. In practice, we would regularize the
divergence, requiring, for example, that the cables have a small
but finite diameter. However, in this paper we are mostly
concerned with the behavior of the system near a resonance
where ν tends to an integer. Here the cot νπ term in Eq. (21)
dominates over the logarithmic term if the latter is regularized.
We regard the logarithm as a good approximation for a constant
and use simply

G ∼ cot νπ

4
, z ∼ zm . (22)

Now we are perfectly prepared to tackle the problem of perfect
imaging in Maxwell’s fish eye with mutually interacting
sources and drains.

III. ANALYSIS

A. Scattering matrix

The amplitudes am describe the incoming waves at the ports,
and a′

m describe the outgoing waves (Fig. 3). We wish to relate
the vectors a and a′ of am and a′

m as

a′ = Sa, (23)

where S denotes the scattering matrix. We notice that Eqs. (15)
and (16) evaluated at z = zl establish a closed system of linear
equations for a′

m. The solution will be of the form of Eq. (23)
and therefore will give the scattering matrix. Equation (16)
at z = zl depends on the Green’s function, Eq. (17), at
ζml = ζm(zl) = ζlm. Note that ζml = −1 for l = m (the port

interacting with itself), where the Green’s function diverges
unless it is regularized. In this case we use the asymptotics of
Eq. (22) for the Green’s function.

It is convenient to express the linear system of Eqs. (15)
and (16) at z = zl in terms of the matrix

Wml =
{

cos νπ − iσ sin νπ, l = m,

Pν(ζml), l �= m,
(24)

with the parameter

σ = 4

g2k
. (25)

We see that the linear system appears as

W a′ = W ∗a , (26)

and hence

S = W−1W ∗ . (27)

As the scattering matrix is given by the ratio between W ∗ and
W , it crucially depends on the imaginary part of W . We see
from Eq. (24) that

W = V − iσ sin νπ 1 , V = W |σ=0, (28)

where V is a real matrix. At a resonance where ν ∈ N, the
imaginary part vanishes; S = 1 if det V �= 0, which means
the outgoing radiation is equal to the incoming radiation: the
device rejects all incident waves and reflects them. However,
in the case of imaging, det V turns out to vanish, and so the
limit ν → integer is subtle.

Near a resonance, the calculation of the scattering matrix
becomes numerically delicate. It is advisable to compute S

with the help of the eigenvalues and eigenvectors of V . We
see from Eqs. (19), (24), and (28) that V is a symmetric real
matrix. Hence V has real eigenvalues Vm and an orthogonal
system of eigenvectors. We express V as

V = RT diag(Vm)R (29)

in terms of the rotation matrix R of the normalized eigenvec-
tors. From Eq. (28) it follows that

W = RT diag(Wm)R, (30)

with the eigenvalues

Wm = Vm − iσ sin νπ. (31)

Since R is real, we obtain from Eq. (27) for the scattering
matrix

S = RT diag(W ∗
m/Wm)R , (32)

which is a numerically more stable expression than Eq. (27),
although it may still require high-precision arithmetic near a
resonance. We also see from Eq. (32) that S is unitary, as
expected: we are dealing with a passive device where the total
intensity is conserved, a′∗ · a′ = a∗ · a, which implies that S

is unitary, S−1 = S†. Furthermore, we see from Eq. (32) that
S−1 = S∗ and so obtain from unitarity S = ST : the scattering
matrix is symmetric.
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FIG. 4. Single source, single drain: the setup of the experi-
ment [30]. Radiation incident at the source S is scanned with a mobile
drain an angle δ away from N . (We turned the sphere of Fig. 2.)

B. Single source, single drain

Consider the case [24,30] when a single source is facing a
movable single detector (Fig. 4). Without loss of generality, we
put the source at the south pole of the sphere (θ1 = π ) and the
drain at an angle δ away from the north pole (θ2 = δ,φ2 = 0).
For simplicity, we consider only the wave propagation along
the circle φ = 0, where, according to Eqs. (5) and (19),

ζm = − cos(θ − θm). (33)

Requiring a1 = 1 (unit source) and a2 = 0 (drain), we
obtain from the solution of the linear system of Eq. (26) with
matrix W defined in Eq. (24)

a′
1 = Pν(cos δ)2 − cos2 νπ − σ 2 sin2 νπ

Pν(cos δ)2 − (cos νπ − iσ sin νπ )2
,

(34)
a′

2 = 2iσ sin νπ Pν(cos δ)

Pν(cos δ)2 − (cos νπ − iσ sin νπ )2
.

The intensity |a′
2|2 describes the transmission of the de-

vice through the detector port. We see that a′
2 vanishes at

a resonance where ν ∈ N unless δ = 0. The transmission
shows the Miñano dips [24,30] characteristic of absolute
optical instruments [29]: when the radiation is resonant, a
displacement of the detector, however small, will extinguish
the transmission; the incident radiation is completely reflected.
For δ = 0, on the other hand, a′

2 tends to (−1)ν at resonance:
for perfect alignment of source and drain all incident radiation
is transmitted. This on-off behavior may be useful in scanning
a single source with arbitrary precision from some distance
away.

Figure 5 shows the transmission versus wave index ν. The
figure agrees well with the transmission curve of the simple
one-dimensional model [29] and with the experiment [30],
apart from a tiny shift of the resonance frequencies that is
probably due to the finite sizes of the source and drain. The
Miñano dips are narrow features in the transmission curve; we
characterize their width by

1

2

∂2|a′
2|2

∂ν2

∣∣∣∣
ν∈N

=
(

2πσPν(cos δ)

Pν(cos δ)2 − 1

)2

, (35)

FIG. 5. Miñano dips with the setup of Fig. 4. Transmission T

of a single source through Maxwell’s fish eye to a single drain, i.e.,
|a′

2|2 of Eq. (34) plotted as a function of ν. Black curve: the drain is
misaligned by the angle δ = 0.1. Gray curve: δ = 0, the drain is at the
correct imaging position. In both cases we take σ = 4.0. The figure
shows not only the typical Fabry-Pérot resonances of the device but
also, for the misaligned drain, sharp drops at the resonances (ν ∈ N),
the Miñano dips.

which scales like δ−4 for small δ. Minute deviations of the
drain are thus detectable near resonance.

Consider the case of perfect alignment of source and drain,
δ = 0, for variable ν. We obtain from Eq. (34)

|a′
2|2 = 1

cos2 νπ + 〈T 〉−2 sin2 νπ
, 〈T 〉 = 2

σ + σ−1
. (36)

The device behaves like a typical Fabry-Pérot resonator with
average transmission∫ m+1

m

|a′
2|2dν = 〈T 〉 . (37)

At resonance, it transmits perfectly. Out of resonance, the
transmission is reduced due to coupling losses, unless σ = 1,
which we regard as the case of perfect coupling.

Finally, we calculate the field � for the case of perfect
alignment. We obtain from Eqs. (16), (17), (25), and (34) for
δ = 0 the field

� = i
√

k

π
τη eiνπ [Qν(ζ ) + ρ eiνπQν(−ζ )] (38)

in terms of the Legendre functions Qν (defined on the branch
cut [43]),

Qν(ζ ) = π

2

e−iνπPν(ζ ) − Pν(−ζ )

sin νπ
, (39)

and the coefficients

τ = 2
√

σ

σ + 1
,

ρ = σ − 1

σ + 1
, (40)

η = 1

1 − e2iνπρ2
.

Note that eiνπQν(ζ ) describes a running wave from the source
to the drain [7], the outgoing wave; Qν(−ζ ) corresponds to a

053848-5



ULF LEONHARDT AND SAHAR SAHEBDIVAN PHYSICAL REVIEW A 92, 053848 (2015)

wave running back from the drain to the source, the ingoing
wave. Note also that Qν is well behaved for ν → integer. We
interpret τ and ρ as the transmission and reflection coefficients
of the ports, with τ 2 + σ 2 = 1. The factor η sums up the
geometric series

η =
∞∑

m=0

e2imνπρ2m (41)

of all the reflections and phase factors during the round-
trips in the device. The field of Eq. (38) thus describes the
characteristic behavior of a wave injected with transmittance
τ that accumulates a phase shift of νπ from source to drain,
is reflected with reflectance ρ, gains the phase factor νπ

from drain to source, where it is reflected again, etc., until
it is recorded at the drain. In the case of perfect coupling
we obtain the sole running wave eiνπQν(ζ ) characteristic of
perfect imaging in the two-dimensional Maxwell’s fish eye [7].

C. Single source, multiple drains

In Sec. III B we investigated in detail a single source
observed with a single, movable detector in Maxwell’s fish
eye. Imagine now that the source faces an array of M detectors.
We put the source at port 1 and the drains at the remaining
ports. Consider the field � given by Eq. (16) with the Green’s
function of Eq. (17) close to a resonance (ν ∈ N), where we
might expect perfect imaging. The field must remain finite at
resonance, but Eq. (16) diverges when ν → integer, unless

M+1∑
m=1

Pν(ζm) (am − a′
m) = 0. (42)

Suppose that all the drains are misaligned and also that all
Pν(ζm) are linearly independent functions. It follows that

a′
1 = a1 , a′

m = am = 0 . (43)

The device rejects the radiation fed in at the source; none of
the detectors fires.

Suppose now one drain is aligned with the source, say port
2. In this case ζ2 = −ζ1 and Pν(−ζ ) = (−1)νPν(ζ ) for ν ∈ N.
We thus have

Pν(ζ1)[a1 − a′
1 − (−1)νa′

2] −
M+1∑
m=3

Pν(ζm) a′
m = 0 . (44)

We get

a′
m = 0, m > 2 ; (45)

none of the auxiliary detectors fire. The problem reduces itself
to the problem of a single drain aligned to a single source, our
previous case in Sec. III B. There we saw that

a′
1 = 0 , a′

2 = (−1)νa1 (46)

at resonance when ν ∈ N. The detector array thus perfectly
discriminates between the correct image position and the
incorrect ones, irrespective of the distance between the
detectors, i.e., not affected by the diffraction limit [1,2].

Figure 6 shows the simplest case: one source facing one
aligned and also one misaligned drain (similar to Fig. 1). We
see that the transmission of the misaligned drain exhibits the

FIG. 6. Miñano dips for multiple drains. Transmission T of a
single source to two drains (similar to Fig. 1), one at the correct
imaging position and the other misaligned by the angle δ on the virtual
sphere. We assume the case of perfect coupling, σ = 1. (top) the black
curve shows the transmission through the misaligned drain (δ = 0.1),
and the light gray curve shows the one through the aligned drain. The
figure exhibits sharp Miñano dips for subwavelength separation, less
sharp dips, and a growing gap between the two transmission curves
for νδ > 1/2. (bottom) Transmission curve of the misaligned drain
around a Miñano dip for δ = 0.1 (solid curve) and δ = 0.05 (dotted
curve). One sees how the dip narrows for smaller drain separations.

characteristic Miñano dips [29], while the transmittance of the
aligned drain becomes perfect at the resonances.

However, we must make one important qualification. We
need to assume that Pν(ζm) for all the detectors are linearly
independent. However, the function space of the stationary
waves on the unit sphere is (ν + 1)-dimensional for the
following reason: the space is as dimensional as the quantum-
mechanical state space of an angular momentum with quantum
number ν [44] restricted to real wave functions. We thus need
to require that the number of detectors does not exceed ν + 1,
the number of linearly independent waves at resonance.

D. Multiple sources

Which of the imaging properties of the single source will
remain valid for multiple sources? Consider first M sources
and one movable detector, the exact opposite of the situation
investigated in Sec. III C. The sources are assumed to be
coherent; incoherent sources are statistical ensembles of single
sources. We assign port 1 to the detector and the other ports
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FIG. 7. Multiple sources, array of drains. Two sources with
amplitudes a1 and a2 are facing an array of drains as in the
experiment [37]. At resonance, only the aligned drains transmit with
amplitudes a′

3 and a′
4. Radiation may also be reflected back to the

sources with amplitudes a′
1 and a′

2.

to the sources and assume resonance. We obtain from Eq. (42)
that none of the sources is able to inject radiation, a′

m = am,
unless the detector is aligned to one of them. In this case,
the corresponding source transmits all of its radiation to the
detector. At exact resonance this effect is not dependent of the
distances between the sources (if detuned from resonance, it
will be): the detector is thus able to scan near-field features
from a far-field distance, without the need of switching on the
sources selectively [3].

Imagine now several sources are observed with an array
of detectors (Fig. 7). Suppose, for example, two sources are
placed at an angle δ away on the virtual sphere and are
observed with a detector array, similar to the questionable
part of the microwave experiments [37]. There ν = 9.984,
which was probably too far away from the narrow Miñano dip
around a resonance. Consider exact resonance. According to
Sec. III C, the misaligned detectors will not fire, but will the two
aligned drains transmit perfectly? Without loss of generality,
we put the sources at θ1 = π,θ2 = π + δ, and so the aligned
drains at θ3 = 0,θ4 = δ and all ports at φm = 0. Figure 8
shows the result: the two sources are neither independently
nor perfectly transmitted unless they are farther away than
about half a wavelength. Detector arrays interacting with the
sources are thus not able to resolve multiple sources closer
than the diffraction limit [1,2].

E. Antipodal fields

We have analyzed the imaging in Maxwell’s fish eye as a
scattering problem: the fields incident at the source ports and
their absence at the drains give rise to the outgoing fields at
sources and drains. We have primarily focused on a regime near
resonance where we expected, and obtained, some properties
of perfect imaging but not all of them. Arrays of multiple
sources are not perfectly imaged in detector arrays. Yet how
do the fields behave?

Consider the field � given by Eq. (16) near resonance.
Assume an arbitrary number and arrangement of sources and
drains. Compare the fields at one position z with the field at
the position that corresponds to the antipodal point on the unit

FIG. 8. Two sources, two drains. Transmission T of two sources
separated by the angle δ to two aligned drains as a function of δ

for ν = 10. Only one of the sources is excited (a1 = 1,a2 = 0). The
black solid curves show the transmission |a′

3|2, the gray solid curves
show the reflected intensity |a′

1|2, and the black dotted curves show
|a′

2|2 = |a′
4|2, as indicated by the black, gray, and dotted lines in Fig. 7.

(top) Beyond the diffraction limit the two drains distinguish the two
sources; mostly, the correct one transmits. (bottom) For a critical
separation δ all three transmission curves for fixed σ and ν meet in
a single point that depends on σ and ν. For smaller separations the
transmission curves are mixed: the sources are not resolved.

sphere. The antipodes to (X,Y,Z) reside at −(X,Y,Z). We see
from the stereographic projection of Eq. (5) that the antipodal
point to z is −1/z∗. We get from Eq. (19) that ζm is replaced
by −ζm for the antipodal field. As Pν(−ζ ) = (−1)νPν(ζ ) for
ν ∈ N, we obtain from Eqs. (16) and (17)

�(−1/z∗) = (−1)ν�(z). (47)

The fields at z and −1/z∗ are thus identical copies of
each other, apart from the propagation factor (−1)ν . The
field is antipodally symmetric, without any symmetries in
the arrangement of the sources and drains (Fig. 1 gives an
example). The fields may exhibit subwavelength features, for
example, superoscillations [45] due to a suitable configuration
of sources and drains, and yet the fields are perfect copies of
each other. A negatively refractive lens [5] does the same [46]:
it copies the field [42]. Perfect imaging with positive refraction
thus mimics the imaging with negative refraction. Note,
however, that only the fields are copied, not the sources, and the
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copies are not recorded in the drains. So this feature, although
interesting, is probably of rather limited practical use.

IV. CONCLUSIONS

Feynman [33,34] objected to Abbe’s diffraction limit [1,2],
arguing that as Maxwell’s electromagnetism is time reversal
invariant, the radiation from a point source may very well
become focused in a point drain. Absolute optical instru-
ments [2] such as Maxwell’s fish eye [9] can perform the time
reversal and may image with perfect resolution [7]. However,
the sources and drains in previous experiments [30,37] were
interacting with each other, as if Feynman’s drain would act
back to the source in the past. Different ways of detection might
circumvent this feature. The mutual interaction of sources and
drains does ruin some of the promising features of perfect
imaging, for example, arrays of sources are not necessarily

resolved with arrays of detectors, but it also opens interesting
new prospects in scanning near fields from far-field distances.
In addition to potential practical applications, the fundamental
physics of perfect imaging with interacting sources and drains
illustrates how counterintuitive wave propagation can be.
Who would have thought that so much physics is hidden in
Maxwell’s innocent-looking fish eye?
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