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Anisotropic homogeneous metamaterials that are neither wholly dissipative nor wholly active at a specific
frequency are permitted by classical electromagnetic theory. Well-established homogenization formalisms
indicate that such a metamaterial may be realized quite simply as a random mixture of electrically small
(possibly nanoscale) spheroidal particles of at least two different isotropic dielectric materials, one of which
must be dissipative but the other active. The dielectric properties of this metamaterial are influenced by the
volume fraction, spatial distribution, particle shape and size, and the relative permittivities of the component
materials. Similar metamaterials with more complicated linear as well as nonlinear constitutive properties are
possible. Dynamic control of the active component material, for example, via stimulated Raman scattering,
affords dynamic control of the metamaterial.
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I. INTRODUCTION

Causality mandates that electromagnetic fields must at-
tenuate as they propagate inside homogeneous passive linear
materials [1]. Weak electromagnetic fields in certain spectral
regimes can be amplified in some homogeneous linear ma-
terials, provided that strong electromagnetic fields can pump
in the energy needed for amplification [2–5]. Conditions on
the constitutive parameters of homogeneous linear materials
have been derived to determine if a linear material is either
dissipative or active, but not both, at a specific frequency [6].

Active component materials feature prominently in the
field of metamaterials [7], in order to overcome losses [8]
and to enhance performance [9]. While anisotropic structures
containing active components have been reported upon previ-
ously [10–12], the prospect of simultaneous attenuation and
amplification of electromagnetic fields in homogeneous mate-
rials at a specific frequency, depending upon the orientation of
electric fields, has not been considered hitherto.

Materials exhibiting amplification and attenuation at the
same frequency are necessarily anisotropic. A host of appli-
cations for them can be envisaged. These materials could
be used in directional coupling devices [13] as well as
in spatially discriminatory and/or frequency-discriminatory
optical amplifiers [14]. Amplification could be dynamically
controlled by exploiting, for instance, the phenomenon of
stimulated Raman scattering [2,15], thereby affording dynamic
control. That is, if the active component material were Raman
active, then the degree of amplification achieved for a probe
laser beam at a desired frequency could be dynamically
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controlled by means of a strong pump laser beam at a
determined frequency which induces Raman transitions. The
difference between the probe and pump laser frequencies is
specified by the energy levels of the Raman-active material.
The ability to suppress radiation leakage in certain directions
while promoting propagation in other directions could be
harnessed to amplify surface-plasmon polaritons and reduce
optical noise in biosensing applications [16], for example.
Radomes for enhancing or reducing directionality of radiation
from optical antennas could be made of these materials, leading
to enhancements in the efficiency of photodetection, light
emission, and sensing [17].

Motivated by these potential applications, here we propose
dynamically controllable anisotropic materials which simulta-
neously exhibit both dissipation and amplification at a specific
frequency, depending upon the orientation of electric fields.

II. SIMULTANEOUS ATTENUATION
AND AMPLIFICATION

Consider a generally anisotropic, homogeneous, linear,
dielectric material characterized by the frequency-domain
constitutive relations

D(r,ω) = ε0 ε(ω) · E(r,ω)

B(r,ω) = μ0H(r,ω),

}
(1)

where ε(ω) is the relative permittivity dyadic [18,19] at angular
frequency ω, and ε0 and μ0 are, respectively, the permittivity
and permeability of free space. The time-averaged dissipated
power per unit volume is given by [19]

Q(r,ω) = − iωε0

4
E∗(r,ω) · [ε(ω) − ε̃(ω)] · E(r,ω), (2)
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where i = √−1; an exp(−iωt) dependence on time t is
implicit; the superscript ∗ denotes the complex conjugate; and
ε̃(ω) is the Hermitian conjugate of ε(ω).

At a specific angular frequency ω, the chosen material is
classified as [20] (1) dissipative if Q(r,ω) > 0, which requires
the dyadic i[ε(ω) − ε̃(ω)] to be negative definite, or (2) active
if Q(r,ω) < 0, which requires the dyadic i[ε(ω) − ε̃(ω)] to
be positive definite. All eigenvalues of a negative or positive
definite dyadic are negative or positive [21]. Henceforth, for
compact representation, the dependencies of Q and E on ω

and r will not be explicitly stated; similarly, the dependency
of ε (and its components) on ω will not be explicitly stated.

The foregoing classification fails to accommodate to the
prospect of i(ε − ε̃) being indefinite [21], i.e., when some
but not all eigenvalues of i(ε − ε̃) are positive, the remaining
eigenvalues being negative. For orthorhombic materials [22],
i(ε − ε̃) is indefinite provided that Im{ε} is indefinite, where
the operator Im{·} delivers the imaginary part.

The simplest material, at least from a mathematical per-
spective, for which Im{ε} is indefinite is a uniaxial dielectric
material the relative permittivity dyadic of which has the
form [19]

ε = ε⊥(I − ûû) + ε‖ûû, (3)

with Im{ε⊥} Im{ε‖} < 0. Herein I is the identity dyadic and
the unit vector û is parallel to the material’s optic axis. For this
material, it may be inferred from Eq. (2) that Q for E directed
along û has the opposite sign to Q for E directed perpendicular
to û, because

Q = ωε0

2
[Im{ε⊥}E∗ · (I − ûû) · E + Im{ε‖}E∗ · ûû · E]. (4)

Thus, there is dissipation associated with certain orientations
of the electric field but amplification with other orientations.

III. REALIZATION AS A HOMOGENIZED
COMPOSITE MATERIAL

Is it possible to realize a uniaxial dielectric material
for which Im{ε} is indefinite? We now demonstrate, using
well-established theoretical formalisms based on the homog-
enization of particulate composite materials, that materials
with indefinite Im{ε} may be conceptualized as homogenized
composite materials (HCMs). As these engineered materials
will simultaneously exhibit both amplification and dissipation
at the same frequency, they should more properly be called
metamaterials [23]. In the visible spectrum (380–770 THz),
the maximum linear dimensions of the component particles
are required to be less than ∼30 nm [24].

Consider a composite material that is a mixture of two
component materials labeled “a” and “b.” Dispersed randomly
as identically oriented, electrically small, conformal spheroids,
both component materials are isotropic dielectric materials
with relative permittivities εa and εb. The surface of a spheroid,
relative to its centroid, is prescribed by the position vector
r = ρ U · r̂s , where ρ > 0 is a linear measure of particle size,

the shape dyadic

U = 1√
U

(I − ûû) + U ûû (U > 0) (5)

contains the shape parameter U , and the unit vector r̂s

prescribes the surface of the concentric unit sphere. Oblate
spheroidal particles are characterized by U ∈ (0,1), prolate
spheroidal particles are characterized by U > 1, and spherical
particles are characterized by U = 1. The volume fraction of
component material “a” is fa , while that of component material
“b” is fb = 1 − fa . The spheroidal shape and the identical
alignment of the component particles endows the HCM with
uniaxial symmetry [18,19]; i.e., the relative permittivity dyadic
of the HCM has the form

ε
HCM

= ε⊥
HCM(I − û û) + ε

‖
HCMû û. (6)

Porous columnar-thin-film sections and nanoparticle arrays
can be fabricated to realize such HCMs [25,26].

IV. ESTIMATES OF CONSTITUTIVE PARAMETERS

Let us now present representative numerical estimates of
ε

HCM
, as yielded by the Bruggeman formalism [27], the

strong-permittivity-fluctuation theory (SPFT) [28,29], and
the Maxwell Garnett formalism [30,31]; these estimates are
identified by replacing the subscripts “HCM” by “Br,” “SPFT,”
and “MG,” respectively.

For the purpose of illustration, suppose that the component
material “a” is an active material with εa = 2 − 0.03i. This
value of εa lies comfortably within the range typically
employed for active components of metamaterials in the visible
regime. For example, a mixture of two commonly used am-
plification materials, namely, Rhodamine 800 and Rhodamine
6G, possesses a relative permittivity with imaginary part in the
range (−0.15,−0.02) and real part in the range (1.8,2.3) across
the frequency range 440–500 THz, depending upon the relative
concentrations and the external pumping rate [11]. Component
material “b” is taken to be a dissipative material specified by
εb = 3 + 0.05i, and the shape parameter U = 5. The real and
imaginary parts of the HCM’s relative-permittivity scalars ε⊥

Br

and ε
‖
Br, as estimated using the Bruggeman formalism [27], are

plotted against the volume fraction fa in Fig. 1. The real parts
of ε⊥

Br and ε
‖
Br decrease in an approximately linear manner from

three to two as fa increases from zero to one. Both Im{ε⊥
Br}

and Im{ε‖
Br} decrease uniformly from Im{εb} to Im{εa} as fa

increases from zero to one, but the decrease in Im{ε⊥
Br} is more

distinctly nonlinear than that in Im{ε‖
Br}. The data show the

following.
(i) For 0 < fa < 0.52, the HCM exhibits only dissipation,

regardless of the orientation of the electric field E.
(ii) For 0.63 < fa < 1, the HCM exhibits only amplifica-

tion, regardless of the orientation of E.
(iii) For 0.52 < fa < 0.63, the HCM exhibits simultane-

ously both dissipation and amplification, depending on the
orientation of E.
Parenthetically, the HCM represented in Fig. 1 is not an
“indefinite” material [18] since Re{ε

HCM
} is positive definite.

The shape of the component particles plays an impor-
tant role in the simultaneous exhibition of dissipation and
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FIG. 1. (Color online) Real and imaginary parts of ε⊥
Br (red, solid

curves) and ε
‖
Br (blue, dashed curves) plotted against the volume

fraction fa , when εa = 2 − 0.03i,εb = 3 + 0.05i, and U = 5. The
yellow rectangle indicates the fa range where Im{ε⊥

Br} < 0 but
Im{ε‖

Br} > 0.

amplification. In Fig. 2, the real and imaginary parts of ε⊥
Br and

ε
‖
Br are plotted against U , when fa = 0.535 and the relative

permittivities of the component materials are the same as
for Fig. 1. The component particles are oblate spheroids for
U < 1, prolate spheroids for U > 1, and spheres for U = 1.
Both the real and imaginary parts of ε⊥

Br decrease nonlinearly
as U increases whereas both the real and imaginary parts
of ε

‖
Br increase nonlinearly as U increases, with ε⊥

Br = ε
‖
Br at

U = 1. In the vicinity of U = 1, Im{ε⊥
Br} and Im{ε‖

Br} are both
positive. However, for U < 0.75, we find that Im{ε‖

Br} < 0
but Im{ε⊥

Br} > 0. Incidentally, the Bruggeman formalism for
a particulate composite material yields the same results in
the limit U → 0 as for a periodically laminated composite
material [32]. Also, for U > 2.4, we find that Im{ε‖

Br} > 0
but Im{ε⊥

Br} < 0. Thus, the HCM exhibits simultaneously both
dissipation and amplification provided that the component
spheroidal particles are either sufficiently flattened or suffi-
ciently elongated.

The effect of the relative permittivity of the active com-
ponent material on the simultaneous exhibition of dissipation
and amplification is taken up through Fig. 3. Therein, the
real and imaginary parts ε⊥

Br and ε
‖
Br, as well as the product

Im{ε⊥
Br}Im{ε‖

Br}, are plotted against the real and (negative)
imaginary parts of εa , the product being negative if and only if

FIG. 2. (Color online) Real and imaginary parts of ε⊥
Br (red, solid

curves) and ε
‖
Br (blue, dashed curves) plotted against the shape

parameter U , when εa = 2 − 0.03i,εb = 3 + 0.05i, and fa = 0.535.
The two yellow rectangles indicate the U ranges where the product
Im{ε⊥

Br}Im{ε‖
Br} < 0.

Im{ε⊥
Br} and Im{ε‖

Br} have opposite signs. For calculating these
results, we fixed εb = 3 + 0.05i,fa = 0.25, and U = 5. The
εa regime for which the HCM exhibits simultaneously both
amplification and attenuation is characterized by relatively
small values of Re{εa} and relatively large values of −Im{εa}.
Indeed, as −Im{εa} approaches zero, the HCM is either
exclusively dissipative or exclusively active, this state being
attained at larger values of −Im{εa} as Re{εa} approaches two.

Next let us turn to a more sophisticated homogenization
formalism: the SPFT [33]. Unlike the Bruggeman formalism,
the SPFT can accommodate a comprehensive description of
the distributional statistics of the component materials, via the
characteristic functions

��(r) =
{1, r ∈ V�

� ∈ {a,b}.
0, r 	∈ V�

(7)

Herein, the regions occupied by the component materials “a”
and “b” are identified by Va and Vb, respectively. The ensemble
average 〈��(r) 〉e equals the volume fraction f�,� ∈ {a,b}.
In the usual implementation of the bilocally approximated
SPFT [33], the distributional statistics of the component
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FIG. 3. (Color online) Real and imaginary parts ε⊥
Br and ε

‖
Br, as

well as the product Im{ε⊥
Br}Im{ε‖

Br}, plotted against the real and
(negative) imaginary parts of the relative permittivity εa , when
εb = 3 + 0.05i,fa = 0.25, and U = 5.

materials are characterized by the second moment

〈��(r)��(r′)〉e =
{

f�, |U−1 · (r − r′)| � L

f 2
� , |U−1 · (r − r′)| > L

(8)

for � ∈ {a,b}, with L as the correlation length.
The real and imaginary parts of the HCM’s relative-

permittivity scalars ε⊥
SPFT and ε

‖
SPFT, as estimated using

the bilocally approximated SPFT, are plotted against the
normalized correlation length k0L in Fig. 4, where k0 =
ω

√
ε0μ0. For these calculations, we set εa = 2 − 0.03i,εb =

3 + 0.05i,fa = 0.535, and U = 5; also, we used an extended
version of the SPFT [34] which explicitly accommodates the
particle-size parameter ρ. Results are presented in Fig. 4 for
ρ ∈ {0,0.5L,L}. In this figure, the real and imaginary parts of
both ε⊥

SPFT and ε
‖
SPFT increase uniformly as k0L increases, for all

values of ρ/L considered. Also, Im{ε‖
SPFT} > 0 for all values

of k0L and ρ/L. However, Im{ε⊥
SPFT} < 0 for low values of

k0L while Im{ε⊥
SPFT} > 0 for high values of k0L. Furthermore,

the transition from negative Im{ε⊥
SPFT} to positive Im{ε⊥

SPFT}
occurs at lower values of k0L when the size parameter
ρ is larger. Thus, the HCM exhibits simultaneously both
amplification and dissipation provided that both L and ρ are
sufficiently small.

Last, we present estimates of the HCM’s relative permittiv-
ity dyadic provided by the Maxwell Garnett formalism [27],
whose provenance is quite different from that of either the

FIG. 4. (Color online) Real and imaginary parts of ε⊥
SPFT (thick

curves) and ε
‖
SPFT (thin curves) plotted against the normalized

correlation length k0L, when εa = 2 − 0.03i,εb = 3 + 0.05i,fa =
0.535, and U = 5. The size parameter ρ = 0 (red, solid curves),
0.5L (blue, dashed curves), and L (green, broken dashed curves).

Bruggeman formalism or the SPFT. We consider that particles
of component material “a” are dispersed randomly in the
component material “b.” The Maxwell Garnett formalism is
restricted to dilute composite materials (fa � 0.3). The real
and imaginary parts ε⊥

MG and ε
‖
MG, as well as the product

Im{ε⊥
MG}Im{ε‖

MG}, are plotted against the real and (negative)
imaginary parts of εa in Fig. 5. The component materials
are as specified for Fig. 3, with one exception: the shape
parameter U applies only to component material “a” since
particle shape is irrelevant to the host material in the Maxwell
Garnett formalism. The extent of the εa regime for which
Im{ε⊥

MG}Im{ε‖
MG} < 0 in Fig. 5 is slightly smaller than of the

analogous εa regime in Fig. 3. But, other than this relatively
minor difference, the plots of Im{ε⊥

MG}Im{ε‖
MG} in Fig. 5 and

of Im{ε⊥
Br}Im{ε‖

Br} in Fig. 3 are very similar.
The estimates of ε

HCM
provided by the Bruggeman and

Maxwell Garnett formalisms—as represented in Figs. 1, 2, 3,
and 5—are in close agreement over the volume-fraction
range appropriate to the Maxwell Garnett formalism (i.e.,
0 < fa � 0.3). The estimates provided by the two formalisms
are identical in the limit fa → 0 and very small differences
emerge as fa increases. Indeed, the corresponding plots of the
real and imaginary parts of the components of ε

Br
and ε

MG
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FIG. 5. (Color online) Real and imaginary parts ε⊥
MG and ε

‖
MG, as

well as the product Im{ε⊥
MG}Im{ε‖

MG}, plotted against the real and
(negative) imaginary parts of the relative permittivity εa , when εb =
3 + 0.05i,fa = 0.25, and U = 5. Particles of component material “a”
are taken to be dispersed randomly in the component material “b,”
and the shape parameter U applies only to component material “a.”

in Figs. 3 and 5, respectively, are almost indistinguishable to
the naked eye. These estimates are also in close agreement
with the corresponding estimates provided by the bilocally
approximated SPFT, as represented in Fig. 4. The imaginary
parts of the components of ε

HCM
estimated by the SPFT

deviate slightly from their corresponding Bruggeman and
Maxwell Garnett counterparts, with the deviation increasing in
magnitude as the correlation length L and the size parameter
ρ increase. This deviation reflects the fact that the SPFT
formalism accommodates coherent scattering losses via L

and ρ [33], whereas the Bruggeman and Maxwell Garnett
formalisms do not.

Rigorous theoretical bases have been firmly established
for each of the three homogenization formalisms employed
here [27–31,33]. Techniques based on such homogenization
formalisms have the advantages over full-wave numerical
techniques, based on the finite-element method or the finite-
difference time-domain method [35–37], for example, that
they provide estimates of the constitutive parameters which
are independent of the shape and size of the bulk material

involved, and these estimates apply for all possible incident
fields with sources not located in the bulk material. However, it
is important to bear in mind that the predictions of constitutive
parameters provided by any homogenization formalism are
estimates. The ultimate checks on such estimates can only be
provided by careful experimental studies.

V. SIMULTANEOUS ATTENUATION
AND AMPLIFICATION EXEMPLIFIED

Power flow associated with electromagnetic propagation
is represented by the time-averaged Poynting vector P =
(1/2)Re{E × H∗}, with the operator Re{·} delivering the real
part. Since ∇ · P = −Q in a region devoid of externally
impressed sources [1,6], amplification and dissipation should
be discernible through plane-wave propagation.

Suppose that the direction of propagation is parallel to the
unit vector â. An ordinary plane wave will propagate in the

chosen HCM with wave number kor = k0

√
ε⊥

HCM, regardless of

the angle θ = cos−1 (â · û). An extraordinary plane wave will
propagate in the chosen HCM with wave number

kex = k0

√√√√ ε⊥
HCMε

‖
HCM

ε⊥
HCM sin2 θ + ε

‖
HCM cos2 θ

(9)

that does depend on θ .
Consider two examples.
(i) When fa = 0.6 in Fig. 1, ε⊥

Br = 2.353 − 0.006i and
ε

‖
Br = 2.398 + 0.002i, which yield kor = (1.534 − 0.002i)k0

with Re{kex} > 0 for all θ and Im{kex} > 0 for 60.5◦ < θ <

119.5◦. Hence, the ordinary plane wave is amplified for all
propagation directions while the extraordinary plane wave
is amplified for θ ∈ (0◦,60.5◦) ∪ (119.5◦,180◦) but attenuated
for θ ∈ (60.5◦,119.5◦).

(ii) When U = 0.25 in Fig. 2, ε⊥
Br = 2.456 + 0.006i and

ε
‖
Br = 2.383 − 0.006i, which yield kor = (1.567 + 0.002i)k0

with Re{kex} > 0 for all θ and Im{kex} < 0 for 44.1◦ <

θ < 135.9◦. Hence, the ordinary plane wave is attenuated
for all propagation directions while the extraordinary plane
wave is amplified for θ ∈ (44.1◦,135.9◦) but attenuated for
θ ∈ (0◦,44.1◦) ∪ (135.9◦,180◦).

VI. CLOSING REMARKS

In conclusion, according to the estimates afforded by
three different well-established homogenization formalisms,
an HCM that exhibits simultaneously attenuation and amplifi-
cation of electromagnetic fields at a specific frequency may be
realized quite simply as a random mixture of electrically small
spheroids of two different materials. Both component materials
are isotropic dielectric materials, one of which is dissipative
while the other is active. The realization of such an HCM
depends upon the volume fraction, spatial distribution, particle
shape and size, and the relative permittivities of the component
materials. Dynamic control of the active component mate-
rial, for example, via stimulated Raman scattering, affords
dynamical control of the HCM. Thus, a class of metamaterials
is proposed which are neither wholly dissipative nor wholly
active. Although we have illustrated the concept with uniaxial
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dielectric HCMs, particulate composite materials with more
complicated linear and/or nonlinear constitutive properties
and displaying both dissipation and amplification at the same
frequency can be designed [18]. Finally, even periodically
laminated composite materials [32] offer similar promise, but
particulate composite materials may be more readily fabricated
than their laminar counterparts.
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