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Polychromatic phase diagram for n-level atoms interacting with � modes of an electromagnetic field
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A system of Na atoms of n levels interacting dipolarly with � modes of an electromagnetic field is considered.
The energy surface of the system is constructed from the direct product of the coherent states of U(n) in the totally
symmetric representation for the matter times the � coherent states of the electromagnetic field. A variational
analysis shows that the collective region is divided into � zones, inside each of which only one mode of the
electromagnetic field contributes to the ground state. In consequence, the polychromatic phase diagram for the
ground state naturally divides itself into monochromatic regions. For the case of three-level atoms in the �

configuration in the presence of two modes, the variational calculation is compared with the exact quantum
solution showing that both are in agreement.
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I. INTRODUCTION

Research in the interaction between matter and electro-
magnetic radiation has proved very fruitful no less for its
interest in quantum information theory, a field emerging from
quantum optics, and information science. In order to study the
interaction between matter and radiation a simple but nontrivial
model, which considers Na identical atoms of two levels under
dipolar interaction with one mode of an electromagnetic field
was proposed by Dicke [1]. He was the first to mention the
cooperative nature of the spontaneous emission from a system
of identical atoms, where the atoms are located within a space
of linear dimensions small compared to the wavelength of the
radiation. He showed that the system, depending on its initial
state, can exhibit superradiance, or even suppression of the
radiation when it is prepared in an antisymmetric state.

The Tavis-Cummings model [2,3] is a simplification which
considers the rotating wave approximation (RWA), eliminating
the terms in the Hamiltonian that do not preserve the number
of excitations in the system. The particular case of a single
two-level atom with the RWA approximation is known as the
Jaynes-Cummings model [4] and has an analytical solution.
For the case without the RWA approximation, Hepp and Lieb
found in the early 1970s that the system suffers a transition
from a normal to a superradiant phase [5,6].

The behavior of correlated spontaneous emission of a single
photon from a uniformly excited cloud of atoms has been
investigated since the middle of the 1980s by Cummings
[7,8]. He considered the spontaneous emission of an excited
two-level atom in the presence of (Na − 1) atoms in their
ground state, in a cavity with m modes. It was shown that the
system oscillates between the ground state and the excited state
with an effective Rabi frequency � ∼ √

Na , and that there is
a suppression of radiation when N � m. The conversion of
quantum states between atomic and photonic representations
has been of recent interest, and requires a strong coupling
between matter and radiation. This can be achieved by several
experimental procedures: In a high finesse optical cavity, or by
means of the preparation of an entangled state of a many-body
sample coupled to a free space electromagnetic mode or to
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a radiation mode of a moderate finesse optical cavity. This
helps to have a fidelity near to unity in the conversion between
atomic and photonic states [9–12].

A series of manuscripts related to the preparation of an
Na-atom state in a crystal by the absorption of a photon have
been published [10,11]. They consider Na atoms driven by a
light pulse, and the transmitted radiation is monitored. Another
procedure is to use a correlated pair of photons by means
of parametric down-conversion, where one of the photons
is detected directly by a detector D1 while the other passes
through the atomic cloud and is detected by a detector D2.
When D1 clicks and D2 does not, one is sure that one of the
atoms of the cloud has absorbed the photon.

More recently the light propagation through a cold
atomic ensemble has been considered to construct Raman
or EIT-based quantum memories with possible applications
to quantum information protocols. For example, the control
of quantum pulses of light via dark-state polaritons can be
used to yield reversible quantum memories for light waves.
There are also contributions to investigate the process of
coherent Raman control of a signal pulse entering a dense
and disordered ensemble [13]. This is done using both a self-
consistent macroscopic Maxwell description, and an ab initio
microscopic quantum calculation of the scattering process.
The macroscopic approach considers the state of light as a
plane wave interacting coherently with a system of atomic
dipoles located in a mesoscopic volume, while the microscopic
one is described using the standard T-matrix formalism. Both
approaches, in the macroscopic limit, yield the same total cross
section for a single photon scattering in an ensemble of atoms,
for different densities [14,15].

Whereas n-level atoms are only an approximation to real
atoms, the design and construction of artificial quantum
structures allows one to refer to the so-called artificial atoms
[16–18] that possess a finite number of levels. Hence it
is interesting to consider n-level systems without loss of
generality.

A first generalization of the models involving two-level
atoms is the consideration of atoms of three or more
levels [19–21] which, as is well known, possess different
arrangements: the �, V , and � configurations for three-level
atoms, and for four-level atoms the configurations �, λ, y,
♦, N , . . . . Clearly, systems of three or more levels permit
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one to consider dipolar interactions with one, two or more
modes of an electromagnetic field. In fact, depending on
the atomic configuration, there is a maximum number of
different modes that may produce atomic transitions via the
dipolar interaction. For three-level atoms, the interaction with
one mode of the electromagnetic field has been extensively
studied [19,20,22–24]. More recently, treatments including the
diamagnetic term show that, in spite of the Thomas-Reiche-
Kuhn rule for multilevel atoms, there is a broad range of
physical interaction parameters for which it is possible to
have a superradiant transition [25]; and under a degenerate
parametric amplification process and with an external laser
driving field the system exhibits the effects of spontaneous
emission of atoms and cavity loss in the phase diagram
[26]. Two modes of the electromagnetic field have also been
considered in [19,27,28]. In particular, the phase diagram in
the � configuration was shown to be constituted by a normal
and two superradiant phases [29,30].

In this work we study the properties of the variational
ground state of Na atoms of n levels interacting dipolarly
with � modes of an electromagnetic field, where each mode
promotes transitions only between two given atomic levels and
where � is the maximum number of modes that are permitted
by the dipolar interaction. The variational ground state is
evaluated by considering as a test function the direct product
of Heisenberg-Weyl coherent states for the field and U(n)
coherent states for the matter. The variational energy surface is
evaluated as the expectation value of the Hamiltonian for this
test state. We find in general that critical points both at zero and
at infinity (for the matter variables) provide minimum values
of the energy, and that taking particular values of them (at zero
or at infinity) reduces the system to (n − 1) levels, which may
again be reduced to an (n − 2)-level system and so on; through
this iterative process in the end one has reduced systems of
the well-known Dicke model, which in the variational method
can be solved analytically. The method is exemplified for the
cases of three- and four-level atoms. General expressions of
the critical points that provide the minimum energy surface
are obtained as functions of the dipolar intensities, and from
them the corresponding normal and collective (superradiant)
regions are determined for the case of n-level atoms.

Recent experimental results indicate that the Dicke Hamil-
tonian in the strong coupling regime can be realized by
using Raman transitions between ground states in an artificial
atomic ensemble [31,32]. In [31] a BEC is placed inside
an optical cavity and driven by a standing-wave pump laser.
Atoms scatter pump light into the cavity mode, but a buildup
of the coherent cavity mode is suppressed as a result of
destructive interference of individual scatterers. Above a
critical pump power, however, the artificial atoms self-organize
into a checkerboard pattern maximizing cooperative scattering
into the cavity. The light scattering between the pump field
and the cavity mode induces two balanced Raman channels
between |px, pz〉 = |0, 0〉 (atomic zero-momentum state) and
|px, pz〉 = | ± hν, ± hν〉 (superposition of states with addi-
tional unit of photon momentum along x and z directions).
This system has been shown to be well approximated by a
Dicke Hamiltonian [32].

We show that the collective region is divided into � different
zones where in each zone only one mode of electromagnetic

field contributes to the ground state, i.e., the polychromatic
phase diagram is divided into monochromatic regions, and
crossing from one to the other represents a first-order phase
transition. These transitions manifest themselves as disconti-
nuities in the atomic populations. On the other hand, crossings
from the normal region to any of the collective monochromatic
region give place to first- or second-order phase transitions;
those of second order correspond to bifurcations, while those
of first order form Maxwell sets [33]. This analysis leads to
a universal relationship between the expectation value of the
number of photons in the mode �jk , 〈νjk〉, and the quadratic
fluctuations of the number of atoms in the level j , (�Ajj )2.
We propose this relation as an experimental criterion to detect
the transition between the normal and superradiant regimes.

This paper is organized as follows: Sec. II describes the
Hamiltonian for a system of Na atoms of n levels under
dipolar interaction with � modes of an electromagnetic field,
where only one mode promotes transitions between two given
atomic levels. In Sec. III, the variational ground state (test
function) is defined for the field and matter contributions. The
energy surface is calculated and the method (which involves
an iterative reduction of the system) to find the critical points
that minimize the energy is discussed. In Sec. IV the method
is exemplified as the case of three-level atoms interacting
dipolarly with two modes of an electromagnetic field is
considered for the three atomic configurations. The minimum
energy surface, the order of transitions, and the statistical
properties of the variational ground state are established. In
Sec. V the critical points of the energy surface for the case of
four-level atoms in dipolar interaction with � modes (� = 3,4)
are obtained by means of the iterative procedure. Section VI
generalizes the expressions to the case of n-level atoms
interacting dipolarly with � modes. Also, we discuss in general
the quantum phase diagram, the order of the transitions, the
expectation values of field and matter observables, and
the corresponding results when the RWA approximation is
considered. Finally in Sec. VII the numerical exact quantum
solution is given for three-level atoms in the � configuration
for Na = 1 and Na = 2 particles. In Sec. VIII we give some
concluding remarks.

II. MODEL

Our Hamiltonian is describing the following system: A
resonator formed by two mirrors with Na atoms at rest inside.
The strong coupling has been used, i.e., the coupling parameter
between the modes of the electromagnetic field in the cavity
and the atoms is very large compared with both the decay
rate of the modes of the cavity and the dipolar radiation rate
into other modes. We consider the long wave approximation,
i.e., the position of atoms inside the cavity is neglected, and
additionally that the cavity has a high quality factor. It has been
reported, for instance, that in Fabry-Perot cavities the position
dependence of the atoms is negligible, and that the geometry
of the cavity can be adjusted to favor one mode [34,35].

We assume that any given pair of atomic levels ωj and ωk

can be connected by at most one radiation mode denoted by
the photon annihilation ajk and creation a†

jk operators. The
Hamiltonian describing a system of Na atoms of n levels on
dipolar interaction with � modes of electromagnetic field is
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then written as [24]

H = HD + H int, (1)

with a diagonal contribution

HD =
n∑

j<k

�jk a†
jk ajk +

n∑
j=1

ωj Ajj . (2)

We have taken � = 1, and the collective atomic operators Akj

obey a U(n) algebra satisfying the commutation relations

[Alm,Akj ] = δmk Alj − δjl Akm, (3)

with the first-order Casimir operator determining the total
number of atoms Na given by

n∑
k=1

Akk = Na, (4)

which is conserved. We denote field frequencies by �jk and as-
sume that the atomic frequencies satisfy ω1 < ω2 < · · · < ωn.

The interaction H int between the atoms and radiation field
involves contributions of the form (Ajk + Akj )(ajk + a†

jk)
representing the fact that a transition between the levels j

and k is only promoted by the mode �jk . Thus we may write

H int = − 1√
Na

n∑
j<k

μjk(Ajk + Akj )(ajk + a†
jk), (5)

where μjk denote the dipolar intensities.
The maximum number of dipolar interaction strengths of

an n-level system is �max = n(n − 1)/2 − (n − 2); of course
the real number � of modes present in the system will be less
than or equal to �max and it depends on the considered atomic
configuration with its allowed dipolar transitions.

Note that the near-field cooperation of atomic dipoles is
not considered in our model. This is important in dense and
disordered cold atomic ensembles, as has been shown in
the context of light-storage protocols [14,15]. In these, the
scattering cross section is studied as a function of the atomic
density for V and � types of atomic ensembles, as well as the
potential of �-type atoms for quantum memory applications.

III. ENERGY SURFACE

In order to find the minimum energy surface, we propose
as a variational test function a coherent state containing
contributions of both field and matter.

The coherent field contribution is well known, since each
electromagnetic mode �jk is described by the Heisenberg-
Weyl state |αjk〉 obeying ajk |αjk〉 = αjk |αjk〉. The dimension
of vector �α = (αjk), j < k = 1, 2, . . . , n depends on the
number of allowed dipolar transitions in the given atomic
configuration. The total coherent electromagnetic field con-
tribution is then given by the direct product of these states, i.e.,

|�α〉 =
n⊗

j < k

|αjk〉. (6)

The form of the coherent matter contribution depends
in general on the representation of the atomic operators;

since we are considering identical particles one may use the
boson representation Ajk = b†j bk , where [bk,b

†
l ] = δkl with

δkl the Kronecker symbol. The coherent state for the matter
contribution that preserves the number Na of atoms is then
written as

| �γ 〉 = 1√
Na!

[�†]Na |0〉M, (7)

where the �† operator is defined as

�† = γ1 b†1 + γ2 b†2 + · · · + γn b†n
(|γ1|2 + |γ2|2 + · · · + |γn|2)1/2

, (8)

and where �γ = (γ1, γ2, . . . , γn). Here |0〉M represents the
vacuum state in the Fock basis. From the relationship

[bk,�
†] = γk(∑n

l=1 |γl|2
)1/2 , k = 1, 2, . . . , n,

one finds the identity [�,�†] = 1. It is worth noticing that this
identity shows that � and �† obey a bosonic algebra, hence
the coherent state defined in Eq. (7) is normalized. One may
obtain immediately,

[bk,[�
†]Na ] = Na γk(∑n

l=1 |γl|2
)1/2 [�†]Na−1. (9)

Without loss of generality, one may diminish the number
of variables by choosing γ1 = 1. In fact, this assumption is
strictly equivalent to eliminating a global phase in the matter
coherent state (7) and renormalizing the other values of γk .

In order to find the expectation value of the Hamiltonian,
the matrix elements of the matter operators are required. These
read

〈 �γ |Ajk| �γ 〉 = Na γ ∗
j γk

1 + ∑n
l=2 |γl|2 , (10)

where we have used explicitly in the denominator the fact that
|γ1|2 = 1.

Finally, the test state that possesses the contribution of
matter and field is written as

|�α, �γ 〉 = |�α〉 ⊗ | �γ 〉. (11)

Using this as a variational state one finds the energy surface

E = 〈�α, �γ |H|�α, �γ 〉

=
n∑

j<k

�jk R2
jk + Na

n∑
j=1

ωj


2
j

1 + R2
0

− 4
√

Na

n∑
j<k

μjk Rjk


j 
k cos(θjk) cos(φk − φj )

1 + R2
0

, (12)

where we have written αjk = Rjk ei θjk and γk = 
k ei φk for
j, k = 1, 2, . . . , n, with 
1 = 1 and φ1 = 0. Additionally, we
have defined R2

0 = ∑n
j=2 
2

j .
An estimation of the ground-state energy is obtained by

minimizing the expression (12). Differentiating with respect
to the phases θjk and φk one finds critical points at

θc
jk = 0, π, φc

k − φc
j = 0, π, (13)
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and by simple inspection the condition for a minimum reads

μjk cos
(
θc
jk

)
cos

(
φc

k − φc
j

)
> 0.

Assuming μjk > 0 the minimum is obtained at θc
jk = φc

k −
φc

j = 0, π , and replacing it into Eq. (12) the minimum energy
surface is reduced to

E =
n∑

j<k

�jk R2
jk + Na

n∑
j=1

ωj


2
j

1 + R2
0

− 4
√

Na

n∑
j<k

μjk Rjk


j 
k

1 + R2
0

. (14)

Differentiating the energy surface with respect to the
variables Rjk (related to the expectation value of the photon
number in the jk mode) one finds critical points at

Rc
jk = 2 μjk

√
Na

�jk


c
j 
c

k

1 + Rc 2
0

≡
√

Na rc
jk, (15)

where 
c
k stands for the critical value of 
k (vide infra). Also,

since the energy surface is an extensive quantity it makes
sense to normalize it with respect to the number of particles
E = E/Na . Additionally, without loss of generality we choose
ω1 = 0, and hence the energy surface per particle may be
written as

E =
n∑

j<k

�jk rc 2
jk +

n∑
j=2

ωj


2
j

1 + R2
0

−4
n∑

j<k

μjk rc
jk


j 
k

1 + R2
0

. (16)

Finally, the critical points for the variables 
k are obtained
by solving the system of coupled equations

∂E

∂
j

∣∣∣∣
{
c}

= 
j

1 + R2
0

(
ωj −

∑
j ′

ωj ′ 
2
j ′

1 + R2
0

− 4
n∑

k=j+1

μ2
jk


2
k

�jk

(
1 + R2

0

) − 4
j−1∑
k=1

μ2
kj


2
k

�kj

(
1 + R2

0

)

+ 8
n∑

j ′<k′

μ2
j ′k′


2
j ′


2
k′

�j ′k′
(
1 + R2

0

)2

)∣∣∣∣
{
c}

= 0, (17)

for j = 2, 3, . . . , n, where {
c} = {
c
2, . . . , 
c

n} represents
the set of critical points. At these points the energy surface
becomes, using (15),

E =
n∑

j=2

ωj


c 2
j

1 + Rc 2
0

− 4
n∑

1�j<k

μ2
jk

�jk

(

c

j 
c
k

1 + Rc 2
0

)2

. (18)

Notice that for any value of the dipolar strengths, 
c
j = 0

and 
c
j = ∞ are critical points. In particular, when 
c

j = 0
for all j the energy surface takes the value E = 0. On the
other hand, when a particular 
c

s = 0 for s = 2, 3, . . . , n, all
the dipolar coupling interactions terms related to this level are
zero. Thus it is straightforward that the atomic part reduces
effectively to an (n − 1)-level system, whose critical points
must be analyzed. Hence, in this reduction scheme, a given
atomic configuration will usually lead to a different two-level

reduced set; one then selects the reduced set with minimal
energy in order to study the variational ground state of the
original system

If, for instance, we consider the limit 
2 → ∞, it is
straightforward that the energy surface takes the value

lim

2→∞ E = ω2, (19)

which is greater than zero. The interaction terms, which give a
negative contribution to the energy surface, are different from
zero (in this limit) if and only if we assume that the critical
points satisfy


c
j → ηj 
c

2, 
c
2 → ∞, (20)

for j = 2,3, . . . ,n. From the expression of the energy surface
one gets

E∞ =
n∑

j=2

ωj

η 2
j

1 + ∑n
k=3 η2

k

− 4
n∑

2�j<k

μ2
jk

�jk

(
ηj ηk

1 + ∑n
�=3 η2

�

)2

,

(21)

where η2 ≡ 1 and we have used the relations,

rc
ij → 2

μij

�ij

ηi ηj

1 + ∑n
k=3 η2

k

,


c
i 
c

j

1 + ∑n
k=2 
c

k
2 → ηi ηj

1 + ∑n
k=3 η2

k

. (22)

Comparing (21) with (18) it is clear that we have obtained
an equivalent system with (n − 1) levels, where the atomic
variables 
j are replaced by the new variables ηj which upon
finding their critical values lead to an equivalent algebraic
system of (n − 2) levels and so on until we reach a two-level
system as described above, with one radiation mode whose
properties, including the complete structure of the phase
diagram, have been studied extensively [36–39].

The complete solution of (17) in general requires numerical
techniques. However, by using the physical considerations
mentioned above, one may find the minimum energy surface
and hence the variational ground state. This new methodology
will be exemplified by considering systems of three- and
four-level atoms in the next sections and the results generalized
for n-level atoms.

IV. THREE-LEVEL ATOMS

Taking n = 3 in the expression for the variational energy
surface (18), one has

E = 1

1 + R2
0

(
ω2 
c 2

2 + ω3 
c 2
3

) − 4(
1 + R2

0

)2

μ2
23 
c 2

2 
c 2
3

�23

− 4(
1 + R2

0

)2

μ2
12 
c 2

2

�12
− 4(

1 + R2
0

)2

μ2
13 
c 2

3

�13
, (23)

where without loss of generality we have taken ω1 = 0. In
Fig. 1 the three different atomic configurations are shown;
also the value μjk = 0 that defines each configuration is given.
From the analysis of the previous section (
c

2,

c
3) = (0,0) is

a critical point which yields an energy surface equal to zero,
EN = 0, which defines the normal phase.
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Ξ

ω1

ω2

ω3

Ω12

Ω23

μ12

μ23

V

ω1

ω2

ω3

Ω13
Ω12μ13
μ12

Λ

ω1

ω2

ω3

Ω13

Ω23

μ13

μ23

FIG. 1. (Color online) Configurations of a three-level atom in-
teracting with two modes of an electromagnetic field. For the �

configuration μ13 = 0, for the � configuration μ12 = 0, and for the
V configuration μ23 = 0. The mode of the electromagnetic field �jk

for each transition is indicated.

By considering 
c
3 = 0 and 
c

2 �= 0, the energy surface takes
the form,

E = 1

1 + 
c 2
2

ω2 
c 2
2 − 4(

1 + 
c 2
2

)2

μ2
12 
c 2

2

�12
, (24)

whose critical points and corresponding minimum can be
obtained exactly as


c
2 =

√
4μ2

12 − �12 ω2

4μ2
12 + �12 ω2

, E12 = −
( − 4 μ2

12 + �12 ω2
)2

16μ2
12 �12

,

(25)
where the solution exists only for values of the dipolar
strength 4 μ2

12 � �12 ω2. The equality in this last expression
establishes the border between the normal and a superradiant
monochromatic region with photonic mode �12.

By considering 
c
2 = 0 and 
c

3 �= 0, the energy surface takes
the form,

E = 1

1 + 
c 2
3

ω3 
c 2
3 − 4(

1 + 
c 2
3

)2

μ2
13 
c 2

3

�13
. (26)

Its critical point has the same expression as in the previous
case by replacing ω2 → ω3, μ12 → μ13, and �12 → �13, that
is,


c
3 =

√
4μ2

13 − �13 ω3

4μ2
13 + �13 ω3

, E13 = −
(−4 μ2

13 + �13 ω3
)2

16μ2
13 �13

.

(27)

This solution exists only for values of the dipolar strength
4 μ2

13 � �13 ω3, where the equality fixes the border between
the normal and the superradiant monochromatic region with
photonic mode �13.

By making the replacement 
c
3 → η3 
c

2 in the expression
for the energy surface, and taking the limit 
c

2 → ∞, one gets

E∞ = 1

1 + η2
3

(
ω2 + ω3 η2

3

) − 4(
1 + η2

3

)2

μ2
23 η2

3

�23
, (28)

where we identify the energy surface of a two-level system
with levels given by ω2 and ω3. The variable of this energy
surface is η3. The critical points are η3 = 0, yielding an energy
value E = ω2, and

ηc
3 =

√
4μ2

23 − (ω3 − ω2)�23

4μ2
23 + (ω3 − ω2)�23

, (29)

with corresponding energy given by

E23 = ω2 −
(
4 μ2

23 − (ω3 − ω2) �23
)2

16 �23 μ2
23

. (30)

The expressions coincide with the critical energy surface
of a two-level system when the energy of the lower level
(ω2) is different from zero. The latter critical point and its
corresponding energy are valid in the parameter region where
the inequality 4μ2

23 � (ω3 − ω2)�23 is satisfied. Again, the
well-known expression for the quantum phase transition from
the normal to the superradiant regions for a two-level system
is obtained [36,37].

The phase diagram for the three-level system is established
by considering first the equalities

EN = E12, EN = E13, EN = E23,

dividing the parameter space into regions, by

4 μ2
12 = �12 ω2, 4 μ2

13 = �13 ω3,

4 μ2
23 = �23(

√
ω3 + √

ω2)2.

The first and second equations define bifurcation sets, where
two different critical points coalesce to (
c

2,

c
3) = (0,0), while

the third equation defines a Maxwell set, because the critical
points are different but they have the same value of the energy.

We have further divisions of the parameter space, given by

E12 = E13, E12 = E23, E13 = E23,

The first equality gives

μ2
12 = �12

2 �13 μ2
13

(
μ2

13 − �13 ω3

4

)2

×
(

1 + μ2
13 �13 ω2

2 (μ2
13 − �13 ω3

4 )2
±

√
1 + μ2

13 �13 ω2

(μ2
13 − �13 ω3

4 )2

)
,

which must obey the constraints associated with the parameters
μ12 and μ13 to define a critical point. The second equality
results in

μ2
23 = �23

2 �12 μ2
12

(
μ2

12 + �12 ω2

4

)2

×
(

1 + μ2
12 �12 (ω3 − ω2)

2
(
μ2

12 + �12 ω2
4

)2 ±
√√√√1 + μ2

12 �12 (ω3 − ω2)(
μ2

12 + �12 ω2
4

)2

)
,
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TABLE I. Expectation values and dispersions for the number of photons and atomic populations per particle for the variational ground
state in three-level systems, in the different regions of the phase diagram. We have defined φjk ≡ φk − φj , and the condition for a minimum is
φjk = 0, π . In the text we have taken ω1 = 0 without loss of generality.

N S12 S23 S13

〈ν12〉 0
μ2

12

�2
12

(
1 − (ω2 − ω1)2 �2

12

16 μ4
12

)
0 0

〈ν23〉 0 0
μ2

23

�2
23

(
1 − (ω3 − ω2)2 �2

23

16 μ4
23

)
0

〈ν13〉 0 0 0
μ2

13

�2
13

(
1 − (ω3 − ω1)2 �2

13

16 μ4
13

)

〈A11〉 1
1

2

(
1 + (ω2 − ω1) �12

4 μ2
12

)
0

1

2

(
1 + (ω3 − ω1) �13

4 μ2
13

)

〈A22〉 0
1

2

(
1 − (ω2 − ω1) �12

4 μ2
12

)
1

2

(
1 + (ω3 − ω2) �23

4 μ2
23

)
0

〈A33〉 0 0
1

2

(
1 − (ω3 − ω2) �23

4 μ2
23

)
1

2

(
1 − (ω3 − ω1) �13

4 μ2
13

)

〈A12〉 0
1

2

(
1 − (ω2 − ω1)2 �2

12

16 μ4
12

)1/2

ei φ12 0 0

〈A13〉 0 0 0
1

2

(
1 − (ω3 − ω1)2 �2

13

16 μ4
13

)1/2

ei φ13

〈A23〉 0 0
1

2

(
1 − (ω3 − ω2)2 �2

23

16 μ4
23

)1/2

ei φ23 0

(�A11)2 0
1

4

(
1 − (ω2 − ω1)2 �2

12

16 μ4
12

)
0

1

4

(
1 − (ω3 − ω1)2 �2

13

16 μ4
13

)

(�A22)2 0
1

4

(
1 − (ω2 − ω1)2 �2

12

16 μ4
12

)
1

4

(
1 − (ω3 − ω2)2�2

23

16 μ4
23

)
0

(�A33)2 0 0
1

4

(
1 − (ω3 − ω2)2�2

23

16 μ4
23

)
1

4

(
1 − (ω3 − ω1)2�2

13

16 μ4
13

)

and since we must have μ2
23 � (ω3 − ω2)�23/4, only the

solution with the plus sign is in the collective regime. For
the third equality one has the first result given above by
making the replacements μ12 → μ13, �12 → �13, ω2 → ω3,
and ω3 → ω2.

The curves above determine the region boundaries where
a quantum phase transition between two superradiant regions
takes place. They correspond to transitions between the pairs
of photonic modes: (�12,�13), (�12,�23), and (�13,�23)
respectively. Due to the nature of the critical points, they are
all Maxwell sets.

The expectation values for the matter and field observables
with respect to the variational states may be obtained at the
critical points. In Table I we show them for the different
regions in parameter space. We have labeled by Sij the
superradiant region where the mode �ij dominates. In all
cases these quantities are proportional to the number of
particles, and we choose to show them per particle.

By means of the critical points one can give explicitly
the corresponding variational ground states for the different
regions in parameter space:

|�N〉 = 1√
Na!

b†1
Na |0〉M ⊗ |0〉F , (31)

|�1k〉 = 1√
Na!

⎛
⎝ b†1 + 
c

kb†k√
1 + 
c

k
2

⎞
⎠

Na

|0〉M

⊗ exp
( − Na rc 2

1k /2
)

exp
(√

Na rc
1k a†

1k

) |0〉F , (32)

|�23〉 = 1√
Na!

⎛
⎝ b†2 + ηc

3b†3√
1 + ηc

3
2

⎞
⎠

Na

|0〉M

⊗ exp
( − Na r̃c 2

23 /2
)

exp
(√

Na r̃c
23 a†

23

) |0〉F , (33)

where in the second equation k = 2, 3, and the expressions
for rc

23, 
c
2, 
c

3, and ηc
3 are given by equations (15), (25), (27),

and (29), respectively. The value r̃ c
23 is obtained in the limit


c
2 → ∞ in the expression for rc

23 assuming 
c
3 = η3 
c

2, and
yields

r̃ c
23 = lim


c
2→∞

rc
23 = 2 μ23 ηc

3(
1 + ηc

3
2)�23

. (34)

From these general results for three-level systems we can
easily obtain the phase diagrams for the different atomic
configurations. For the �-atomic configuration (μ13 = 0) one
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FIG. 2. (Color online) Energies and phase diagrams for atoms in
the �, V , and � configurations. The separatrices (white lines) and the
order of the transitions are shown. The normal regions are labeled by
N (black). The collective regime is divided into the regions: (a) S12

and S23 corresponding to the active modes �12 and �23, respectively,
shown here for �12 = 1, �23 = 0.5, ω2 = 1, and ω3 = 1.3; (b) S12

and S13 corresponding to the active modes �12 and �13, respectively,
with �13 = 1, �12 = 0.8, ω2 = 0.8, and ω3 = 1; and (c) S13 and S23

corresponding to the active modes �13 and �23, respectively, with
�13 = 1, �23 = 0.8, ω2 = 0.2, and ω3 = 1.

has the critical energy surfaces EN,E12, E23, from which the
phase diagram can be obtained and is displayed in Fig. 2(a).
For the V configuration (μ23 = 0) we have critical energy
surfaces EN,E12, E13, and the corresponding phase diagram
is plotted in Fig. 2(b).

Finally, for the � configuration (μ12 = 0) the minimum
energy surfaces are EN,E13, E23, and the quantum phase
diagram is shown in Fig. 2(c).

In general we may write

E�min = min{EN, E12, E23},
EV min = min{EN, E12, E13}, (35)

E�min = min{EN, E13, E23},
where EN exists for all values of μij , E12 is independent of
μ13 and μ23, and so on. Other critical values for 
2 and 
3

exist; however, in all cases they provide higher energy values.
Notice that since the solutions for E12, E13, and E23 only have
emission or absorption of photons associated with the modes
�12, �13, and �23, respectively, the polychromatic phase
diagram for the variational ground state is naturally divided
into monochromatic subregions, labeled by Sij in Fig. 2.

In Fig. 2(a), the minimum energy surface as a function
of the dipolar intensities μ12, μ23 is presented. The normal
region EN = 0 is shown in black, while the collective regions,
with values E�min < 0, appear in a color graded scale.
The separatrix (white lines) is defined by the set of points
(μ12,μ23) where EN = E12 and EN = E23, indicating the
borders between the normal and collective regions, together
with the points where E12 = E23 dividing the collective
regimen into monochromatic regions, corresponding to the
two electromagnetic modes.

According to the Ehrenfest classification [33], a phase
transition is of order j , if j is the lowest non-negative integer
for which

lim
ε→0

∂jEc

∂μj

∣∣∣∣
μ=μ0+ε

�= lim
ε→0

∂jEc

∂μj

∣∣∣∣
μ=μ0−ε

,

where μ represents a dipolar intensity parameter. In our case
the ground state undergoes a second-order phase transition
when the dipolar intensities go from region N to region S12

and vice versa, but first-order phase transitions occur when
crossing from region N to region S23 and from region S12 to
region S23.

As an example of the behavior of the expectation values
given in Table I, Fig. 3(a) shows 〈ν12〉 = 〈a†

12a12〉 and
〈Akk〉 (k = 1, 2) as functions of μ12 for μ23 = 0; Fig. 3(b)
shows 〈ν23〉 = 〈a†

23a23〉 and 〈Akk〉 (k = 1, 2, 3) as functions
of μ23 for μ12 = 0; and Fig. 3(c) shows 〈νjk〉 = 〈a†

jkajk〉
and 〈Akk〉 (j < k = 1, 2) as functions of ζ , where we have
parametrized the dipole interactions in the form μ12 = μ cos ζ ,
μ23 = μ sin ζ , μ = 1, and 0 � ζ � π/2, for a trajectory
going through regions S12 and S23. The breakpoints and
discontinuities inherited from E�min and its derivatives at the
loci of a phase transition are evident. For first-order transitions
the expectation values exhibit a discontinuity. We have taken
�12 = 1, �23 = 0.5, ω2 = 1, ω3 = 1.3. The same results are
obtained for all values of μ12 that satisfy 4 μ2

12 − ω2 �1 < 0,
or values of μ23 satisfying 4 μ2

23 − (ω3 − ω2) �23 < 0 [see
Fig. 2(a)].

Figures 2(b) and 2(c) show maps of the minimum energy
surface for atoms in the V and � configurations. The normal
region is shown in black, and the collective region in a color
graded scale. For the V case we have second-order transitions
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FIG. 3. (Color online) Behavior of the expectation values of the
photon and atomic level populations, as functions of the interaction
parameters. See text for details.

when the system goes from N to S12 and from N to S13, and
first-order transitions when it goes from S12 to S13. A similar
analysis of the physical quantities (number of photons and
atomic populations) to that of Fig. 3 will show that they all
vary continuously as functions of μ12 with 4 μ2

13 − ω3 �13 < 0
and as functions of μ13 with 4 μ2

12 − ω2 �12 < 0, because of
the second order of the transition, while they exhibit disconti-
nuities when the system goes from region S12 to S13 as this is
a first-order transition. For the � case, we have ω2 > ω1; the
phase diagram for atoms in this � configuration resembles the
case of the � configuration [compare Figs. 2(a) and 2(c)].
The expectation values of physical quantities vary continu-
ously when the system goes from N to S13, where a second-
order transition occurs, and they present discontinuities when
the systems goes from N to S23 and from S13 to S23, where the
system undergoes a first-order phase transition.

All the results for three-level atoms show that the polychro-
matic minimum energy surface divides itself into monochro-
matic regions where only one mode of electromagnetic field
contributes to the variational ground state. Also, as first-order
transitions are related to discontinuities in at least one physical
quantity, these critical points along the separatrix form a
Maxwell set, i.e., the corresponding critical points in the
transition 
c = 0 and 
c → ∞ provide the same minimum

energy value, whereas the critical points where second-order
transitions occur correspond to bifurcations.

V. FOUR-LEVEL ATOMS

Taking n = 4 in the expression of the variational energy
surface (18) one has

E = 1

1 + R2
0

(
ω2 
c 2

2 + ω3 
c 2
3 + ω4


c 2
4

)

− 4(
1 + R2

0

)2

μ2
23 
c 2

2 
c 2
3

�23
− 4(

1 + R2
0

)2

μ2
12 
c 2

2

�12

− 4(
1 + R2

0

)2

μ2
13 
c 2

3

�13
− 4(

1 + R2
0

)2

μ2
14 
c 2

4

�14

− 4(
1 + R2

0

)2

μ2
24 
c 2

2 
c 2
4

�24

− 4(
1 + R2

0

)2

μ2
34 
c 2

3 
c 2
4

�34
. (36)

Again, (
c
2,


c
3,


c
4) = (0,0,0) is a critical point which yields an

energy surface Ec
N = 0.

By considering 
c
4 = 0 and 
c

k �= 0 with k = 2,3, the energy
surface takes the form of a three-level system,

E = 1

1 + R2
0

(
ω2 
c 2

2 + ω3 
c 2
3

) − 4(
1 + R2

0

)2

μ2
23 
c 2

2 
c 2
3

�23

− 4(
1 + R2

0

)2

μ2
12 
c 2

2

�12
− 4(

1 + R2
0

)2

μ2
13 
c 2

3

�13
. (37)

By further taking 
c
4 = 0 and 
c

3 = 0 we have


c
2 =

√
4μ2

12 − �12 ω2

4μ2
12 + �12 ω2

, E12 = −
(−4 μ2

12 + �12 ω2
)2

16μ2
12 �12

,

(38)
while for 
c

4 = 0 and 
c
2 = 0 one gets


c
3 =

√
4μ2

13 − �13 ω3

4μ2
13 + �13 ω3

, E13 = −
(−4 μ2

13 + �13 ω3
)2

16μ2
13 �13

,

(39)
where the previous expressions exist only for values of the
dipolar strength 4 μ2

1k � �1k ωk , with k = 2,3.
In the limit when the variables go to infinity, one has 
c

4 = 0,

c

2 → ∞, 
c
3 = η3 
c

2, and the critical point given by

ηc
3 =

√
4μ2

23 − (ω3 − ω2)�23

4μ2
23 + (ω3 − ω2)�23

, (40)

from which the energy surface takes the expression,

E23 = ω2 −
(
4 μ2

23 − (ω3 − ω2) �23
)2

16 �23 μ2
23

, (41)

which is valid in the parameter region where the inequality
4μ2

23 � (ω3 − ω2)�23 is satisfied. The expression coincides
with the critical energy surface of a two-level system. Once
again, the well-known expression for the quantum phase
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FIG. 4. (Color online) Under the condition 〈A44〉 = 0 for the
ground state, a system of four-level atoms in the � configuration
is reduced to three-level atoms in the � configuration.

transition from the normal to the superradiant regions for a
two-level system is obtained.

Four-level systems have many configurations named by
the atomic physics community by �, λ, y, N,♦, . . . , and
the number of modes yielding transitions between pairs of
atomic levels depend on the considered configuration. For
four-level atoms in the � configuration, to take 
c

4 = 0 is
equivalent to decouple the fourth level from the system and
the population of this level therefore vanishes. Thus the system
is reduced to three-level atoms in the same configuration as
shown schematically in Fig. 4. The λ and ♦ configurations,
under the same condition, are reduced to the three-level atomic
configurations � and V , respectively, as shown in Fig. 5. On
the other hand, under the condition 
c

2 = 0 (to be considered
below) the λ and ♦ configurations are reduced to three-level
atomic � configurations as shown in the same figure.

By considering the case 
c
3 = 0 and 
c

k �= 0 with k = 2, 4,
the corresponding energy surface takes the form of a three-
level system by making the replacement of the label 3 → 4 in
Eq. (37),

ω3 → ω4 , �13 → �14 , �23 → �24,


c
3 → 
c

4 , μ13 → μ14 , μ23 → μ24. (42)

For the case 
c
3 = 0 and 
c

4 = 0 one finds the result already
considered above. Then if we take 
c

3 = 0 and 
c
2 = 0, the

critical points and energy surface are given by


c
4 =

√
4μ2

14 − �14 ω4

4μ2
14 + �14 ω4

, (43)

and

E14 = −
(−4 μ2

14 + �14 ω4
)2

16μ2
14 �14

, (44)

for values satisfying 4 μ2
14 − �14 ω4 � 0.

In the limit 
c
2 → ∞ and 
c

4 = η4 
c
2, one gets

ηc
4 =

√
4μ2

24 − (ω4 − ω2)�24

4μ2
24 + (ω4 − ω2)�24

, (45)
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FIG. 5. (Color online) Schematic procedure to obtain, by a sim-
ple consideration (〈Akk〉 = 0), a three-level system from a four-level
system. The λ configuration is reduced to the � or � configuration
and the ♦ configuration is reduced to the � or V configuration. In both
cases the simple condition on the ground state is given by 〈A22〉 = 0
and 〈A44〉 = 0, respectively.

and the energy surface is

E24 = ω2 −
(
4 μ2

24 − (ω4 − ω2) �24
)2

16 �24 μ2
24

, (46)

with 4 μ2
24 − (ω4 − ω2)�24 � 0.

Finally, for 
c
2 = 0 and 
c

k �= 0 with k = 3,4, the corre-
sponding energy surface takes the form of a three-level system
with the replacements of the labels 2 → 3 and 3 → 4. Then
if we consider 
c

4 = 0, or 
c
3 = 0, we have the results already

discussed above, i.e., E13 and E14.
In the limit when the variables go to infinity, one has 
c

2 = 0,

c

3 → ∞, 
c
4 = η̄4 
c

3, and thus the critical points are given by

η̄c
4 =

√
4μ2

34 − (ω4 − ω3)�34

4μ2
34 + (ω4 − ω3)�34

, (47)
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with

E34 = ω3 −
(
4 μ2

34 − (ω4 − ω3) �34
)2

16 �34 μ2
34

, (48)

when 4 μ2
34 − (ω4 − ω3)�34 � 0 is fulfilled.

The phase diagram for a four-level system is established by
considering the equality of the different energy surfaces, that
is, from

Ec
N = Ec

12, Ec
N = Ec

13, Ec
N = Ec

23,

Ec
12 = Ec

13, Ec
12 = Ec

23, Ec
13 = Ec

23, (49)

giving the expressions obtained already in the three-level case.
Therefore we will have a separatrix formed with bifurcation
and Maxwell sets.

The remaining conditions are associated with the new
critical energy surfaces by establishing the equalities,

Ec
N = Ec

14, Ec
N = Ec

24, Ec
N = Ec

34,

Ec
12 = Ec

14, Ec
12 = Ec

24, Ec
12 = Ec

34,

Ec
13 = Ec

14, Ec
13 = Ec

24, Ec
13 = Ec

34,

Ec
23 = Ec

14, Ec
23 = Ec

24, Ec
23 = Ec

34,

Ec
14 = Ec

24, Ec
14 = Ec

34, Ec
24 = Ec

34.

The previous results determine the total number of borders
associated with four-level atoms; however, some of them are
not allowed by the selection rules of the dipolar interaction.
To see this, we consider the � configuration where one has
μ13 = μ14 = μ24 = 0. Then the quantum phase diagram is
divided into six regions separating the normal and collective
regimes,

Ec
N = Ec

12, Ec
N = Ec

23, Ec
N = Ec

34,

Ec
12 = Ec

23, Ec
12 = Ec

34, Ec
23 = Ec

34, (50)

whose explicit expressions and existence condition were
established previously.

The minimum energy surface for this configuration of four
levels is given by

E�min = min{EN, E12, E23 ,E34}, (51)

where, again, one must take into account the regions in
parameter space where they are valid. In Fig. 6 the separatrix
of this system is shown. Clearly the energy surface is divided
into a normal region and three collective regions, where in
each of the latter only a monochromatic electromagnetic
field contributes to the ground state. One finds second-order
transitions when the system goes from region N (normal
region) to region S12, while for other crossings the transitions
are of first order.

VI. n-LEVEL ATOMS

We may generalize the above results to n-level atoms in
dipolar interaction with � modes of an electromagnetic field.

We have found three types of minimum energy surfaces:
(1) EN = 0, corresponding to critical points 
c

s = 0 for
s = 2, 3, . . . , n.

 0.5
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FIG. 6. (Color online) Phase diagram as a function of the dipolar
intensities for atoms of four levels in the � configuration. Parameters
are �12 = 1, �23 = 0.7, �34 = 0.3, ω1 = 0, ω2 = 1, ω3 = 1.7, and
ω4 = 2.

(2) E1k , when �1k promotes the transition ω1 � ωk with

c

s = 0 for all s �= k, given by

E1k = −
(
ωk �1k − 4 μ2

1k

)2

16 �1k μ2
1k

, (52)

when the condition 4 μ2
1k − ωk �1k � 0 is fulfilled, with the

remaining critical point 
c
k being


c
k =

√
4 μ2

1k − ωk �1k

4 μ2
1k + ωk �1k

. (53)

(3) Ejk , when �jk promotes the transition ωj � ωk , with

c

k = ηc 
c
j in the limit 
c

j → ∞, given by

Ejk = ωj −
(
(ωk − ωj ) �jk − 4 μ2

jk

)2

16 �jk μ2
jk

, (54)

when the condition 4 μ2
jk − (ωk − ωj ) �jk � 0 is fulfilled,

with the remaining critical point ηc
k being

ηc
k =

√√√√4 μ2
jk − (ωk − ωj ) �jk

4 μ2
jk + (ωk − ωj ) �jk

. (55)

From the above, the minimum energy that of the variational
ground state is given by

Emin = min{EN, {E1k}, {Ejk}}, (56)

for j < k = 2, 3, . . . , n.

A. Separatrix and order of transitions

The separatrix divides the minimum energy surface into
regions where the properties of the ground state change
significantly. An example of this is the boundary between
the normal region, where the ground state is given by the
vacuum state for the field and all atoms in their lowest level,
and the collective region where the ground state possesses
contributions from states with a nonzero number of photons
and/or excited atomic states.

For values of the dipolar intensities satisfying

4 μ2
1k � ωk �1k, 4 μ2

jk � (
√

ωj + √
ωk)2 �jk, (57)
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the minimum energy value is Emin = EN = 0. The separatrix
that divides the normal and collective regions is given by the
points where the equality in equations (57) is attained. The
separatrices in the collective region are given by the sets of
equalities Ejk = Ej ′k′ , for the modes �jk �= �j ′k′ :

4 μ2
jk − �jk

8 μ2
j ′k′ �j ′k′

(
ζj + ζk

2
± √

ζj ζk

)
= 0, (58)

where

ζi = 16 μ4
j ′k′ + (ωk′ − ωj ′ )2�2

j ′k′

+ 8 μ2
j ′k′ �j ′k′(2 ωi − ωk′ − ωj ′), (59)

with i = j, k, and the appropriate sign is taken to lie in the
collective regime.

From the expressions for the minimum energy value in the
different regions, and following the Ehrenfest classification
[33], one finds the order of transitions at each separatrix as

Transition Order

EN � E1k Second
EN � Ejk First
Ejk � Ej ′k′ First

We stress that the critical points where a second-order
transition occurs form bifurcations, i.e., where the points
coalesce at the origin in the 
 space and hence all physical
quantities (expectation value of the number of photons, atomic
populations, etc.) change in a continuous manner. The critical
points where a first-order transition occurs form a Maxwell
set, i.e., there are two different critical points with the same
energy value. In this case at least one physical quantity has a
discontinuity.

B. Expectation values

The expectation values of matter and field observables
for the variational ground state, such as number of photons
and atomic population, may be calculated analytically. Those
for the product of matter and field observables reduce to the
product of the expectation values of each one, i.e.,

〈OM ⊗ OF 〉 = 〈OM〉 〈OF 〉. (60)

For this reason, in this variational approximation, there are no
correlations between matter and field operators. In a similar
manner as with the minimum energy surface, it is necessary
to consider the normal and the different collective regions. In
the normal regime one finds that the variational ground state
is given by

|ψN 〉 = b†Na

1√
Na!

|0〉M ⊗ |0〉F , (61)

where |0〉M and |0〉F denote the vacuum state in the Fock
basis for matter and field, respectively. Clearly, we have a zero
expectation value for the number of photons, and the atomic
populations for this state are the corresponding ones for the
lowest atomic level, i.e., 〈A11〉 = 1 (per particle). On the other
hand, in the collective region, if the minimum energy surface

is given by Ejk for fixed values of j and k with j < k =
2, . . . , n, the variational ground state takes the form

|�1k〉 = 1√
Na!

⎛
⎝ b†1 + 
c

k b†k√
1 + 
c

k
2

⎞
⎠

Na

|0〉M

⊗ exp
( − Na rc 2

1k /2
)

exp
(√

Na rc
1k a†

1k

) |0〉F , (62)

when j = 1, with

rc
1k = 2 μ1k 
c

k(
1 + 
c

k
2)�1k

, (63)

and

|�jk〉 = 1√
Na!

⎛
⎝ b†j + ηc

k b†k√
1 + ηc

k
2

⎞
⎠

Na

|0〉M

⊗ exp
( − Na r̃c 2

jk /2
)

exp
(√

Na r̃c
jk a†

jk

) |0〉F , (64)

when j > 1 and with

r̃ c
jk = lim


c
j →∞

rc
jk

∣∣∣∣

c

k=ηc
k 
j

= 2 μjk ηc
k(

1 + ηc
k

2)�jk

. (65)

The indices jk indicate that we only have photons of mode
�jk and that only the atomic levels j and k are populated,
with zero contribution from the rest. Table II shows the
different expectation values and fluctuations for the normal
and collective regions Sjk . One should note that the photon
distribution is a Poisson distribution, i.e., one has (�νjk)2 =
〈νjk〉, while the matter contribution is described by a binomial
distribution

P (x) =
(

Na

x

)
pNa−x qx, (66)

TABLE II. Expectation values and dispersions of the number of
photons and atomic populations per particle for the variational ground
state in n-level systems, in the normal N and collective regions Sjk of
the phase diagram. We have defined φjk ≡ φk − φj , and the condition
to have a minimum is φjk = 0, π . In the text we have taken ω1 = 0
without loss of generality.

N Sjk

〈νjk〉 0
μ2

jk

�2
jk

(
1 − (ωk − ωj )2 �2

jk

16 μ4
jk

)

〈Ajj 〉 δj 1
1

2

(
1 + (ωk − ωj ) �jk

4 μ2
jk

)

〈Akk〉 0
1

2

(
1 − (ωk − ωj ) �jk

4 μ2
jk

)

〈Ajk〉 0
1

2

(
1 − (ωk − ωj )2 �2

jk

16 μ4
jk

)1/2

ei φjk

(�Ajj )2 0
1

4

(
1 − (ωk − ωj )2�2

jk

16 μ4
jk

)

(�Akk)2 0
1

4

(
1 − (ωk − ωj )2�2

jk

16 μ4
jk

)
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where p stands for the atomic population per particle of the
j th level and q for the corresponding one of the kth level, i.e.,
from Table II one has

p = 1

2

(
1 + (ωk−ωj ) �jk

4 μ2
jk

)
, q = 1

2

(
1 − (ωk−ωj ) �jk

4 μ2
jk

)
,

and hence the corresponding atomic populations are related to
them by 〈Ajj 〉 = Na p, and 〈Akk〉 = Na q.

C. Symmetries in the RWA

When the RWA approximation is considered the terms
that do not preserve the total number of excitations in the
Hamiltonian are neglected, i.e., the Hamiltonian is written as

HRWA = HD − 1√
Na

n∑
j<k

μjk(a†
jk Ajk + ajk Akj ), (67)

where HD is given by Eq. (2). Using the same test state
discussed previously, one finds the corresponding variational
energy surface in the RWA approximation to be

ERWA =
n∑

j<k

�jk R2
jk + Na

n∑
j=1

ωj


2
j

1 + ∑n
k=2 
2

k

− 2
√

Na

n∑
j<k

μjk Rjk


j 
k cos(φk − φj − θjk)

1 + ∑n
k=2 
2

k

.

Comparing with Eq. (12) one sees that the effect of
considering this approximation modifies the dipolar intensities
by a factor of 1/2; we may therefore find the solutions to
the problem in this approximation by replacing μjk → μjk/2
in all expressions for the critical points of the complete
Hamiltonian. Concerning the phases, the critical points are
given by the relationship φc

k − φc
j − θc

jk = 0, π with the
condition for being a minimum μjk cos(φc

k − φc
j − θc

jk) > 0.
On the other hand, one may prove that the Hamiltonian

(67) possesses n linearly independent constants of motion
K j (including the total number of particles Na), by using
the relationships,

a g(ν) = g(ν + 1) a, (68)

a† g(ν) = g(ν − 1) a†, (69)

Ajk g(Ajj ,Akk) = g(Ajj − 1,Akk + 1) Ajk, (70)

Ajk g(Ajj ,Akk) = g(Ajj + 1,Akk − 1) Akj , (71)

for field ν = a† a and matter Ajk = b†j bk operators, and where
g(·) stands for an arbitrary analytical function. These constants
of motion are given in general by

K j = Ajj +
∑
k<j

νkj −
∑
j<k

νjk. (72)

Clearly the first-order Casimir operator in terms of these
constants is given by

Na =
n∑

j=1

K j . (73)

TABLE III. Three-level atomic configurations. Shown are the
different values of λk which correspond to the number of excitations
that are required to excite a single atom from its lowest level to kth
level.

Configuration λ2 λ3

� 1 2

V 1 1

� 0 1

Also, the total number of excitations is written as

M =
n∑

�=2

λ� K � =
n∑

j<k

νjk +
n∑

k=2

λk Akk, (74)

where the integer values of λk , which depend on the particular
atomic configuration, stand for the number of excitations that
are required to excite one atom from its lowest atomic level
to the kth atomic level. As an example of this Table III shows
the values of λk for the case of three-level atoms in their three
atomic configurations.

It is interesting to note that for each constant of motion
of the Hamiltonian in the RWA approximation (67) one has
a corresponding symmetry operator for the full Hamiltonian
(1). This is given by

�j = exp(i π K j ). (75)

The constants of motion in the RWA approximation will
lead to a better variational test function as was shown for
two-level atoms [37,40]. This is done by truncating the power
series expansion of the coherent states. For the generalized
Dicke case the parity symmetry operators will be useful to
define the symmetry-adapted variational states, which provide
a better approximation to the exact quantum ground state.

VII. COMPARISON WITH THE QUANTUM
GROUND STATE

In order to compare the above variational solution with the
exact quantum one, we consider three-level atoms in the �

configuration. Using the Fock basis,

|ν12, ν23, n1, n2, n3〉, (76)

for the two modes and the three atomic levels one may
diagonalize numerically the Hamiltonian in order to find the
ground state. However, one may use the fact that this system
possesses three different symmetries �j = exp(i π K j ) (75)
for j = 1, 2, 3 with

K 1 = A11 − ν12, K 2 = A22 + ν12 − ν23,

K 3 = A33 + ν23. (77)

Also, both the total number of excitations M� and the number
of atoms Na may be written as a linear combination of them
as M� = K 2 + 2 K 3 and Na = K 1 + K 2 + K 3. Using these
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and K 3 one may rewrite the Fock basis as

|M − Na − K3 + n1,K3 − n3, n1, Na − n1 − n3, n3〉, (78)

where M and K3 are the eigenvalues of M� and K 3, respec-
tively. In fact, using the corresponding symmetry operator for
the total number of excitations �M = exp(i π M�) and the �3

operator one finds that the Hamiltonian (1) is divided into four
blocks which preserve the parity of the M� and K 3 operators,
i.e., the Hilbert space is divided into four ortogonal subspaces:

{|ψee〉}, {|ψeo〉}, {|ψoe〉}, {|ψoo〉}, (79)

where the subindexes e = even and o = odd denote the parity
of M� and K 3, respectively. Using these subbases the Hamilto-
nian may be diagonalized numerically and hence the minimum
energy value Eee, Eeo, Eoe, Eoo for each subspace may be
found. Thus, the exact quantum ground energy is given by

Emin = min{Eee, Eeo, Eoe, Eoo}. (80)

Figure 7 shows the quantum ground energy per particle (80)
(color graded scale) in comparison with the corresponding
variational ground energy (mesh surface). One observes in
both cases Na = 1 Fig. 7(a) and Na = 2 Fig. 7(b) that the
variational ground energy surface is a very good approximation
to the exact quantum calculation.

On the other hand, it is of interest to investigate the
polychromatic behavior of the phase diagram. For this, we
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FIG. 7. (Color online) The quantum ground energy surface Emin

(color graded scale) in comparison with the corresponding variational
ground energy (mesh surface) as a function of the control parameters
for a number of particles (a) Na = 1 and (b) Na = 2.

(a)

δ  
ν

 0  0.2  0.4  0.6  0.8  1  1.2
μ12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

μ 2
3

-1.0

-0.5

0.0

0.5

1.0

> 0.99
> 0.9

< -0.9

< -0.99

(b)

δ  
ν

 0  0.2  0.4  0.6  0.8  1  1.2
μ12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

μ 2
3

-1.0

-0.5

0.0

0.5

1.0

> 0.99
> 0.9

< -0.9

< -0.99

FIG. 8. (Color online) The rate of the difference to the sum of the
expectation value of the number of photons, δν, of the exact ground
state for (a) Na = 1 and (b) Na = 2.

consider the ratio of the difference to the sum of the expectation
values of the number of photons, defined by

δ ν := 〈ν23 − ν12〉
〈ν23 + ν12〉 , (81)

which takes values −1 � δ ν � 1 except when the state
satisfies 〈ν23 + ν12〉 = 0, which is satisfied only in the normal
region with μ12 = 0 (black region in Fig. 7). Clearly, when
δ ν ≈ −1 the ground state is dominated by the mode �12, in
contrast with values δ ν ≈ 1 where the state is dominated by
the mode �23.

Figure 8 shows the ratio of the difference to the sum of
the expectation values of the number of photons, δ ν, for the
corresponding ground states of Fig. 7. The classical separatrix
is shown in white lines. One may note that this quantity is not
sensitive where second-order transitions occur [cf. Fig. 2(a)]
and takes values δ ν ≈ −1 in both the normal and collective
regions, indicating that the mode �12 dominates, but around
the separatrix where the first-order transition occurs both
modes �12 and �23 contribute to the ground state, since
δ ν ≈ 0. The region above the separatrix is dominated by the
mode �23 where one has δ ν ≈ 1. We note that the quantum
separatrix where a first-order transition occurs (δν = 0, black
region in Fig. 8) approaches the variational separatrix when
the number of particles grows, in fact for Na = 2 the quantum
separatrix is very close to the variational one Fig. 8(b), in
contrast with the case Na = 1 Fig. 8(a).
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FIG. 9. (Color online) Expectation value of the number of pho-
tons 〈ν12〉 of the exact ground state for (a) Na = 1 and (b) Na = 2.
The classical separatrix is indicated (white line).

The expectation value 〈ν12〉 is negligible in the normal
region; this fact is shown in Fig. 9, and we see that the quantum
phase diagram is divided into monochromatic regions in a
similar fashion to the variational calculation. This is now only
in the sense that the bulk of the ground state is dominated by
states with only one type of photons in each region; in fact
this figure shows that in the normal region the ground state is
dominated by the vacuum state.

VIII. CONCLUSIONS

A system of Na atoms of n levels interacting dipolarly with
� modes of an electromagnetic field, where the transitions
between two given atomic levels are promoted only by one
mode, has been considered. Using as a variational test state
the direct product of Heisenberg-Weyl states for the field
contribution, and coherent states preserving the number of
atoms for the matter contribution, the variational energy
surface is calculated and the minimum obtained.

We have given an iterative procedure for the calculation
of the critical points that reduces any system of n levels to
two-level systems.

The procedure to find the critical points that minimize
the energy surface was exemplified for three- and four-level
atoms interacting with � modes (� = 2 for three-level atoms
and � = 3, 4 for four-level atoms). The normal and collective
regions were described analytically and it was demonstrated
that the collective region is divided into � monochromatic

regions where only one mode of an electromagnetic field
contributes to the ground state while the other ones remain
in the vacuum state.

Studying the transitions between the different regions in the
phase diagram, for three-level atoms, we find both first- and
second-order quantum phase transitions (cf. Fig. 2). First-order
transitions are directly related to the fact that at least one
physical quantity of the system changes in a discontinuous
manner [cf. Figs. 3(b) and 3(c)], which is related to the fact
that the set of critical points in the separatrix forms a Maxwell
set. Second-order transitions present a continuous behavior [cf.
Fig. 3(a)], and in this case the critical points form bifurcations.
Similar results are obtained for the general case of n-level
atoms interacting with � modes.

This variational study suggests the following relationship
between matter and field observables for the ground state:

〈νjk〉 = 4
μ2

jk

�2
jk

(�Ajj )2, (82)

which, at the separatrix (normal vs. Sij ) regions, and consid-
ering ω1 = 0, implies

〈νjk〉 = (
√

ωj + √
ωk)2

�jk

(�Ajj )2. (83)

Being this a universal relationship, one may propose it as
an experimental criterion to detect the transition between the
normal and superradiant regimes.

We have shown that, when the RWA approximation is
considered, the phase diagram of the system suffers a rescaling
of the dipolar intensities by replacing μ → (μ)RWA/2 in all
quantities. Also, we have shown that in the RWA approx-
imation the Hamiltonian possesses n linearly independent
constants of motion (including the total number of excitations),
and that each one of them provides a symmetry operator
of the full Hamiltonian. These will be useful to establish
symmetry-adapted variational states.

Finally, using the symmetries of the full Hamiltonian we
found by numerical calculation the exact quantum solution for
the case of three-level atoms in the � configuration. We also
found that the variational minimum energy surface is a very
good approximation to the exact quantum one. We considered
the ratio of the difference to the sum of the number of photons
and found that the quantum phase diagram is divided into
monochromatic regions, this in the sense that the bulk of the
ground state contains contributions of only one type of photons
in each region.
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