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Breakdown of atomic hyperfine coupling in a deep optical-dipole trap
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We experimentally study the breakdown of hyperfine coupling for an atom in a deep optical-dipole trap.
One-color laser spectroscopy is performed at the resonance lines of a single 87Rb atom for a trap wavelength of
1064 nm. Evidence of hyperfine breakdown comes from three observations, namely, a nonlinear dependence of
the transition frequencies on the trap intensity, a splitting of lines which are degenerate for small intensities, and
the ability to drive transitions which would be forbidden by selection rules in the absence of hyperfine breakdown.
From the data, we infer the hyperfine interval of the 5P1/2 state and the scalar and tensor polarizabilities for the
5P3/2 state.
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Optical dipole traps (ODTs), including optical lattices,
are established tools for trapping cold atoms. They rely on
a position-dependent light shift of the atomic ground state.
Excited states usually change differently so that transition
lines are shifted. The line shifts can be small, like in shallow
traps, or even vanish, like in magic-wavelength traps [1,2].
However, magic wavelengths cannot always be employed
because either the spontaneous emission rate would be too
high, or high-power lasers are not available, or more than
two atomic levels are used, making it impossible to find a
wavelength that is simultaneously magic for all transitions.
Nevertheless, the increasing demand for improved control
of atoms makes it desirable to work in deep ODTs. The
advantages of deep ODTs include precise localization of the
trapped atoms, the possibility to perform resolved-sideband
Raman cooling, and reduced atom loss in the presence of
heating processes.

Driving resonant transitions in deep ODTs requires precise
knowledge of the atomic light shifts. For optical transitions,
the excited-state light shifts are nontrivial and, interestingly,
investigations on this subject are only at a beginning, although
deep ODTs have long been employed in the fields of atomic
clocks, quantum information processing (QIP), and quantum
many-body physics. Examples include single-atom optical
tweezers [3–7], atoms inside high-finesse cavities [8], atoms
trapped close to nanophotonic waveguides [9] or resonators
[10], atoms in hollow optical fibers [11], and quantum gas
microscopes [12,13]. Line shifts might also become relevant
in future experiments with ions in ODTs [14,15] and molecules
in ODTs [16,17].

Here we show that the differential light shifts depend
nonlinearly on intensity for high intensities, in contrast to
the well-known linear dependence for low intensities. The
typical ODT depth, for which the nonlinear effect becomes
comparable to the natural atomic linewidth is remarkably
small, namely, kB × 0.4 mK for the parameters of our
experiment, where kB is the Boltzmann constant. Moreover, we
observe a splitting of resonances which would be degenerate
in the linear regime and we observe a resonance which
would be dipole forbidden in the linear regime. The data are
obtained by varying the frequency of a probe laser near the
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D1 or D2 line, which illuminates a single 87Rb atom. When
hitting a resonance, optical pumping transfers populations
between hyperfine ground states. After a probe-light pulse,
atomic populations are measured using cavity-enhanced state
detection [18]. From measured resonance positions at various
ODT intensities, we infer the hyperfine splitting of the 5P1/2

state and the scalar and tensor polarizabilities at 1064 nm of
the 5P3/2 state.

The physical reason for the observed nonlinear behavior
is the breakdown of hyperfine coupling between nuclear
spin and angular momentum of the valence electron [19,20].
This is similar to the Paschen-Back effect, in which one
observes breakdown of hyperfine or even fine-structure cou-
pling when applying a strong static magnetic field. Hyperfine
breakdown has also been observed in a static electric field
[21]. Experimental evidence for hyperfine breakdown in
a high-intensity light field has been observed in a level-
crossing spectroscopy experiment [22], which used only
one near-resonant light field that simultaneously caused and
monitored hyperfine breakdown. To our knowledge, hyperfine
breakdown in far-detuned ODTs has not been discussed in the
literature.

We model the hyperfine breakdown largely analogous to the
corresponding theory for an electrostatic field [21]. We approx-
imate the Hamiltonian as H = HHF + HODT. HHF describes
the hyperfine interaction in the absence of external fields. It
is diagonal in the basis of states |J,I,F,mF 〉, abbreviated as
|F,mF 〉. Here, J , I , and F are the angular-momentum quantum
numbers of the valence electron, of the nuclear spin, and of the
total atom. Their projections onto the z axis are mJ , mI , and
mF . The diagonal matrix elements EF of HHF in the |F,mF 〉
basis are independent of mF . Throughout this work, we use
the values measured in Ref. [23] for the hyperfine intervals of
the 5P3/2 state in 87Rb.

HODT describes the effect of the ODT light onto the atom.
The electric field of the ODT light at the atomic position is
E(t) = E0 cos(ωt) with amplitude E0 and angular frequency
ω. We assume that the light is linearly polarized, and choose the
z axis along E0 (π polarization). Considering the limit where
all excited-state populations are small, the effect of the light is
reduced to generating light shifts. In addition, considering the
limit where all detunings are much larger than all hyperfine
splittings, we approximate HODT as being diagonal in the basis
of states |J,I,mJ ,mI 〉 (abbreviated as |mJ ,mI 〉) with diagonal
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matrix elements

EmJ
= −1

4

(
αS

γ + αT
γ

3m2
J − J (J + 1)

J (2J − 1)

)
E2

0 (1)

for J � 1 and EmJ
= − 1

4αS
γ E2

0 otherwise. This can be
regarded as analogous to Ref. [21] combined with time
averaging 〈E2(t)〉t = E2

0/2. Note that these matrix elements
are independent of mI . Here, αS

γ and αT
γ are the scalar and

tensor polarizabilities and γ abbreviates the set of quantum
numbers n, L, and J , where n is the principal quantum
number and L the orbital angular momentum quantum number
of the valence electron. An additional term containing the
vector polarizability [24] vanishes because we consider linear
polarization. As the light is far detuned, the imaginary parts of
the polarizabilities are negligible.

In the low-intensity limit, HHF dominates and HODT can
be treated in first-order perturbation theory. Here, H remains
diagonal in the |F,mF 〉 basis. This yields low-intensity light
shifts of the form − 1

4αγ,F,mF
E2

0 + O(E4
0) with the low-

intensity polarizability

αγ,F,mF
= αS

γ + αT
γ,F

3m2
F − F (F + 1)

F (2F − 1)
(2)

for F � 1 and αγ,F,mF
= αS

γ otherwise. Here, αT
γ,F =

αT
γ

3X(X−1)−4F (F+1)J (J+1)
(2F+3)(2F+2)J (2J−1) with X = F (F + 1) + J (J + 1) −

I (I + 1) [25]. For later reference, we note that this implies
αT

5P 3/2,F=2 = 0 for 87Rb (I = 3
2 ). The emergence of αT

γ,F from
αT

γ is somewhat reminiscent of the emergence of the hyperfine
Landé factor gF from the fine structure Landé factor gJ .

For intermediate intensities, the hyperfine coupling breaks
down and H is diagonal in neither the |F,mF 〉 nor the |mJ ,mI 〉
basis. Here, H can typically be diagonalized only numerically
and the light shifts depend nonlinearly on E2

0. For high
intensities (but not so high that fine-structure breakdown would
occur), HODT dominates and HHF can be treated in first-order
perturbation theory. Here, H is diagonal in the |mJ ,mI 〉 basis
and the energy eigenvalues are linear in E2

0 up to an offset.
Figure 1 shows the energy eigenvalues of H for the 5P3/2

manifold of 87Rb as a function of the intensity I0 = 1
2cε0 E2

0
of a plane traveling light wave, where c is the vacuum speed
of light and ε0 the vacuum permittivity. This calculation
is based on the theoretical predictions αS

5P 3/2 = −1114(16)
a.u. and αT

5P 3/2 = 551(5) a.u. [26] for 1064 nm [1 atomic
unit = 1.648 78 × 10−41 J(V/m)−2]. The figure shows the
linear regimes for low and high intensities as well as the
nonlinear behavior in the intermediate regime. Note that
αT

5P 3/2,F=2 = 0 causes identical low-intensity behavior for
the complete F = 2 manifold, whereas different |mF | values
within the F = 1 or F = 3 manifold feature different initial
slopes.

Figure 2 shows a scheme of the experimental setup. A
772 nm light is coupled into the TEM00 mode of a high-
finesse Fabry-Perot resonator. This light creates a repulsive,
one-dimensional (1D) optical lattice for ground-state 87Rb
atoms with a potential height of kB × 0.73 mK. Additionally,
a 1064 nm light beam crosses the resonator center. This beam
has a waist (1/e2 radius of intensity) of w = 16 μm and is
π polarized. It is retroreflected and creates an attractive, 1D
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FIG. 1. (Color online) Energy levels of the 5P3/2 excited-state
manifold in 87Rb in the presence of light shifts created by π -polarized
1064 nm light. Green, blue, purple, and red solid lines correspond to
|mF | = 0, 1, 2, and 3. At low intensity, F is a good quantum number,
whereas at high intensity mJ becomes a good quantum number,
similar to the hyperfine Paschen-Back effect. Dotted lines show
linear approximations for low and high intensity. In the high-intensity
region, the set of steeper lines corresponds to |mJ | = 1

2 . Note that an
intensity of 1 MW/cm2 corresponds to a ground-state ODT depth of
kB × 1.5 mK. The |mF | = 0 and 1 lines of the F = 2 and F = 3
manifolds are hardly resolved.

lattice. A single 87Rb atom is loaded into the resulting two-
dimensional (2D) lattice. The atom is located near an antinode
of the 1064 nm light and near a node of the 772 nm light.
Hence, at the position of the atom, light shifts from the 772 nm
light are small (see the Appendix). The relevant light shifts for
our measurements come from the 1064 nm light. Hopping of
the atom between lattice sites is negligible.

An additional traveling-wave probe light beam with a
wavelength near 780 nm or 795 nm crosses the cavity center
perpendicularly to the cavity axis and subtending an angle of
45◦ (out of the image plane in Fig. 2) with the 1064 nm light.
This light is linearly polarized, perpendicularly to the z axis,
thus having equal fractions of σ+ and σ− polarization. The
probe light is frequency stabilized to a commercial frequency
comb. All cavity resonances are far detuned from the probe
light, so that the cavity does not affect the spectroscopy signal.

To perform spectroscopy, we first prepare the atom in the
F = 1 manifold of the 5S1/2 ground state with optical pumping

z

1064 nm
attractive 
lattice

772 nm 
repulsive lattice

probe light
y

FIG. 2. (Color online) Scheme of the experimental setup. A
single 87Rb atom is held in a two-dimensional optical lattice inside
a Fabry-Perot resonator (gray). The relevant light shifts are created
by the 1064 nm light. Probe light is applied for in-trap spectroscopy.
The cavity and an additional laser (not shown) are used for hyperfine
state detection.
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FIG. 3. (Color online) Measured excitation spectrum of a single 87Rb atom for transitions from the 5S1/2,F = 1 ground state to 5P3/2

excited states. A probe light pulse transfers populations into the F = 2 ground state by optical pumping, whenever resonant with an atomic
transition. The final populations are measured. Five atomic resonance lines are clearly resolved. The line shows a fit of the sum of five
Lorentzians with independent amplitudes, widths, and center frequencies. The boxes label energy eigenstates that we assign to the 5P3/2 excited
states causing these resonances, where terms with amplitudes below 0.01 are omitted. Without hyperfine breakdown, this frequency range
would show only three lines, because the two rightmost lines would be degenerate and the leftmost line would be a forbidden transition.

using additional laser beams, not shown in Fig. 2. At this
point, the atoms are approximately equally distributed among
the mF substates of this F = 1 manifold. Second, we expose
the atom to a 2 μs long pulse of probe light at an intensity
of roughly 0.6 mW/cm2 and at a fixed frequency. Third, we
measure whether the atomic population is still in the F = 1
manifold or whether the probe light caused a spontaneous
Raman transition into the F = 2 manifold. This measurement
uses cavity-enhanced state detection [18].

After loading the atom and after each such spectroscopy
sequence, we perform polarization-gradient cooling using
additional light beams to cool the atom to ∼30 μK. During
this cooling process, we take yz-plane images of the cooling
light scattered from the atom with a digital camera. With these
images, we monitor whether the atom is still in place. A
complete cycle for spectroscopy and cooling takes 0.5 ms.
Such cycles are repeated for different frequencies of the probe
light, until the atom is eventually lost. At that point, a new
atom is loaded.

Figure 3 shows a measured spectrum. The 1064 nm
standing-wave ODT has a traveling-wave power of P = 2.3
W, corresponding to an ODT depth of kB × 3.4 mK. The data
clearly show five resonance lines. The excited states belong
to the F = 0, 1, and 2 manifolds and are easily found in
Fig. 1, in which these data correspond to 2.2 MW/cm2. The
widths of the resonances are ∼1.5 times the natural linewidth
of the excited state. We attribute most of this broadening
to the thermal position distribution of the atom (see the
Appendix).

For the right part of Fig. 3, the hyperfine-coupled model
Eq. (2) predicts three degenerate lines for the F = 2 manifold
because αT

5P 3/2,F=2 = 0. The appearance of two resolved
lines in this region unambiguously demonstrates hyperfine
breakdown.

The leftmost line in Fig. 3 belongs to the F = 0 manifold.
The F = 0 excited state cannot decay to the F = 2 ground
state because of dipole-selection rules. Hence, this line would
be invisible to our spectroscopy method according to the
hyperfine-coupled model. But hyperfine breakdown gives the
F = 0 excited state an admixture of the F = 2 exited state
which can decay to the F = 2 ground state, making the line

visible. Note that a similar argument applies to all F = 3
states.

Figure 4 shows a quantitative analysis of the resonance
positions. The values of the probe detunings at the line
centers (dots) were extracted by fitting the sum of independent
Lorentzians to spectra as in Fig. 3 for different values of
the traveling-wave power P of the standing-wave ODT at
1064 nm. Statistical error bars are ∼0.1 MHz, much smaller
than the symbol size. We label the detuning as zero, where the
light is resonant with the transition from the F = 1 ground
state to the barycenter of the excited-state hyperfine manifold
in the absence of light.

Figure 4(a) shows data for the 5S1/2 ↔ 5P1/2 transition. In
the framework of Eq. (1), the tensor polarizabilities vanish for
both involved states. Hence, we expect that the resonance posi-
tions depend linearly on E2

0 with a slope of − 1
4�α1/2, indepen-

dent of F . Here, we abbreviated �αJ = αS
5PJ − αS

5S1/2. In the
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FIG. 4. (Color online) Quantitative analysis of differential light
shifts. Solid lines show fits to the experimentally observed line centers
(dots). Dotted lines show linear approximations for low power. The
data cover the (a) 5S1/2 ↔ 5P1/2 and (b) 5S1/2 ↔ 5P3/2 transitions in
87Rb. Note that unlike Fig. 1, these data show differential light shifts.
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experiment, there is some uncertainty in the power calibration,
in the measured waist, and in the geometrical overlap of the
incoming and retroreflected 1064 nm beams with the atom. We
express this by replacing E2

0 → ηE2
0 in the theory, introducing

a dimensionless parameter η, which would ideally be unity. A
fit to the data yields the best-fit values η�α1/2 = −1675(3) a.u.
and (EF=2 − EF=1)/2π� = 816.6(2) MHz. Only statistical
uncertainties are quoted throughout this text. A thorough
analysis of systematic uncertainties is beyond the scope of
the present work. The value for (EF=2 − EF=1)/2π� agrees
well with the measured value 816.66(3) MHz from Ref. [27].
This seems to create serious doubt in the measured value
812.29(3) MHz from Ref. [28], which deviates from our value
by ∼20σ .

Figure 4(b) shows data for the 5S1/2 ↔ 5P3/2 transition.
A fit of the model based on Eq. (1) to the data yields the
best-fit values η�α3/2 = −1590(3) a.u. and αT

5P 3/2/�α3/2 =
−0.312(4). Combination with the best-fit value from Fig. 4(a)
yields �α1/2/�α3/2 = 1.054(2).

We compare these results with the theory values αS
5S1/2 =

687.3(5) a.u. [24], αS
5P 1/2 = −1226(18) a.u. [26], and the

above theory values for α
S/T

5P 3/2, all for 1064 nm. They
yield the theory predictions αT

5P 3/2/�α3/2 = −0.306(4) and
�α1/2/�α3/2 = 1.062(14), in good agreement with our mea-
sured values.

As long as η is unknown, our experimental data yield only
ratios of polarizabilities. The simplest way to proceed is to
assume η = 1, which immediately yields experimental values
for �α1/2, �α3/2, and αT

5P 3/2. Another way to proceed is
to use the above theory values for αS

5S1/2 and αS
5P 1/2, which

yields αS
5P 3/2 = −1128(18) a.u., αT

5P 3/2 = 568(9) a.u., and
η = 0.876(8). The latter reveals the size of the systematic
uncertainty caused when one would set η = 1.

Finally, we note that a measurement of the tensor polar-
izability αT

5P 3/2 does not require the observation of hyperfine
breakdown, because the light shifts in the low-intensity limit
already reveal αT

5P 3/2,F , from which one can easily calculate
αT

5P 3/2.
To conclude, we experimentally observed hyperfine break-

down induced by off-resonant light. This splits resonances,
lifts selection rules, and creates shifts which are nonlinear
in light intensity. The line shifts are relevant for precision
experiments and high-fidelity QIP experiments, which drive
resonant optical transitions in ODTs. The lifting of selection
rules is relevant for all schemes that rely on the forbidden
character of a transition, such as optical pumping schemes that
populate an mF = 0 state. The observed effects should be even
more dramatic for atoms with smaller hyperfine splittings, like
lithium. For example, if a recent 6Li quantum gas microscope
experiment [13] moved from the D1 to the D2 line, it would
immediately operate deeply in the Paschen-Back regime.

A related experiment was simultaneously performed at the
University of Michigan [29].

We thank C. Hahn for contributions during an early
stage of the experiment and M. Safronova for providing
theory values for polarizabilities. This work was supported
by the European Union (Seventh Framework Programme,

Collaborative Project SIQS), by the Bundesministerium für
Bildung und Forschung via IKT 2020 (Q.com-Q), and by
Deutsche Forschungsgemeinschaft via NIM.

APPENDIX

The spatial distribution of the atoms has a nonzero thermal
width. As atoms at different positions experience different light
shifts, the resonance lines in our experiment are broadened.
Since the broadening mechanism is not symmetric, this also
causes a small shift of the line center. In the following, we
describe a simple model for this broadening mechanism.

We can safely approximate the ground-state trapping
potential Vg(x) as harmonic, because the atomic temperature
is much smaller than the depth of the trapping potential. This
yields Vg(x) = Vg(0) + Ug(x) with Ug(x) = ∑3

i=1 mω2
i x

2
i /2,

where m is the atomic mass and the ωi are the angular
frequencies of the ground-state trap. Similarly, we approximate
the excited-state potential as Ve(x) = Ve(0) + Ue(x) with
Ue(x) = ∑3

i=1 bix
2
i , with certain coefficients bi which are

typically negative in our experiment.
For a potential depth of kb × 3.4 mK of 1064 nm light and

a potential height of kB × 0.73 mK of 772 nm light, we obtain
trapping frequencies of (ωx,ωy,ωz)/2π = (11,760,480) kHz.
For kBT � �ωi for all i one could safely use a semiclassical
approximation to calculate the thermal atomic position dis-
tribution. The typical atomic temperature in our experiment
T ∼ 30 μK corresponds to kBT ∼ 2π� × 600 kHz so that we
are near the border of the kBT � �ωi regime. For simplicity,
we nevertheless use a semiclassical approximation for the
position distribution of the single atom

n(x) = n0e
−βUg (x), (A1)

where n0 is the peak density and β = 1/kBT . The normaliza-
tion condition

∫
d3x n(x) = 1 yields n0 = (mω̄2/2πkBT )3/2,

where ω̄ = (ωxωyωz)1/3 is the harmonic mean of the trapping
angular frequencies. Here, we assumed that different spatial
directions are thermalized, which we did not verify experi-
mentally. We measured the temperature only along the z axis.
For the density distribution (A1), the standard deviations of
the atomic position are (σx,σy,σz) = (750,11,18) nm. Gravity
points along the x axis with a gravitational acceleration of g =
9.8 m/s2. This causes a gravitational sag of �x = g/ω2

x = 2
nm, which is negligible compared to σx .

To see how this atomic position distribution affects the
spectroscopy signal, we need to calculate how the number N2

of atoms in the F = 2 ground-state manifold changes in time
because of optical pumping. Because the 2 μs probe pulse
is much longer than the natural lifetime 1/� = 26 ns of the
excited state, we can use a rate-equation model to describe the
temporal evolution of the atomic populations.

If the probe light near-resonantly drives the transition from
a ground state |g〉 with F = 1 and a given mF to an excited
state |e〉, then the steady-state population in internal state |e〉
is

ρee(x) = ρgg

Ip

2Is

1

1 + [2�(x)/�]2
, (A2)

where ρgg is the internal-state population in |g〉, Is the
saturation intensity for the |g〉 ↔ |e〉 transition, Ip the
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probe-light intensity (for which we assumed Ip 	 Is), and
�(x) = ωprobe − ωres(x) the detuning of the probe light from
resonance, which depends on the position x because of the
position-dependent differential light shifts

�(x) = �0 + Ug(x) − Ue(x)

�
, (A3)

where �0 = �free + Vg(0) − Ve(0) is the detuning at the trap
center and �free is the detuning for a free atom, in the absence
of ODT light.

Let �2 denote the partial rate coefficient for spontaneous
radiative decay of state |e〉 into the F = 2 ground-state
manifold. Then averaging over the atomic density distribution
yields

∂tN2 = �2

∫
d3xρee(x)n(x). (A4)

For simplicity, we restrict our considerations to a regime
where the product Iptp of the intensity Ip and duration tp of
the probe pulse is so low that we can approximate ρgg as time
independent. Hence, ∂tN2 is also time independent and the
quantity that we measure in our spectra is N2(tp) = tp∂tN2.
As we are not particularly interested in the absolute heights
of the spectral lines, it suffices to consider the dimensionless
spectrum

S(�0) = 2Is

Ip�2ρgg

∂tN2 = n0

∫
d3x

e−βUg (x)

1 + [2�(x)/�]2
, (A5)

which is normalized to
∫

Sd�0 = π�/2.
Using the harmonic approximation, we obtain

S = 1

π3/2

∫
d3u

e−u2

1 + 4[δ + (Ug − Ue)/��]2
, (A6)

where we introduced a dimensionless detuning and the
dimensionless coordinates

δ = �0

�
, ui =

√
βm

2
ωixi. (A7)

In general, the dependence of the light shifts Vg/e on
trap intensity is nonlinear. However, for low enough atomic
temperatures, the thermal atomic distribution samples only a
small intensity range which is near the intensity at the trap
center. Hence, we can safely approximate the light shifts
Vg/e(x) as first-order Taylor polynomials in the intensity
around the intensity at the trap center, yielding

Ug/e(x) =
2∑

i=1

−1

4
α̃g/e,i

[
E2

0,i(x) − E2
0,i(0)

]
, (A8)

with E0,i(x) associated with the λi where (λ1,λ2) =
(1064,772) nm. Here we used that the trap intensity is
proportional to E2

0(x). Our notation expresses the first-order
Taylor coefficient in terms of α̃g/e,i which has the dimension
of a polarizability and turns into α̃g/e,i = αg/e,i for the special
case, where the light shift actually is linear in intensity.

For our experiment, the 1064 nm light provides the
harmonic confinement along x and y, whereas the 772 nm
light provides the dominant harmonic confinement along z.
In principle, the 1064 nm light provides additional harmonic

TABLE I. Polarizabilities in a.u. for 87Rb.

λ αS
5S1/2 αS

5P 1/2 αS
5P 3/2 αT

5P 3/2

1064 nm 687.3(5) −1226(18) −1114(16) 551(5)
772 nm −11995 1450 3460 −4842

confinement along z but that is small and we neglect it. Hence

β(Ug − Ue) = α̃r,1
(
u2

x + u2
y

) + α̃r,2u
2
z, (A9)

where we abbreviated

α̃r,i = 1 − α̃e,i

α̃g,i

. (A10)

In cylindrical coordinates, this yields the final result

S = 2√
π

∫ ∞

0
du�

∫ ∞

−∞
duz

u�e
−u2

�−u2
z

1 + 4
(
δ + τ1u2

� + τ2u2
z

)2 ,

(A11)

where we introduced two dimensionless temperatures

τi = kBT

��
α̃r,i . (A12)

The integral (A11) can be evaluated numerically.
Table I shows theory values for the scalar and tensor

polarizabilities relevant for our experiment. The values for
1064 nm are the theory values from our paper. We calculated
the values for 772 nm ourselves in second-order perturbation
theory, including transitions 5S1/2 ↔ n′PJ ′ and 5PJ ↔ n′S1/2,
and 5PJ ↔ n′DJ ′ using resonance frequencies and oscillator
strengths from Refs. [30–32].

Table II lists the quantity α
S/T

r,J = 1 − α
S/T

5PJ /αS
5S1/2, which

is related to α̃r,i , calculated from Table I. Of course, one could
calculate Eq. (A11) numerically for each excited state. Here,
however, we consider only one example, namely, for the typical
values α̃r,1 = 2.7 for 1064 nm and α̃r,2 = 1.2 for 772 nm.
Combination with kBT /�� = 0.10 yields

τ1 = 0.27, τ2 = 0.12. (A13)

In Fig. 5, numerical results for the integral (A11) for these
values of τ1 and τ2 are shown as a red solid line. The black
dotted line shows a fit of a Lorentzian to this result. The best-fit
values are a full width at half maximum (FWHM) of 1.25� and
a center position of −0.30�. For reference, the green dashed
line shows the trivial Lorentzian obtained for τ1 = τ2 = 0,
which has a FWHM of � and is centered at 0. The latter can be
regarded as the zero-temperature limit of Eq. (A11), although
in this limit, the semiclassical approximation is expected to be
poor. Comparison of the measured line widths of ∼1.5� with
the width 1.25� from the fit suggests that the line broadening
observed in the experiment is to a good part caused by the
thermal atomic position distribution.

TABLE II. Values of α
S/T

r,J = 1 − α
S/T

5PJ /αS
5S1/2 for 87Rb based on

Table I.

λ αS
r,1/2 αS

r,3/2 αT
r,3/2

1064 nm 2.78 2.62 0.20
772 nm 1.12 1.29 0.60
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FIG. 5. (Color online) Expected spectral line shapes. The red
solid line shows the expected line shape numerically calculated
from Eq. (A11) for the typical values for our experiment from
Eq. (A13). This line is broadened and shifted because of the nonzero
width of the thermal atomic position distribution. The black dotted
line is a Lorentzian fit to this. The green dashed line shows the
Lorentzian reference for τ1 = τ2 = 0, corresponding to a classical
particle located exactly at the trap center.

We emphasize that the line shifts and line broadenings
in this model are independent of the depth of the 1064 nm
and height of the 772 nm potential, as long as the traps are
strong enough that the harmonic approximation works well
and as long as they are weak enough that the semiclassical
approximation works well.

The line shift found in this model suggests that all lines
measured in our experiment are systematically red shifted by
∼0.3 � ∼ 1.8 MHz relative to the free-space resonance lines.
Note that within the approximations used so far, this has no
effect on the polarizabilities and hyperfine splittings that we
extract from the data. Those values will only be affected if
additional corrections are taken into account, such as the fact
that the actual values of α̃r,i are somewhat different for different
atomic states. Because of the lack of a tensor polarizability in
the 5S1/2 ↔ 5P1/2 transition, however, this is not the case for
values extracted from those data, including the 5P1/2 hyperfine
splitting.

To experimentally test the sensitivity to a change in the
772 nm potential height, we measured the resonance line
involving the F = |mF | = 1 excited state at two potential
heights, namely, kB × 0.55 and 1.1 mK. The relative shift of
the line center between these two experiments was measured
to be 79(91) kHz, which is consistent with zero.

Finally, we note that if only one wavelength was used
for the optical lattice, the integral (A11) could be solved
analytically. To this end, one could rewrite it in spherical
coordinates as

S = 4√
π

∫ ∞

0
dur

u2
r e

−u2
r

1 + 4
(
δ + τ1u2

r

)2 . (A14)

For δ,τ1 ∈ Rwith τ1 �= 0, this integral has the analytic solution

S =
√

π

2τ1
zw(z) + c.c., z =

√
i − 2δ

2τ1
sgn(τ1), (A15)

where [33]

w(z) = e−z2
erfc(−iz) (A16)

is the Faddeeva function, erfc(z) = 1 − erf(z) the comple-
mentary error function, and erf(z) = 2√

π

∫ z

0 e−t2
dt the error

function. Equation (A15) can be derived using partial-fraction
decomposition and the integral representation [33]

w(z) = 2iz

π

∫ ∞

0

e−t2

z2 − t2
, Im z > 0. (A17)

Note that Eq. (A17) can also be used to analytically solve
the uz integral in (A11), yielding

S = 2√
π

∫ ∞

0
duρe

−u2
ρ uρIz(uρ) (A18)

with

Iz = π

4τ2z
w(z) + c.c., z =

√
i − 2δ − 2τ1u2

ρ

2τ2
sgn(τ2)

(A19)

[1] H. Katori, T. Ido, and M. Kuwata-Gonokami, J. Phys. Soc. Jpn.
68, 2479 (1999).

[2] C. J. Hood and C. Wood, as described by H. J. Kimble et al.,
in Laser Spectroscopy XIV, edited by R. Blatt et al. (World
Scientific, Singapore, 1999), p. 80.

[3] M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G.
Maslennikov, and C. Kurtsiefer, Nat. Phys. 4, 924 (2008).
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