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Narrow dip inside a natural linewidth absorption profile in a system of two atoms
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Absorption spectrum of a system of two closely spaced identical atoms displays, at certain preparation, a dip
that can be much narrower than the natural linewidth. This preparation includes (i) application of a strong magnetic
field at an angle α, that is very close to the magic angle α0 = arccos(1/

√
3) ≈ 54.7◦, with respect to the direction

from one atom to another, and (ii) in-plane illumination by a laser light in the form of a nonresonant standing wave
polarized at the same angle α. Both qualitative and quantitative arguments for the narrow dip effect are presented.
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I. INTRODUCTION

One of the famous Fano’s problems is called “A Number of
Discrete States and One Continuum” [1]. Although the main
subject of Ref. [1] is atomic autoionization states embedded
into the ionization continuum, the method of solution is generic
and can be applied to other systems, e.g., the “atom plus
quantized electromagnetic field” [2]. So, let the Fano’s one
continuum states be direct products |0〉⊗|1(s)

x 〉 of the ground
atomic state |0〉 and the one-photon wave packet |1(s)

x 〉 of an
arbitrary frequency x and a definite polarization s with respect
to a fixed quantization axis of projection M of the atom angular
momentum. Also, let the Fano’s number of discrete states be
two direct products |1〉⊗|vac〉, |2〉⊗|vac〉 of the excited atomic
states |1〉, |2〉 and the vacuum state of the electromagnetic
field. Then, if the both spontaneous transitions |1〉 → |0〉 and
|2〉 → |0〉 are of the same polarization s and their frequencies
ω10 and ω20 are very close, the Fano’s solution leads to an
intriguing result: the spectrum of linear absorption (in the
framework of the Weisskopf-Wigner idealization [3]), being

A(ω) = 1

2π (�1 + �2)

× [�1(ω − ω20) + �2(ω − ω10)]2

(ω−ω10)2(ω−ω20)2+ 1
4 [�1(ω−ω20)+�2(ω−ω10)]2

(1)

where �1 and �2 are spontaneous emission rates, can exhibit
a narrow dip with zero absorption at the frequency of

ω̄ = �1ω20 + �2ω10

�1 + �2
(2)

between ω10 and ω20. The width (full width at half maximum)
of this dip is equal to

σ =
√

1
4 (�1 + �2)2 + (ω20 − ω10)2 − 1

2 (�1 + �2), (3)

and it can be narrower than (�1 + �2)/2. Several examples
with �1 = �2 = � are shown in Fig. 1. The effect is due to
destructive interference of the probability amplitudes of states
|1〉 and |2〉 in the exact continuous-spectrum eigenstates lying
between ω10 and ω20. (The same result including a picture
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like Fig. 1 was obtained in Ref. [4] using the density matrix
formalism.)

It can be assumed that an observation of such narrow
resonance structure (presumably controllable, in addition,
by external fields) would attract some attention—the same
as to a variety of other effects of quantum interference
and quantum correlation in three-level systems (such as the
Hanle effect [5], the Autler-Townes effect [6,7], quantum
beats [8], coherent population trapping [9,10], electromag-
netically induced transparancy (EIT) [11,12], lasing without
inversion [13–16], narrowing of the resonant fluorescence
spectra [17], tunneling induced transparency [18,19], creation
(via spontaneous emission) of the metastable entangled state in
a system of two spatially separated atoms in one-dimensional
case [20,21], or in a common thermostat [22], and narrowing
of the emission spectra in the time delay spectroscopy [23] or
due to the correlation measurements [24]).

The matter is, however, that there are no atoms where a
pair of such close levels (i) exists parallel with the necessary
common continuum property (CCP), and (ii) does not involve,
in a good approximation, any other decay channels. For
example, no splitting like hyperfine, Zeeman, Stark, etc.,
complies with CCP. Also, none of the above-mentioned
interference effects uses a scheme complying with properties
(i) and (ii) simultaneously. But, it is not forbidden to think
about some artificial systems. One general approach suggested
by Agarwal [25] was called “modification of the continuum.”
As shown in Refs. [26,27] the necessary modification can be
achieved using a cavity whose mode frequencies are close
to those of transitions from the ground state to the Zeeman
sublevels of the excited state. This idea was realized in the
experiment of Ref. [28] for the Mössbauer x-ray transition in
the 57Fe nuclei.

In our work, a model example of another kind is presented
that demonstrates the property announced in the title—but
without any “modification of the continuum,” and also without
any preliminary (coherent) mixing of the stationary states
being a necessary part of the Autler-Townes effect and EIT.
The final assembly is shown in Fig. 2. Its constituents are
treated in Sec. II. A numerical example is given in Sec. III to
show that conditions for a narrow dip effect are reasonable,
at least, from the point of view of spectroscopy. Meanwhile,
certain factors lead to corrections to Eq. (1). To calculate them
a more comprehensive model for a system of two atoms is
needed, and this model is solved analytically in Sec. IV— then
Eq. (1) becomes a particular case of a more general expression.
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FIG. 1. (Color online) Absorption profiles (1) at �1 = �2 = �

and certain values of splitting � = ω20 − ω10 of levels |1〉 and
|2〉. Parameter ω̄ (2) is equal in this case to the middle frequency
1
2 (ω10 + ω20).

Substituting the example data of Sec. III into the absorption
contour of Sec. IV we, in Sec. V, draw the final spectrum and
also present several other examples.

II. QUALITATIVE DISCUSSION AND
PRELIMINARY RESULTS

We consider a system of two identical atoms A1 and A2 with
the ground state |g〉 and the excited state |e〉, the distance r

between them being less than the allowed transition |e〉 → |g〉
wavelength. Properties of spontaneous emission of this system
were studied in numerous works started from that of Dicke [29]
(see Ref. [30] for a review and citations therein, and the more
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FIG. 2. (Color online) Arrangement of the external fields creat-
ing conditions for the effect named in the title. The magnetic field
applied at z direction [α ≈ α0 = arccos(1/

√
3) ≈ 54.7◦] provides

minimization of the dipole-dipole interaction of two identical atoms
A. The gradient of electric component E cos k(x − x0) cos ωt of the
laser field induces a gap between transition frequencies of these
atoms. Quantitatively, the magnitude of the magnetic field and the
amplitude of the laser field are to provide inequalities given by
Eq. (12) below.

recent papers [20,21,31,32]), with an emphasis on the effects
of super- and subradiance. But, properties of absorption (or
elastic scattering), as shown in Fig. 1, have not been reported
so far.

The two excited states of the system of two atoms under
consideration are |Q1〉 = |e1g2〉 and |Q2〉 = |g1e2〉. Then two
factors should be accounted for: the degeneracy that is always
present as long as either state |e〉 or state |g〉 has a nonzero
angular momentum, and the dipole-dipole interaction between
the states |Q1〉 and |Q2〉 that, in simple situations, leads
to their superpositions producing two entangled eigenstates,
symmetric and antisymmetric (see, e.g., Refs. [30,33]).

For definiteness, we limit ourselves to a frequent situation
where the angular momenta of states |g〉 and |e〉 are Jg = 0
and Je = 1, respectively. Then six states are involved in our
consideration:

Q(−1)
1 = ∣∣e(−1)

1 g2
〉
, Q(0)

1 = ∣∣e(0)
1 g2

〉
, Q(+1)

1 = ∣∣e(+1)
1 g2

〉
,

(4)
Q(−1)

2 = ∣∣g1e
(−1)
2

〉
, Q(0)

2 = ∣∣g1e
(0)
2

〉
, Q(+1)

2 = ∣∣g1e
(+1)
2

〉
,

where the upper index indicates the angular-momentum
projection M on its quantization axis z. For our purposes, we
put the z axis at the so-called magic angle α0 = arccos(1/

√
3)

with respect to the vector separation r between the two atoms.
Then the dipole-dipole interaction is represented as

Û = (̂d1 ·d̂2)

r3
− 3

(̂d1 ·r)(̂d2 ·r)

r5

= − 1

2r3

[
d̂

(+)
1 d̂

(+)
2 + d̂

(−)
1 d̂

(−)
2 +

√
2(d̂ (+)

1 + d̂
(−)
1 )d̂ (z)

2

+
√

2 d̂
(z)
1 (d̂ (+)

2 + d̂
(−)
2 )
]
, (5)

where the first line (see, e.g., Ref. [34]) does not depend on the
choice of the Cartesian coordinates, and the final equality is
obtained for α = α0; also, the axis x lies in the plane common
with the both z axis and r vector, and the standard definition
d̂

(±)
1,2 = d̂

(x)
1,2 ± id̂

(y)
1,2 is used for the circular components of the

operators d̂1 and d̂2 of the dipole moment. We note that the
unique property of just this representation is that the matrix of
the operator Û has no couplings between the states (4) with
the same M , i.e., 〈Q(M)

1 |Û |Q(M)
2 〉 = 0.

So, to make use of the noted property we add to our
composition the magnetic field directed just along the z axis.
The aim is to minimize a role of Û couplings also between the
states with different quantum numbers M—and the magnetic
field should be strong enough for that. To make estimates it
is convenient to express the matrix elements of operator Û in
terms of two quantities: the rate

� = 32π3

3λ3
eg

|〈e(0)|d̂ (z)|g〉|2 (6)

of the spontaneous transition |e〉 → |g〉 where λeg is its
wavelength, and the product kr where k = 2π/λeg . Also,
the symmetric |Q(M)

s 〉 = 1√
2
(Q(M)

1 + Q(M)
2 ) and antisymmetric

|Q(M)
a 〉 = 1√

2
(Q(M)

1 − Q(M)
2 ) superpositions can be used as the

basis. Then the matrix ‖U‖ is separated into two matrices
acting independently in the bases of states |Q(M)

s 〉 and |Q(M)
a 〉,
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respectively:

‖Us‖ = Ur

∥∥∥∥∥∥
0 −1 +1

−1 0 +1
+1 +1 0

∥∥∥∥∥∥,
(7)

‖Ua‖ = Ur

∥∥∥∥∥∥
0 +1 −1

+1 0 −1
−1 −1 0

∥∥∥∥∥∥,
where Ur = 3�/4(kr)3, the basis states are enumerated in the
ascending order in M , and the standard ratios [35] of the
matrix elements 〈e(±1)|d̂ (±)|g〉 and 〈g|d̂ (±)|e(∓1)〉 to the matrix
element 〈e(0)|d̂ (z)|g〉 are used. Now, we add Zeeman splittings
of ±EZ = ±μBgH due to the magnetic field H (μB is the
Bohr magneton, and g is the Landé g factor) to diagonal zeros
of the matrices Us,a in places of states Q(±1)

s,a , and arrive at the
characteristic equations

ε3
s − (E2

Z + 3U 2
r

)
εs + 2U 3

r = 0,

ε3
a − (E2

Z + 3U 2
r

)
εa − 2U 3

r = 0
(8)

for the energies εs and εa of our system of two atoms in
the magnetic field. These energies are shown in Fig. 3 as
functions of the magnetic field. It is seen that, at large magnetic
fields, the eigenstates, as can be expected, pair at energies
of approximately ε ≈ ±EZ, and ε ≈ 0 with small splittings
between the symmetric and antisymmetric eigenstates. These
splittings, at the condition EZ � Ur , are

εs − εa ≈ 4U 3
r

E2
Z

(9)

at the energy εs,a ≈ 0, and

εs − εa ≈ −2U 3
r

E2
Z

(10)

at the energies εs,a ≈ ±(EZ + 3U 2
r /EZ). At the same time,

the corresponding eigenvectors |R(M)
s,a 〉 are almost |Q(M)

s 〉 and
|Q(M)

a 〉, with M = −1 at the energy of ≈−EZ, M = 0 at
the zero energy, and M = +1 at the energy of ≈+EZ. The
admixture fractions are shown in Figs. 3(b) and 3(c) as
functions of the magnetic field.

So, a strong magnetic field directed at the magic angle can
almost break the dipole-dipole couplings of two closely spaced
atoms, except a very small coupling due to the perturbation
of the third order. To cardinally reduce its role one more
element is added to our composition that transforms a pair of
the symmetric and antisymmetric superpositions |Q(M)

s 〉 and
|Q(M)

a 〉 into a pair of the product states Q(M)
1 = |e(M)

1 g2〉 and
Q(M)

2 = |g1e
(M)
2 〉. Among several possibilities (see a discussion

in Sec. VI) we choose (see Fig. 2) a solution as follows.
A laser field in a form of standing wave is applied so that
its wave vectors ±ksw are perpendicular to the magnetic
field, and its electric component E cos ksw(x − x0) cos ωswt

is directed parallel to the magnetic field. As long as the
electric-field amplitudes are different in A1 and A2 positions
the transition frequencies of two atoms undergo different Stark
shifts E

(1)
S �= E

(2)
S . To promote absorption profiles as shown in

Fig. 1, their difference

�S = ∣∣E(1)
S − E

(2)
S

∣∣ (11)

should be greater than the primary energy splitting (9) or (10),
but less than the spontaneous linewidth; i.e., the following
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FIG. 3. (Color online) Energies of eigenstates of a system of two atoms as functions of the magnetic field H applied at the magic angle (see
Fig. 2). (a) A relatively narrow scale of H variation is presented. (b),(c) A large scale is shown by solid curves for the dependencies of splittings (9)

and (10), respectively, on the magnetic field. Also, the fractions of corresponding admixtures defined as P (M)
admix =∑M ′ �=M |〈Q(M ′)

s,a |R(M)
s,a 〉|2 are

shown by the dashed curves.
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conditions should be valid:

�3

E2
Z(kr)9

� �S � �, (12)

where the Ur definition after Eq. (7) is used.

III. NUMERICAL EXAMPLE

We consider one numerical example. It is optimized from
the points of view of spectroscopy and applied fields to
show some near-to-maximum characteristics. This example
deals with atoms 138Ba having the zero nuclear spin and
the ground state 6 1S0 with the total angular momentum
Jg = 0. As an excited state, we take 6 3P1 with Je = 1. The
rate of spontaneous transition 6 3P1→ 61S0 at λeg ≈ 791 nm
is � ≈ 7.4 × 105 s−1 [36]. Next, for definiteness, we take
kr = 0.25 (i.e., r ≈ 31.5 nm) and, to fulfill inequality (12) with
a certain reserve, we put E2

Z(kr)9/�2 = 102. The latter means
that, for our choice of parameters, the Zeeman splitting should
be EZ = 10�(kr)−4.5 ≈ 3.8 × 109 s−1. Taking into account
that the Landé g factor for state 3P1 is g≈3/2 one can
find H ≈ 290 G for the relevant magnetic field. So, at this
magnetic field, the residual splitting of the symmetric and
antisymmetric eigenstates, say, at zero energy [see Eq. (9)],
is εs − εa ≈ (1.7 × 10−2)�, i.e., 60 times less than the natural
linewidth.

Now, an adequate dynamic range is achieved to follow a
dependence of the absorption profile on the difference between
Stark shifts of the transition frequencies of two atoms in a
laser field of a standing wave as suggested by our scheme in
Fig. 2. Although there are different choices of the frequency
and polarization of this field we, for definiteness, consider the
situation (which may be nonoptimal) where its frequency ωsw

is relatively close to that ωeg of our |e〉 → |g〉 transition, but is,
at the same time, far enough off the resonance to reduce real ex-
citations to a negligible amount. The interaction with an atom
is, as commonly, described by the Rabi frequency 
 = deg Ẽ/�,
expressed through the amplitude of the laser field Ẽ cos ωswt at
the position of the atom and the corresponding matrix element
deg of the dipole moment, and then inequality 
 � |δ| must
be ensured where δ = ωsw − ωeg (see Fig. 4). In the rotating
wave approximation, the Stark shifts of levels |g〉 and |e(0)〉
are, respectively, ± 1

2 (
√

δ2 + 
2 − δ) ≈ ±
2/4δ. The largest
gradient of function Ẽ2 = E2 cos2 k(x − x0) between positions
x1 = − 1

2 r sin α0 of atom A1 and x2 = + 1
2 r sin α0 of atom

A2 is achieved, e.g., at x0 = − 1
8λeg . So, for two atoms, the

difference of the Stark shifts (that are proportional to the Rabi
frequencies squared) is scaled, at our choice of parameters kr

and x0, as �S = 2ES sin(kr sin α0) ≈ 0.4ES where ES is the
average shift of transitions |e(0)

1 〉 → |g1〉 and |e(0)
2 〉 → |g2〉, i.e.,

ES ≈ −d2
egE2/4�

2δ. (See also Fig. 4 for definitions of these
quantities.)

Eventually, we use the parameters of two previous para-
graphs to calculate the eigenvalues and eigenvectors of the final
problem that takes into account the magnetic and laser fields
simultaneously. The eigenvalues will give frequencies ω10 and
ω20 for all transitions |e(M)〉 → |g〉, and the eigenvectors will
give the corresponding rates �1 and �2; together, they will give
all needed parameters to draw the absorption spectrum using

shifted |g1g2

|g1g2

|Q(+1)
1,2

|Q(− 1)
1,2

|g1e
(0)
2

|e

eg

(0)
1 g2

ES

ωsw =ω +δ

ΔS

1
2
ES

1
2
ΔS

FIG. 4. (Color online) Illustration of the shifts of states (4) by a
field different in positions of two atoms. Quantities ES and �S relate
to the shifts of |e〉 → |g〉 transition frequencies. As for the signs of
their values, a case is shown where δ < 0, so ES > 0 and �S > 0.

Eq. (1). Calculation results are shown in Fig. 5 for the pair of
upper states being basically superpositions of |e(0)

1 g2〉 = |Q(0)
1 〉

and |g1e
(0)
2 〉 = |Q(0)

2 〉 with negligible contributions of the other
states. These results coincide very well with simple estimates
that can be obtained from the two-level approximation with the
interaction matrix ‖Q‖ that includes Stark shifts E

(1)
S and E

(2)
S

of states |Q(0)
1 〉 and |Q(0)

2 〉, respectively, as the diagonal matrix
elements, and interaction between them from Eq. (9) and the
middle curves in Fig. 3(a), i.e., ε0 = 1

2 (εs − εa) ≈ 2U 3
r /E2

Z, as
the nondiagonal matrix elements. So, the interaction matrix is

‖Q‖ =
∥∥∥∥∥E

(1)
S ε0

ε0 E
(2)
S

∥∥∥∥∥ (13)

that gives for the difference of the eigenvalues

� = ω20 − ω10 ≈
√

4ε2
0 + �2

S (14)

where the quantity �S is, as above, the difference (11) of the
Stark shifts of the frequencies of transitions |e(0)

2 〉 → |g2〉 and
|e(0)

1 〉 → |g1〉. As for the eigenstates of ‖Q‖, they are

|1〉 = u
∣∣Q(0)

1

〉− v
∣∣Q(0)

2

〉
,

|2〉 = v
∣∣Q(0)

1

〉+ u
∣∣Q(0)

2

〉 (15)

with

u =
{

1

2

[
1 + �S(

4ε2
0 + �2

S

)1/2

]}1/2

,

v =
{

1

2

[
1 − �S(

4ε2
0 + �2

S

)1/2

]}1/2
(16)

where, for definiteness, �S > 0 according to Fig. 4. Hence,

�1,2 ≈ (u ∓ v)2� = �

⎛⎝1 ∓ 2ε0√
4ε2

0 + �2
S

⎞⎠. (17)
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FIG. 5. (Color online) Dependencies of all relevant quantities on the difference of Stark shifts for two states |1〉 and |2〉 with M = 0. (a) The
rates of spontaneous decay starting from �1 � � [37] and �2 ≈ 2� for, respectively, antisymmetric (subradiant) and symmetric (superradiant)
entangled states approach to � as the value of �S grows. (b) Naturally, the splitting between states |1〉 and |2〉 and the resulting width of the
dip in the absorption profile grow with �S.

Now, the value �̃S ≈ 3.4 × 105 s−1 of the difference of
Stark shifts is indicated in Fig. 5 that leads to the width
of the dip in the absorption profile ten times less than the
natural linewidth. As an example, it is noteworthy to determine
characteristics of the standing-wave laser field relating just to
this value. The corresponding value of ES (see Fig. 4 and the
accompanying text) is

ẼS ≈ d2
egE2

4�2|δ| ≈ 2.5�̃S ≈ 8.5 × 105 s−1. (18)

It defines options for the input laser intensity I = (c/32π )E2

and the laser frequency detuning δ. Fixing the value of I
at a moderate level of 10 W/cm2 we find the required value
of the frequency detuning from the resonance with transition
|e〉 ⇔ |g〉:

|δ| = 3�λ3
egI

4π2�cẼS
≈ 1011 s−1, (19)

where Eqs. (6) and (18) are used.
So, an example with realistic spectroscopy and parameters

of the applied fields is constructed where a narrow dip in
the absorption contour can be expected. In one prominent
experiment using EIT, on “storage of light” [38], a full
width at half maximum (FWHM) of 40 kHz was observed.
In the above example the dip of 7.4 × 104 s−1 ≈ 12 kHz is
even narrower [39]. In contrast with the ideal EIT, however,
A = 0 at the center here is not an exact result due to the
existence of a small additional decay channel. The matter
is that the common continuum for two atoms is, in our
so-far idealized consideration, associated with the symmetric
part of ∝e±(i/2)kr atom-field interaction in positions ± 1

2 r
of the atoms. Its antisymmetric part being proportional to
±i sin 1

2 kr should be regarded as the other continuum. In
terms of the classical electrodynamics, and for the quantization
procedure as well, the symmetric and antisymmetric continua
are associated with the free-space field modes in a form of
standing waves with, respectively, the antinode and the node
at r = 0.

To improve Eq. (1) a more general theoretical model is
considered below.

IV. TWO DISCRETE STATES AND TWO CONTINUA

A. Formulation of the problem

We consider a problem where two discrete states |1〉 and |2〉
with energies E1 and E2 are coupled to two common continua
of states |x〉 with energies x and |y〉 with energies y. No special
condition is imposed, at the moment, on couplings of discrete
and continuum states—we only introduce two operators F̂ and
f̂ (they will be defined below in connection with the problem
of the previous sections), and denote the couplings (see Fig. 6)
in terms of four real functions as

F1(x) = 〈1|F̂ |x〉, F2(x) = 〈2|F̂ |x〉,
f1(y) = i〈1|f̂ |y〉, f2(y) = −i〈2|f̂ |y〉,

(20)

where ± signs at i are chosen for further convenience. Also,
we require that the integrals of F 2

1,2(x) and f 2
1,2(x) from −∞

to +∞ are defined. States |x〉 and |y〉 are assumed to be
normalized to the Dirac δ function, i.e., 〈x|x ′〉 = δ(x − x ′) and
〈y|y ′〉 = δ(y − y ′). Now, we denote the probability amplitudes

|1

|2

|x|y

F1(x)

F2(x)

−if1(y)

if2(y)

xy

FIG. 6. (Color online) Diagram of states for the problem under
treatment in Sec. IV. Interactions of two discrete states |1〉 and |2〉
with two continua are described by functions F1,2(x) and f1,2(y). For
their general definition, see Eq. (20). Their definition for our system
of two atoms in Secs. II and III is given by Eqs. (15), (24), (25), (A5),
and (A9).
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of the participating states as a1, a2, B(x), and b(y), and
our task is to determine the energy eigenvalues ω, and the
corresponding eigenvectors

|ω〉 = a1(ω)|1〉 + a2(ω)|2〉 +
ˆ ∞

x0

B(x; ω)|x〉 dx

+
ˆ ∞

y0

b(y; ω)|y〉 dy, (21)

where x0 means a boundary of the x continuum or a bound-
ary of the interaction, being formally defined by condition
F1,2(x < x0) ≡ 0, and y0 means the same for the y continuum
with condition f1,2(y < y0) ≡ 0. The first task has a trivial
solution: the eigenvalue spectrum is continuous, i.e., any
real number between min(x0,y0) and +∞ is an eigenvalue.
Moreover, the eigenstates that lie higher than max(x0,y0)
are twice degenerate, so two eigenvectors |ω(1)〉 and |ω(2)〉
should be considered. The main part of the problem for the
eigenvectors is their normalization to the δ function, i.e.,
should be

〈ω(1)|ω′
(1)〉 = δ(ω(1) − ω′

(1)),

〈ω(2)|ω′
(2)〉 = δ(ω(2) − ω′

(2)),
(22)

and their mutual orthogonalization, i.e., should be

〈ω(1)|ω′
(2)〉 = 0. (23)

Equations (22) and (23) are of primary importance for any
application.

B. Application

Our application is determination of profile A(ω) of the
absorption of a tunable monochromatic wave of light—from
the ground state |0〉 in the region of optical transitions
|0〉 → |1〉 and |0〉 → |2〉, assuming that there are no other
close transitions. In this case (see Appendix A for a more
quantitative discussion), the continuum |x〉 means the direct
product states |0〉⊗|1(s)

x 〉 where |1(s)
x 〉 is the symmetric one-

photon wave packet of a definite polarization, with the energy
measured from |0〉, so x0 = 0. Continuum |y〉 means the same,
except that a wave packet is antisymmetric. The form of
these wave packets depends on polarization. In view of the
problem in context [see Fig. 5, Eqs. (14) and (17), and the
accompanying text] we are interested in a particular case of
optical transitions M = 0 ↔ M = 0 between the ground state
and orthogonal superpositions of states |Q(0)

1 〉 and |Q(0)
2 〉. These

superpositions are defined by Eqs. (15) and (16). Now, as long
as the states |Q(0)

1 〉 and |Q(0)
2 〉 stand for an atom excitation at

coordinates − 1
2 r and + 1

2 r, respectively, their interactions with
the antisymmetric continuum of states |y〉 are of the opposite
signs in contrast to their interactions with the symmetric
continuum—this approves the notation of Eq. (20). Formulas
for the functions F1,2(x) and f1,2(y) include the matrix element
〈e(0)|d̂|g〉 of the dipole-moment operator [or the spontaneous
decay rate �; see Eq. (6)], the mutual orientation of the M

quantization axis and vector separation r (at angle α), Eqs. (15)
and (16), and integration over the spherical coordinates θ

and ϕ that takes into account all directions of the wave
vector of photons with the same energy. For the transi-
tions with �M = 0 (just considered here), those formulas

are

F1(x) = (u − v)

√
3�Υc(x)

4π
,

F2(x) = (u + v)

√
3�Υc(x)

4π
,

(24)

f1(y) = (u + v)

√
3�Υs(y)

4π
,

f2(y) = (u − v)

√
3�Υs(y)

4π
,

(25)

where the functions Υc(x) and Υs(y) are defined in Appendix A
by Eqs. (A9) and (A5).

The absorption spectrum is, by definition, expressed
through the matrix elements of the operator of the dipole
moment as

A(ω) ∝ |〈0|d̂|ω(1)〉|2 + |〈0|d̂|ω(2)〉|2. (26)

The same operator of the dipole moment is responsible for the
both interaction of the state |0〉 with the states |1〉 and |2〉 and
interaction of the states |1〉 and |2〉 with the states |x〉 and |y〉,
so

〈0|d̂|1〉 ∝ F1(ω10) + if1(ω10),

〈0|d̂|2〉 ∝ F2(ω20) − if2(ω20).
(27)

Substituting Eq. (21) into each of two terms in Eq. (26) and
using Eq. (27) one gets the absorption spectrum as

A(ω) = 1

F 2
1 (ω) + F 2

2 (ω) + f 2
1 (ω) + f 2

2 (ω)

×
2∑

j=1

∣∣[F1(ω) + if1(ω)]a(j )
1 (ω)

+ [F2(ω) − if2(ω)]a(j )
2 (ω)

∣∣2, (28)

where the upper index j runs over two degenerate solutions.
Provided that the normalization condition (22) and orthog-
onalization condition (23) are fulfilled, this function A(ω)
automatically becomes normalized as

´
A(ω) dω = 1.

A set of equations to determine the eigenvectors follows
directly from the Schrödinger equation, being

(ω − E1) a1(ω) =
ˆ ∞

0
F1(ξ )B(ξ ; ω) dξ

− i

ˆ ∞

0
f1(ξ )b(ξ ; ω) dξ,

(ω − E2) a2(ω) =
ˆ ∞

0
F2(ξ )B(ξ ; ω) dξ

+ i

ˆ ∞

0
f2(ξ )b(ξ ; ω) dξ, (29)

(ω − x)B(x; ω) = F1(x)a1(ω) + F2(x)a2(ω),

(ω − y) b(y; ω) = if1(y)a1(ω) − if2(y)a2(ω).

Its solution is presented in Appendix B.
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C. General expression for A(ω)

The absorption spectrum A(ω) defined by Eq. (28) is
expressed through four functions, namely the eigenvector
components a

(1)
1 (ω), a

(1)
2 (ω), a

(2)
1 (ω), and a

(2)
2 (ω), where

the lower index specifies the discrete state (|1〉 or |2〉)
and the upper index runs over two orthogonal eigenvectors
|ω(1,2)〉 attached to eigenvalue ω, as discussed after Eq. (21).
These eigenvector components are obtained by combining
Eqs. (B4), (B5), (B13), (B14), and (B16). Substituting them
into Eq. (28) one arrives at

A(ω) = π−2

F 2
1 + F 2

2 + f 2
1 + f 2

2

( R(1)

S + R(1)
+ R(2)

S + R(2)

)
,

(30)

where

S(ω) = 2D4 + π2D2(U2 + V2 + 2W2), (31)

R(1,2)(ω) = π2D2(U2 + V2 + 2W2)

+ 2π4[U2V2 + (U2 + V2)W2 + W4]

± 2π2(U + V)W[D2 + π2(U2 + W2)]1/2

× [D2 + π2(V2 + W2)]1/2, (32)

with the functions U(ω), V(ω), W(ω), and D(ω) given by
Eq. (B14). Furthermore, note that these functions, and a1,2 (B5)
as well, include quantities Ẽ1,2(ω) and I(ω) defined by
Eq. (B4). We will discuss their significance later, first showing
the validity of Eq. (1).

D. Derivation of Eq. (1)

A system of two discrete states and one continuum being under consideration in Secs. I–III is just a particular case of the
general problem solved here—with, e.g., f1,2 = 0. Then V = 0, W = 0, S = 2D4 + π2D2U2, and R(1) = R(2) = π2D2U2, So,

A(ω) = 1

F 2
1 + F 2

2

U2

D2 + π2U2
= 1

F 2
1 + F 2

2

[
F 2

1 (ω − Ẽ2) + F 2
2 (ω − Ẽ1) + 2F1F2I

]2
[(ω − Ẽ1)(ω − Ẽ2) − I2]2 + π2

[
F 2

1 (ω − Ẽ2) + F 2
2 (ω − Ẽ1) + 2F1F2I

]2 . (33)

One can ignore dependencies of F1,2, Ẽ1,2, and I on ω in Eq. (33); this, at least, for the problem of the present article has a
sense, due to the fact that these quantities are constant, of a very big accuracy, on a scale of the width of the absorption profile.
Furthermore, the quantities

ffl∞
0 F 2

i (x)/(ω − x) dx are usually treated as a part of the Lamb shift of the atomic levels (see, e.g.,
Ref. [40] and the citations therein), so they can be ignored as soon as the Lamb shift can be beforehand included into the values
of energies Ei . These simplifications lead to the Weisskopf-Wigner approximation. Introducing notations ω10 = Ẽ1, ω20 = Ẽ2,
and also representing the rates of spontaneous emission as �i = 2πF 2

i in accordance with the Fermi “golden rule,” we arrive at

A(ω) = 1

2π (�1 + �2)

[�1(ω − ω20) + �2(ω − ω10) + 2
√

�1�2I]2

[(ω − ω10)(ω − ω20) − I]2 + 1
4 [�1(ω − ω20) + �2(ω − ω10) + 2

√
�1�2I]2

. (34)

So far, when I �= 0 a difference can be seen between two expressions for A(ω), i.e., Eqs. (1) and (34). However, this quantity I
can be excluded due to the following redefinition of the values of ω10, ω20, and the �1/�2 ratio:

ωeff
10 = 1

2
[ω10 + ω20 −

√
(ω20 − ω10)2 + 4I2], ωeff

20 = 1

2
[ω10 + ω20 +

√
(ω20 − ω10)2 + 4I2], (35)

�eff
1 = 1

2

[
�1

(
1 + ω20 − ω10√

(ω20 − ω10)2 + 4I2

)
+ �2

(
1 − ω20 − ω10√

(ω20 − ω10)2 + 4I2

)]
−

√
�1�2I√

(ω20 − ω10)2 + 4I2
,

�eff
2 = 1

2

[
�1

(
1 − ω20 − ω10√

(ω20 − ω10)2 + 4I2

)
+ �2

(
1 + ω20 − ω10√

(ω20 − ω10)2 + 4I2

)]
+

√
�1�2I√

(ω20 − ω10)2 + 4I2
,

(36)

where ω20 > ω10. With those effective values, Eq. (34) takes exactly the form of Eq. (1):

A(ω) = 1

2π
(
�eff

1 + �eff
2

) [
�eff

1

(
ω − ωeff

20

)+ �eff
2

(
ω − ωeff

10

)]2(
ω − ωeff

10

)2(
ω − ωeff

20

)2 + 1
4

[
�eff

1

(
ω − ωeff

20

)+ �eff
2

(
ω − ωeff

10

)]2 . (37)

Its universal properties are two equal maximums at ω = ωeff
10 and ω = ωeff

20 , and zero A at ω = (�eff
1 ωeff

20 + �eff
2 ωeff

10 )/(�eff
1 + �eff

2 ).

E. Corrections to Eq. (1)

At a small value of the parameter kr a difference between
A(ω) given by Eq. (1) and A(ω) given by Eqs. (30)–(32) may
also be small. To get this difference and include it into the
numerical example of Sec. III, a few quantities should be
evaluated.

1. Ratio f 2(ωeg)/F2(ωeg)

Discussing the numerical results shown in Fig. 5(a) we
have noted that at the left side of the graph (where �S → 0)
the subradiant state with �1 � � and superradiant state with
�2 ≈ 2� are in play. In view of Eq. (15), this is the simplest
case due to u = v = 1/

√
2, so F1(x) = 0 and f2(y) = 0.
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Taking the ratio of nonzero f and F , i.e., f1/F2, one gets from Eqs. (24), (25), and (A9)

f 2(y = ωeg)

F 2(x = ωeg)
= Υs(y = ωeg)

Υc(x = ωeg)
=

´ 2π

0

´ π

0 sin2
[

1
2kr(sin α sin θ cos ϕ + cos α cos θ )

]
sin3 θ dθ dϕ´ 2π

0

´ π

0 cos2
[

1
2kr(sin α sin θ cos ϕ + cos α cos θ )

]
sin3 θ dθ dϕ

, (38)

where k ≡ ωeg/c by definition. This ratio remains constant at
any values of the expansion coefficients u, v (16) in a sense of
(f 2

1 + f 2
2 )/(F 2

1 + F 2
2 )—being equal to the ratio of two rates of

the spontaneous decay. At kr � 1 a small rate γ of the decay
into the y continuum is expressed through � as

γ ≈ 3(kr)2�

32π

ˆ 2π

0

ˆ π

0
(sin α sin θ cos ϕ+ cos α cos θ )2 dθ dϕ

= 1

8
(kr)2�

[
2

3
+ 1

5
(2 cos2 α − sin2 α)

]
. (39)

If α is the magic angle α0 then

γ ≈ 1
12 (kr)2�. (40)

Hence, an estimate for the rate of spontaneous decay of the
subradiant entangled state can also be obtained: it is 2γ ≈
1
6 (kr)2�.

2. Shifted energies ˜E1,2(ωeg) and integral I(ωeg)

These quantities complement each other. Substituting (24)
and (25) into Eq. (B4) one arrives at

Ẽ1(ωeg) = E1 + 3�

16π2

 ∞

0

3
8π − 2uv[Υc(ξ ) − Υs(ξ )]

ω − ξ

×F(ξ )dξ,

Ẽ2(ωeg) = E2 + 3�

16π2

 ∞

0

3
8π + 2uv[Υc(ξ ) − Υs(ξ )]

ω − ξ

×F(ξ ) dξ,

I(ωeg) = 3�

16π2

 ∞

0

(u2 − v2)[Υc(ξ ) − Υs(ξ )]

ω − ξ
F(ξ ) dξ.

(41)

Qualitatively these quantities mean the same as explained in
Sec. IV D, defining radiative shifts of the levels [see Eq. (35)],
and a certain change of the �1/�2 ratio [see Eq. (36)], but
their evaluation is more concrete here. So, when u = 1 and
v = 0 the shifts of levels are equal, whereas the value of
I reaches its maximum value Imax. This occurs in the case
where the eigenstates are exactly the pure product states Q(0)

1

and Q(0)
2 . In the opposite case, when the eigenstates are the

maximally entangled states, i.e., u = v = 1/
√

2, then I = 0,
but the difference of the Lamb shifts of the symmetric |2〉 and
antisymmetric |1〉 superpositions of Q(0)

1 and Q(0)
2 reaches a

value of 2Imax. As long as our task is to apply Eqs. (30)–(32)
to a situation where states |1〉 and |2〉 are almost |Q(0)

1 〉 and
|Q(0)

2 〉, respectively (see a label �̃S in Fig. 5), we limit ourselves
to a case of F1(x) ≈ F2(x) and f1(y) ≈ f2(y). Then one has
inside the integral I in the third line of Eq. (41):

F1(ξ )F2(ξ ) − f1(ξ )f2(ξ )

≈ 3�F(ξ )

16π2

ˆ 2π

0

ˆ π

0
cos

[
ξr

c
(sin α sin θ cos ϕ

+ cos α cos θ )

]
sin3 θ dθ dϕ, (42)

where the function F(ξ ) is suggested by Eq. (A5) after
Ref. [41].

However, the expression (B4) describes only a part of
interaction between the two atomic states |eg〉 and |ge〉 through
the electromagnetic field. This part includes just an interaction
via the ground state |gg〉 of the system of two atoms. Another
part relates to an interaction via the double-excited state |ee〉.
Its addition leads to the following redefinition:

I(ωeg) = 3�

16π2

{ˆ 2π

0

ˆ π

0
sin3 θ

 ∞

0

F(ξ )

ωeg − ξ
cos

[
ξr

c
(sin α sin θ cos ϕ + cos α cos θ )

]
dξ dθ dϕ

−
ˆ 2π

0

ˆ π

0
sin3 θ

ˆ ∞

0

F(ξ )

ωeg + ξ
cos

[
ξr

c
(sin α sin θ cos ϕ + cos α cos θ )

]
dξ dθ dϕ

}

= 3�

16π2

ω2
eg + ω2

c

ωeg

ˆ 2π

0

ˆ π

0
sin3 θ dθ dϕ

 ∞

−∞

ξ cos [(ξr/c)(sin α sin θ cos ϕ + cos α cos θ )]

(ωeg − ξ )
(
ξ 2 + ω2

c

) dξ, (43)

where the odd parity of F allows us to join the two interaction
parts into one analytic integration over the whole real axis
ξ . This integration is performed in Appendix C. For the case
treated in Secs. I–III, i.e., at the conditions of kr � 1 and
α = α0 = arccos(1/

√
3) (the magic angle), the calculation

gives

I(ωeg) ≈ [0.25kr − 0.5(kr)−1]� (44)

according to Eqs. (C6) and (C7). It should be noted, however,
that this estimate corresponds just to (i) the second order of
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FIG. 7. (Color online) The dashed curve shows the spectrum
A(ω) [see Eq. (1) with �1 = �2 = �]. The distance � ≈ 0.46�

between the two states is chosen so that the FWHM of A(ω) would be
equal to �/10. The solid curve takes into account a small correction
of Sec. IV E 1 [Eq. (40)] introduced by γ ≈ 0.0055 (kr = 0.25 in
our numerical example), but ignore corrections of Sec. IV E 2.

the perturbation theory, and (ii) our choice of the function F
according to Eq. (A5).

V. FINAL RESULTS

The formulas of Sec. IV and the appendixes are used
for calculation of the absorption spectrum for the numerical
example of Sec. III. Its difference from the spectrum given by
Eq. (1) is determined by two quantities, γ (40) and I (44),
if they are nonzero. First, we analyze separately the role of
γ , i.e., the relatively small spontaneous transition rate into the
antisymmetric continuum. To do this we putI = 0 in Eq. (B14)
and calculate the spectrum using Eqs. (30)–(32) and (40). The
result is shown in Fig. 7 by the solid curve. A qualitative
property of the improved spectrum is that the additional decay
channel lifts A = 0 of Eq. (1) to a nonzero value.

However, the quantity I dramatically changes the spectrum
shape due to that, in the case under consideration, it is of
the same order as the total spontaneous decay rate � is [see
Eq. (44)]. The corresponding absorption spectrum is shown in
Fig. 8. Although it has an interesting shape this is not what
we want to get. The only way to compensate the repulsing
action of I �= 0 is a slight change of the angle α in Fig. 2
that leads to nonzero matrix elements 〈Q(M)

1 |Û |Q(M)
2 〉 of the

operator Û of the dipole-dipole interaction. The ‖Ûs‖ and ‖Ûa‖
matrices are modified from those given by Eq. (7) to

‖Us‖ = Ur

∥∥∥∥∥∥∥∥
1 − 3

2 sin2 α − 3
√

2
4 sin 2α 3

√
2

4 sin 2α

− 3
√

2
4 sin 2α 1 − 3 cos2 α 3

√
2

4 sin 2α

3
√

2
4 sin 2α 3

√
2

4 sin 2α 1 − 3
2 sin2 α

∥∥∥∥∥∥∥∥,

|Ua‖ = Ur

∥∥∥∥∥∥∥∥
3
2 sin2 α − 1 3

√
2

4 sin 2α − 3
√

2
4 sin 2α

3
√

2
4 sin 2α 3 cos2 α − 1 − 3

√
2

4 sin 2α

− 3
√

2
4 sin 2α − 3

√
2

4 sin 2α 3
2 sin2 α − 1

∥∥∥∥∥∥∥∥
(45)
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FIG. 8. (Color online) The solid curve shows the spectrum A(ω)
with inclusion of the quantityI (44). All other parameters are the same
as in Fig. 7. The frequency scale is compressed twice, as compared
to that in Fig. 7, and is the same as in Fig. 1.

for an arbitrary angle α. With a strong magnetic field applied
along the axis z, the half splitting between the symmetric and
antisymmetric entangled states under consideration, i.e., Q(0)

s
and Q(0)

a , is ≈Ur (1 − 3 cos2 α). So, for a compensation of I at
kr � 1, the following condition should be fulfilled:

kr

4
− 1

2kr
+

√
2

(
kr

16
+ 1

8kr
+ 3

2(kr)3

)
(α − α0) � 10−1.

(46)

Here, (i) the definition of Ur after Eq. (7) and Eqs. (C6)
and (C7) for I are used, (ii) a small deviation of α from
the magic angle α0 is assumed, and (iii) the compensation
accuracy is dictated by a desired width of the dip. Due to a
stronger dependence of the dipole-dipole interaction on the
parameter kr than the dependence I(kr), the condition (46)
is, indeed, fulfilled at α − α0 � 1. Our simulation gives that
the transformation of the absorption spectrum in Fig. 8 to

− 1
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FIG. 9. (Color online) Examples of spectra A(ω) calculated us-
ing Eqs. (30)–(32) and (39). Equality �1 = �2 and all other conditions
of Sec. III are kept. The parameter σ/� [see Eq. (3)] that gives an
estimate for the dip’s relative width is equal to 0.1 (curve 1, same as
in Fig. 7), 0.05 (curve 2), 0.02 (curve 3), and 0.01 (curve 4). (The
frequency scale is extended twice, as compared to that in Fig. 7, and
fourfold, as compared to that in Fig. 8.)
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FIG. 10. (Color online) Examples of spectra A(ω) calculated
using Eqs. (30)–(32) and (39) for different values of the parameter
kr at the fixed value of the ratio σ/� = 0.1. Curve 1: kr = 0.4; 2:
kr = 0.6; 3: kr = 0.8; 4: kr = 1.0.

the spectrum in Fig. 7 is achieved, with a good (about 1%)
accuracy, at α − α0 ≈ 1.4 × 10−2 rad ≈0.8◦.

A question may be raised about physical limitations on the
dip’s width. Figure 9 gives a particular answer. Therein, the
results of calculation using the formulas of Sec. IV C are shown
for the different values of σ given by Eq. (3). It is seen that,
with kr = 0.25, an attempt to reach a width of about �/100
should not work.

For larger values of kr the limitations are stronger due to an
increase of the role of the antisymmetric spontaneous decay
[see Eq. (40)], so the dip, even if it exists, is not so pronounced
as in Fig. 7. An illustrative example is shown in Fig. 10. Here
the desired width of the dip is the same as in Fig. 7 (i.e.,
σ/� = 0.1), and the parameter kr is varied. It is seen that
to provide this value of σ the distance r between the atoms
should not exceed ≈λeg/8.

For every value of the parameter kr a certain critical value
of σ exists such as, e.g., σcr ∼ �/100 (at kr = 0.25) with the

TABLE I. Critical values σcr (fourth column) for different
distances between the atoms (first column). Corresponding values
of the angle α between the magnetic field and the direction from one
atom to another are presented in the second column. Corresponding
small fractions of the spontaneous decay into the antisymmetric
continuum are presented in the third column.

kr α − α0 (rad) γ

�
= f 2

F 2+f 2 σcr

0.25 0.014 0.0052 0.011
0.50 0.051 0.021 0.037
0.75 0.091 0.048 0.073
1.00 0.111 0.084 0.11
1.25 0.090 0.13 0.13
1.50 0.025 0.17 0.14
1.75 −0.073 0.21 0.15
2.00 −0.192 0.24 0.16
2.20 −0.301 0.27 0.16
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FIG. 11. (Color online) Examples of spectra A(ω) calculated
using Eqs. (30)–(32) and (39) for different values of the ratio σ/�

at the fixed value of the parameter kr = 2.2. Curve 1 − σ = 0.2;
2 − σ = 0.3; 3 − σ = 0.4; 4 − σ = 0.5.

upper curve in Fig. 9 where a dip vanishes. Certain results
of calculation of these critical values σcr at different kr are
presented in Table I. To calculate them suitable angles α were
determined using Eqs. (C4), (C7), and an equation like (46)
but more accurate; then the corresponding ratios (38) of the
two spontaneous decay rates were calculated.

One can see from the presented results that the raised
question about limitations on the dip’s width may have a
sense just for definite realizations, including a variety of traps
for atoms, molecules, or ions, any discussion of which is
beyond the scope of this article. We only present one additional
example. The last row in Table I is of a special interest for the
scheme with two barium atoms introduced in Sec. III. The
matter is that the value kr = 2.2 exactly corresponds
to the distance between the atoms r ≈ 277 nm that is equal
to the half length of the strongest transition 6 1S0 ↔ 6 1P1

in the Ba atom. So, it is possible to use trapping of the
two atoms in adjacent sites of an optical lattice produced
by a laser light with the wavelength near 554 nm. (Such a
technology is experimentally approved—for the recent notable
achievements see, e.g., Refs. [42,43].) Then the expected
absorption spectra at the wavelength of 791 nm are shown
in Fig. 11.

VI. CONCLUSIONS

(i) The aim of this article is to show that the effect of
the narrow dip within the natural linewidth � of the optical
transition is possible for a system of two atoms. It is assumed
that the distance between the atoms is much smaller than the
transition wavelength. Originally any dip narrowness cannot
be achieved because the dipole-dipole interaction at so small
distances is much larger than � so the energies of two excited
entangled states |Q(M)

s 〉 and |Q(M)
a 〉 differ much more than the

natural linewidth of transition. The basic idea to bring these
energies together consists of application of a sufficiently strong
magnetic field directed at the magic angle α0 with respect to
the vector separation between the atoms (see Fig. 3). It could
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be enough if the atoms were nonidentical in a sense that their
transition frequencies differ more than the residual splitting
of the two entangled states but less than the natural linewidth
[see Eq. (12)]. To achieve a needed difference of the transition
frequencies (so nonidentity of the atoms) a scheme using a
nonresonant laser standing wave is considered for illustration.
One more possible scheme can use a gradient of the magnetic
field in the perpendicular direction.

(ii) A model example of Sec. III is chosen to demonstrate
conditions for the narrow dip effect that are optimum from
the points of view of spectroscopy, applied fields, and the
dip’s width. In this example, the distance between the atoms
is small (dozens of nanometers). For more realistic distances,
a dip still exists but it is less pronounced.

(iii) The point concerning an interaction between the
excited states of two atoms via the radiation field (integral
I in Sec. IV E 2) has a generic sense. The quantity I may
be treated as a difference between the Lamb shifts (see also
Ref. [31]) of the symmetric and antisymmetric entangled states
|Q(M)

s 〉 and |Q(M)
a 〉. Its influence on the spectrum is clearly seen

by comparing Figs. 7 and 8, but it can be compensated by a
small shift of the angle α from α0. The corresponding data
are presented in Table I, but it should be noted that they
are calculated just in the second order of the perturbation
theory and with a certain model choice of the function F [see
Eq. (A5)]. This point is, probably, worth a further analysis and
an experimental test.

(iv) A sensitivity of absorption spectrum to external fields
and geometry may be useful for precision measurements and
diagnostics.
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APPENDIX A: DETERMINATION OF Υc AND Υs

USED FOR EQS. (24) AND (25)

The atom-field interaction of the product state |e(0)〉⊗|vac〉
with the states |g〉⊗|1(0)

ξk〉 [where ξ is the frequency of the
photon and the superscript (0) points out that the M = 0 →
M = 0 transition is just considered] depends on the direction
of the photon wave vector k. Let us use a shorter notation for the

product states, and denote the corresponding matrix elements
as βξk, or βξ (θ,ϕ) where a pair of the spherical angles {θ,ϕ} sets
a direction of k. Then it is convenient to use a generic recipe
(see, e.g., [44]) enabling us to construct a unique superposition
of the states |g,1(0)

ξθϕ〉 ≡ |g,1(0)
ξk〉 that alone interacts with the

state |e(0),vac〉. Such a superposition can be written as

∣∣g,1(0)
ξ

〉 = ´ 2π

0

´ π

0 βξ (θ,ϕ)
∣∣g,1(0)

ξθϕ

〉
sin θ dθ dϕ√´ 2π

0

´ π

0 |βξ (θ,ϕ)|2 sin θ dθ dϕ

. (A1)

Next, the interaction of the atom with every plain k wave is
presented (see, e.g., [45,46]) as

Ĥ′ = ν
(̂
P · ekρ

)
eikR (A2)

where P̂ is the operator of the total momentum of electrons, ekρ

is the coplanar with P̂ and perpendicular to the k unit vector
of polarization, R is the radius vector of the position of the
atom. It is convenient to express the proportionality factor ν

in Eq. (A2) through the spontaneous emission rate � of the
transition |e(0)〉 → |g〉 as

ν =
√

3�F(ξ )

4π |〈e(0) |̂P|g〉| (A3)

with F(ξ ) = 1 at ξ = ωeg . In such a form it complies with the
Fermi golden rule,

2π
∣∣〈e(0),vac |Ĥ′∣∣g,1(0)

ωeg

〉∣∣2 = �, (A4)

since (̂P · ekρ) ∝ sin θ , and
´ 2π

0

´ π

0 sin3 θ dθ dϕ = 8π/3. As
for a dimensionless function F(ξ ), it describes a dependence
of the atom-field interaction on the photon frequency including
the density of the modes of the quantized electromagnetic field.
For model estimates of Sec. V E, we choose this function in a
form suggested in Ref. [41] as

F(ξ ) = ξ
(
ω2

eg + ω2
c

)
ωeg

(
ξ 2 + ω2

c

) (A5)

with ωc � ωeg . In addition to (i) the correspondence to the
Fermi golden rule at ξ ≈ ωeg , this function provides (ii) a sim-
ulation of an atom-field interaction in the dipole approximation
(F ∝ ξ in a wide range of the photon frequency), and (iii) a
smooth cutoff added at ξ ∼ ωc � ωeg [47,48].

Now we generalize our consideration to the case of two
atoms. We adhere to the axis notation shown in Fig. 2,
so the two atom radius vectors are ‖Rx = ∓ 1

2 r sin α,Ry =
0,Rz = ∓ 1

2 cos α‖, whereas the k components are {kx =
|k| sin θ cos ϕ, ky = |k| sin θ sin ϕ, kz = |k| cos θ . Thus, we
arrive at

β1ξ (θ,ϕ) ≡ 〈e(0)
1 g2,vac

∣∣Ĥ′∣∣g1g2,1
(0)
ξθϕ

〉 = √
3�F(ξ )

4π
sin θ exp

[
−i

ξr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
,

(A6)

β2ξ (θ,ϕ) ≡ 〈g1e
(0)
2 ,vac

∣∣Ĥ′∣∣g1g2,1
(0)
ξθϕ

〉 = √
3�F(ξ )

4π
sin θ exp

[
+i

ξr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
for the two atoms, respectively. Hence, one can see that the superpositions (A1) are different due to different positions of the atoms.
In addition, they are not orthogonal. Thus, it only remains to use separately the real and imaginary parts of the superposition (A1)
as the two states that uniquely interact with the both atoms—with the same (for the real part) and the opposite (for the imaginary
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part) signs of the matrix elements of the atom-field interaction. These two states would be labeled by different frequency variables,
e.g., x and y instead of ξ , because they belong, indeed, to different continua as shown in Fig. 6. The corresponding formulas for
them are ∣∣g1g2,1

(0)
x

〉 = √ 3

8π

ˆ 2π

0

ˆ π

0
cos

[
xr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
sin θ

∣∣g1g2,1
(0)
xθϕ

〉
sin θ dθ dϕ,

∣∣g1g2,1
(0)
y

〉 = √ 3

8π

ˆ 2π

0

ˆ π

0
sin

[
yr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
sin θ

∣∣g1g2,1
(0)
xθϕ

〉
sin θ dθ dϕ.

(A7)

At the end, the final formulas for the matrix elements of the operator Ĥ′ are〈
e

(0)
1 g2,vac

∣∣Ĥ′∣∣g1g2,1
(0)
x

〉 = √
3�Υc(x)

4π
,
〈
g1e

(0)
2 ,vac

∣∣Ĥ′∣∣g1g2,1
(0)
x

〉 = √
3�Υc(x)

4π
,

〈
e

(0)
1 g2,vac

∣∣Ĥ′∣∣g1g2,1
(0)
y

〉 = −i

√
3�Υs(y)

4π
,
〈
g1e

(0)
2 ,vac

∣∣Ĥ′∣∣g1g2,1
(0)
y

〉 = i

√
3�Υs(y)

4π
,

(A8)

where the functions Υc(x) and Υs(y) are defined as

Υc(x) = F(x)
ˆ 2π

0

ˆ π

0
cos2

[
xr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
sin3 θ dθ dϕ,

Υs(y) = F(y)
ˆ 2π

0

ˆ π

0
sin2

[
yr

2c
(sin α sin θ cos ϕ + cos α cos θ )

]
sin3 θ dθ dϕ.

(A9)

APPENDIX B: SOLUTION OF THE EIGENVECTOR
PROBLEM (29)

The solution gotten here supplements a collection of
analytically solvable “discrete and continuum” models that
can be found, e.g., in Refs. [1,2,41,49–51]. The solution is
obtained using the distribution approach (distributions are also
called generalized functions [52]).

From the last two equations in Eq. (29) one has

B(x; ω) = [F1(x)a1(ω) + F2(x)a2(ω)]P 1

ω − x

+G(ω)δ(ω − x),
(B1)

b(y; ω) = i[f1(y)a1(ω) − f2(y)a2(ω)]P 1

ω − y

+ g(ω)δ(ω − y),

where G(ω) and g(ω) are arbitrary constants for each twice
degenerate ω eigenvalue. The two distributions, δ(ω − ξ )
and P 1

ω−ξ
(ξ ≡ x,y), enter Eq. (B1). They are defined as

functionals

(δ(ω − ξ ),φ(ξ )) =
ˆ ∞

−∞
φ(ξ )δ(ω − ξ ) dξ ≡ φ(ω),(

P 1

ω − ξ
,φ(ξ )

)
= Vp

ˆ ∞

−∞

φ(ξ )

ω − ξ
dξ ≡

 ∞

−∞

φ(ξ )

ω − ξ
dξ

(B2)

acting in a space of trial functions φ that rapidly fall at the
infinity. (The slash means the same as “Vp”—that the integral
is understood in the sense of its Valeur principale (principal
value) of Augustin-Louis Cauchy.) Next, we put (B1) in the
first two equations (29) and arrive at the following set of

equations for a1,2(ω):

(ω − Ẽ1(ω))a1(ω) − I(ω)a2(ω)

= F1(ω)G(ω) − if1(ω)g(ω)
(B3)

−I(ω)a1(ω) + (ω − Ẽ2(ω))a2(ω)

= F2(ω)G(ω) + if2(ω)g(ω),

where

Ẽi(ω) = Ei +
 ∞

0

F 2
i (ξ ) + f 2

i (ξ )

ω − ξ
dξ,

(B4)

I(ω) =
 ∞

0

F1(ξ )F2(ξ ) − f1(ξ )f2(ξ )

ω − ξ
dξ.

Hence we get

a1 = (F1G − if1g)(ω − Ẽ2) + (F2G + if2g)I
(ω − Ẽ1)(ω − Ẽ2) − I2

,

(B5)

a2 = (F2G + if2g)(ω − Ẽ1) + (F1G − if1g)I
(ω − Ẽ1)(ω − Ẽ2) − I2

,

where bracketed ω is omitted for shortness. As a final step, it is
required to determine G and g as functions of ω. To do this one
has to use normalization and orthogonalization conditions (22)
and (23), respectively. Rewriting them in an explicit form with
the use of Eq. (21) as

a
(j )
1 (ω)a(j )

1

∗
(ω′) + a

(j )
2 (ω)a(j )

2

∗
(ω′)

+
ˆ ∞

0
B(j )(x; ω)B(j )∗(x; ω′) dx

+
ˆ ∞

0
b(j )(y; ω)b(j )∗(y; ω′) dy = δ(ω − ω′) (B6)
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and

a
(1)
1 (ω)a(2)

1

∗
(ω′) + a

(1)
2 (ω)a(2)

2

∗
(ω′)

+
ˆ ∞

0
B(1)(x; ω)B(2)∗(x; ω′) dx

+
ˆ ∞

0
b(1)(y; ω)b(2)∗(y; ω′) dy = 0, (B7)

one can see a necessity for additional definitions, namely, what
do the three integrals mean? Those integrals are

J1 =
ˆ ∞

0
δ(ω − ξ )δ(ω′ − ξ ) dξ = ?,

J2 =
ˆ ∞

0
G(ξ ; ω)P 1

ω − ξ
δ(ω′ − ξ ) dξ = ?, (B8)

J3 =
ˆ ∞

0
G(ξ ; ω)P 1

ω − ξ
G(ξ ; ω′)P 1

ω′ − ξ
dξ = ?

with function G either G(ξ ; ω) = F1(ξ )a1(ω) + F2(ξ )a2(ω) or
G(ξ ; ω) = f1(ξ )a1(ω) − f2(ξ )a2(ω) where a1,2 are defined by

Eq. (B5). These integrals should be treated as the distributions,
i.e., functionals like (B2) acting on the trial functions φ. This
task is easy for the first two integrals:

J1(ω,ω′) = δ(ω − ω′),
(B9)

J2(ω,ω′) = G(ω′,ω)P 1

ω − ω′ .

The third integral in Eq. (B8) can be transformed to a
combination of the known distributions with the use of the
formula of Sokhotsky [53]. It represents the principal-value
distribution as

P 1

ω − ξ
= iπδ(ω − ξ ) + lim

ε→+0

1

ω − ξ + iε
. (B10)

Hence, using also Eq. (B9), we have

J3(ω,ω′) = iπ

ˆ ∞

0
δ(ω − ξ )G(ξ ; ω)G(ξ ; ω′)P 1

ω′ − ξ
dξ + lim

ε→+0

 ∞

0

G(ξ ; ω)G(ξ ; ω′)
(ω − ξ + iε)(ω′ − ξ )

dξ

= iπG(ω,ω)G(ω,ω′)P 1

ω′ − ω
+
(

lim
ε→+0

1

ω − ω′ + iε

)( ∞

0

G(ξ ; ω)G(ξ ; ω′)
ω′ − ξ

dξ − lim
ε→+0

ˆ ∞

0

G(ξ ; ω)G(ξ ; ω′)
ω − ξ + iε

dξ

)

= iπG(ω,ω)G(ω,ω′)P 1

ω′ − ω

+
(
P 1

ω − ω′ − iπδ(ω − ω′)
)[ ∞

0

G(ξ ; ω)G(ξ ; ω′)
ω′ − ξ

dξ −
ˆ ∞

0
G(ξ ; ω)G(ξ ; ω′)

(
P 1

ω − ξ
− iπδ(ω − ξ )

)
dξ

]

= π2G2(ω,ω)δ(ω − ω′) + P 1

ω − ω′

 ∞

0

G(ξ ; ω)G(ξ ; ω′)
ω′ − ξ

dξ + P 1

ω′ − ω

 ∞

0

G(ξ ; ω)G(ξ ; ω′)
ω − ξ

dξ. (B11)

Everything is ready now to get G(ω) and g(ω). Roughly, the terms of two types appear as a result of substitution of
Eqs. (B1) and (B5) into Eqs. (B6) and (B7) with the use of Eqs. (B8), (B9), and (B11). First, one can extract the terms that are
proportional to the δ function. Second, it can be found that all other terms are mutually canceled. It is convenient to begin with
the orthogonalization condition. It should be

π2(F1a
(1)
1 + F2a

(1)
2

)(
F1a

(2)
1

∗ + F2a
(2)
2

∗)+ G(1)G(2)∗ + π2(f1a
(1)
1 − f2a

(1)
2

)(
f1a

(2)
1

∗ − f2a
(2)
2

∗)+ g(1)g(2)∗

= G(1)G(2)∗
{

1 + π2

[(ω − Ẽ1)(ω − Ẽ2) − I2]2

(
[F 2

1 (ω − Ẽ2) + F 2
2 (ω − Ẽ1) + 2F1F2I]2

+ [F1f1(ω − Ẽ2) − F2f2(ω − Ẽ1) + (F2f1 − F1f2)I]2
)}

+ g(1)g(2)∗
{

1 + π2

[(ω − Ẽ1)(ω − Ẽ2) − I2]2

(
[f 2

1 (ω − Ẽ2) + f 2
2 (ω − Ẽ1) − 2f1f2I]2

+ [F1f1(ω − Ẽ2) − F2f2(ω − Ẽ1) + (F2f1 − F1f2)I]2
)}

+ (G(1)g(2)∗ − g(1)G(2)∗)
iπ2[F1f1(ω − Ẽ2) − F2f2(ω − Ẽ1) + (F2f1 − F1f2)I]

[(ω − Ẽ1)(ω − Ẽ2) − I2]2

× {[F 2
1

(
ω − Ẽ2

)+ F 2
2

(
ω − Ẽ1

)+ 2F1F2I
]2 + [f 2

1

(
ω − Ẽ2

)+ f 2
2

(
ω − Ẽ1

)− 2f1f2I
]2} = 0, (B12)
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where the first line is combination of Eqs. (B1), (B7), (B9),
and (B11), and the final equality is a result of substitution of
Eq. (B5) into the first line. To satisfy Eq. (B12) the easiest
choice for G(1,2) and g(1,2) is (from a number of choices) the
following:

G(1) = C(1)

(
1 + π2 V2 + W2

D2

)1/2

,

g(1) = i C(1)

(
1 + π2 U2 + W2

D2

)1/2

,

G(2) = C(2)

(
1 + π2 V2 + W2

D2

)1/2

,

g(2) = −i C(2)

(
1 + π2 U2 + W2

D2

)1/2

,

(B13)

where the following notation is used for shortness:

D = (ω − Ẽ1)(ω − Ẽ2) − I2,

U = F 2
1 (ω − Ẽ2) + F 2

2 (ω − Ẽ1) + 2F1F2I,
(B14)

V = f 2
1 (ω − Ẽ2) + f 2

2 (ω − Ẽ1) − 2f1f2I,

W = F1f1(ω − Ẽ2) − F2f2(ω − Ẽ1) + (F2f1 − F1f2)I,

and real functions C(1)(ω) and C(2)(ω) serve as the normaliza-
tion constants, at a given eigenvalue ω, for the two orthogonal
eigenvectors according to Eq. (B6). The normalization condi-
tion on C(1,2) follows from

G2 + |g|2 + π2(F1a1 + F2a2)2 + π2(f1a1 − f2a2)2 = 1.

(B15)

Hence

D4

(C(1,2))2
= 2D4 + 2π2D2(U2 + V2 + 2W2)

+ 2π4[U2V2 + (U2 + V2)W2 + W4]

± 2π2(U + V)W[D2 + π2(U2 + W2)]1/2

× [D2 + π2(V2 + W2)]1/2. (B16)

All necessary formulas to determine the absorption spec-
trum are given in the beginning of Sec. IV C with references
to the formulas of this Appendix.

APPENDIX C: CALCULATION OF THE
INTEGRAL (43)

The integration in the variable ξ in Eq. (43) gives

 ∞

−∞

ξ cos [(ξr/c)(sin α sin θ cos ϕ + cos α cos θ )]

(ωeg − ξ )
(
ξ 2 + ω2

c

) dξ = Re
 ∞

−∞

ξ exp [i(ξr/c)| sin α sin θ cos ϕ + cos α cos θ |]
(ωeg − ξ )

(
ξ 2 + ω2

c

) dξ

= Re
[
πi Res

ξ=ωeg

I (ξ ) + 2πi Res
ξ=iωc

I (ξ )

]
, (C1)

where I (ξ ) is the integrand in the right side of the first line. The residues in the second line are

Res
ξ=ωeg

I (ξ ) = − ωeg

ω2
eg + ω2

c

× exp (ikr|sin α sin θ cos ϕ + cos α cos θ |) (C2)

with k = ωeg/c by definition, and

Res
ξ=iωc

I (ξ ) = 1

2(ωeg − iωc)
× exp

(
−ωcr

c
|sin α sin θ cos ϕ + cos α cos θ |

)
. (C3)

Hence, for the whole integral (43) we have I(ωeg) = I ′(ωeg) + I ′′(ωeg) with

I ′(ωeg) = 3�

16π

ˆ 2π

0

ˆ π

0
sin(kr| sin α sin θ cos ϕ + cos α cos θ |) sin3 θ dθ dϕ, (C4)

I ′′(ωeg) = − 3�

16π

ωc

ωeg

ˆ 2π

0

ˆ π

0
exp

(
−ωcr

c
|sinα sin θ cos ϕ + cos α cos θ |

)
sin3 θ dθ dϕ. (C5)

In particular, at kr � 1 the integration for the first term gives

I ′(ωeg) ≈ 3kr�

16π

ˆ 2π

0
dϕ

(ˆ θ0(ϕ)

0
(sin α sin θ cos ϕ + cos α cos θ ) sin3 θ dθ −

ˆ π

θ0(ϕ)
(sin α sin θ cos ϕ + cos α cos θ ) sin3 θ dθ

)
= 3kr�

16π

{
1

2
cos α

ˆ 2π

0
sin4 θ0(ϕ) dϕ

+ sin α

ˆ 2π

0

[
−3π

8
+ 3

4
θ0(ϕ) − sin θ0(ϕ) cos θ0(ϕ) + 1

4
sin θ0(ϕ) cos3 θ0(ϕ) − 1

4
sin3 θ0(ϕ) cos θ0(ϕ)

]
cos ϕ dϕ

}
≡ 3kr�

16π

(
cos α + 3 sin2 α

2 cos α

) ˆ ∞

−∞

dx

1 + tan2 α + x2
= 3kr�

16

(
1 + 1

2
sin2 α

)
, (C6)

where θ0(ϕ) corresponds to the zero value of the integrand, so that sin θ0(ϕ) = (1 + tan2 α cos2 ϕ)−1/2 and cos θ0(ϕ) =
− tan α cos ϕ(1 + tan2 α cos2 ϕ)−1/2, and the standard variable substitution x = tan ϕ is used. For the second term I ′′, just a
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small part of the integration region is significant due to a strong inequality ωcr/c � 1. This part is localized along the above
introduced curve θ0(ϕ) in the plane of the variables {θ,ϕ}. This curve is exactly the above introduced θ0(ϕ) where the sharp
maximum of the integrand is reached. So, the value of the integral in I ′′ (C5) in the variable θ can be approximated using the
derivative at θ0 and extending the integration into the whole axis. As a result one can get

I ′′(ωeg) ≈ − 3�

16π

ωc

ωeg

ˆ 2π

0
sin3 θ0(ϕ)

ˆ ∞

−∞
exp

(
−ωcr

c

∣∣∣∣ ∂

∂θ
(sin α sin θ cos ϕ + cos α cos θ )|θ=θ0(ϕ)[θ − θ0(ϕ)]

∣∣∣∣) dθ dϕ

= − 3�

8πkr cos α

ˆ 2π

0

dϕ

(1 + tan2 α cos2 ϕ)2
= − 3�

8kr
(1 + cos2 α). (C7)

Notice that (i) the value of the cutoff frequency ωc does not enter Eq. (C7), and (ii) the two contributions I ′ and I ′′ are of the
opposite signs, so they can interfere. These points are discussed in Secs. IV E 2 and V.
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