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Proposal for enhanced photon blockade in parity-time-symmetric coupled microcavities
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Recent demonstrations of parity-time- (PT -) symmetric structure have exhibited the great potential of this
system for tailoring the light-matter interaction and developing a wide range of robust quantum devices. Here we
explore the second-order photon correlations in a PT -symmetric system consisting of a passive nonlinear cavity
coupled to an active cavity via optical tunneling. It is shown numerically that strong photon antibunching including
perfect photon blockade can be obtained efficiently even if the Kerr nonlinearity strength, the photon-tunneling
strength, and the driving strength are smaller than the cavity decay rate. The physical mechanism underlying
photon blockade originally comes from the dynamical enhancement of intracavity nonlinearity by the effect of
supermode field localization in the PT -symmetric arrangement. The results obtained provide insight into the
crossover between the photon blockade and PT -symmetric theory. Such controllable photon antibunching may
find applications in the generation of high-quality single-photon sources.
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I. INTRODUCTION

Photon blockade and tunneling is a current research topic
and is important for a variety of fundamental studies and
practical applications [1–13]. Experimentally, the signature
of the photon blockade and tunneling can be distinguished
by measuring the second-order correlation function at time
delay zero g(2)(0) [14]. For the photon blockade (or photon
antibunching g(2)(0) < 1), the presence of a single photon in
a system, driven by an external coherent field, will hinder
the coupling of the subsequent photons because of the strong
nonlinearities present in the quantum system itself. In contrast,
for the photon tunneling (or photon bunching g(2)(0) > 1),
the coupling of initial photons will favor the coupling of the
subsequent photons [14]. The observation of photon blockade
relies on a challenging task that nonlinear interactions in
quantum systems exceed the characteristic dissipation rate.
A key point for high-quality single-photon sources is to
realize a strong photon blockade [15–17]. Thus, in order
to achieve the best photon blockade, considerable research
effort has been spent in a variety of strongly coupled quantum
systems including cavity, optomechanics, and circuit quantum
electrodynamics [18–26].

Since the conception of parity-time (PT ) symmetry was
proposed originally in quantum mechanics [27,28], photonics
has been proved to be an excellent platform for exploring
new ideas and developing practical techniques arising from
all kinds of PT -symmetric structures. An interesting property
of PT -symmetric systems is that they may have purely real
eigenvalue spectra in some domains of the parameter spaces
(this situation is referred to as an unbroken PT -symmetric
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phase) despite their Hamiltonian non-Hermiticity [28]. In
addition, these systems undergo an abruptPT phase transition
where the systems lose the corresponding PT symmetry.
At a so-called exceptional point (EP), pairs of eigenvalues
collide and become complex. Typically, the transition from
an unbroken PT -symmetric phase (real eigenvalue spectra
below the EP) to a spontaneous PT -symmetry breaking
(complex eigenvalue spectra above the EP) can appear
when the system parameter in the Hamiltonian is properly
tuned [29–31]. The PT -symmetric physics that follows
from such non-Hermitian properties has enabled applications
such as low-power optical isolation [32–35], the single-
mode microcavity laser [36–38], loss-induced or gain-induced
transparency [39,40], power oscillations violating left-right
symmetry [41], unidirectional invisibility [42–44], efficient
phonon lasing or diodes [45,46], ultralow-threshold optical
chaos [47], and high-sensitivity metrology [48]. However, the
crossover between the photon blockade and PT -symmetric
theory remains largely unexplored. The following are the
questions that we will address. Can the PT -symmetric theory
influence the photon blockade significantly? How is the photon
blockade modified in such a PT -symmetric system? The
results obtained may stimulate further investigations and ap-
plications in the regimes of low-power nonlinear and quantum
optics [49].

The organization of the paper is as follows. In Sec. II we
establish the theoretical model and present the Hamiltonian of
the optical PT system consisting of two coupled cavities, one
of which has loss (passive cavity) and weak nonlinearity and
the other gain (active cavity) but no nonlinearity. In Sec. III
we study in detail the second-order photon correlations by
tuning the system parameters and provide the corresponding
physical explanation in the supermode picture. In Sec. IV we
comment on the feasibility of implementing our theoretical
method in thisPT -symmetric system. In Sec. V we summarize
our results.
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FIG. 1. (Color online) Schematic illustration of PT -symmetric
coupled cavities including a passive nonlinear cavity A (resonance
frequency ωa and cavity mode â) coupled to an active cavity B
(resonance frequency ωb and cavity mode b̂) with tunneling strength
J . The passive cavity A includes Kerr nonlinear materials [1,5,8,50]
and is coherently driven by an external monochromatic laser field
with strength �d and frequency ωd . Here κa and κb are, respectively,
the cavity decay rate and gain rate.

II. PROPOSED PT -SYMMETRIC SYSTEM AND REVIEW
OF PT -SYMMETRIC THEORY

Spurred by recent studies in optical PT devices [33,34,36–
38], we consider a passive nonlinear cavity coupled to an active
cavity via optical tunneling, i.e., the PT -symmetric double
cavity (see Fig. 1), for realizing the strong photon-blockade
effect. In the presence of a driving laser, the Hamiltonian for
the system reads (setting � = 1)

H = (ωa − iκa/2)â†â + (ωb − iκb/2)b̂†b̂ + J (âb̂† + â†b̂)

+ Unlâ
†â†ââ + (�dâ

†e−iωd t + �∗
d âeiωd t ), (1)

where â (b̂) is the bosonic operator eliminating a photon in
the passive (active) cavity A (B) with resonance frequency ωa

(ωb); Unl is the Kerr nonlinear interaction strength from the
passive cavity A, which arises from optical nonlinearity of
the underlying material, such as an optical cavity embedding
a Kerr optical medium [1,5,8,50]; J is the photon-tunneling
strength between the two cavities and can be tuned by changing
the distance between them; and �d is the real strength of the
external driving field with carrier frequency ωd . In addition,
κa = κi

a + κe
a is the total loss rate of the passive cavity A, which

contains an intrinsic loss rate κi
a and an external coupling loss

rate κe
a . In an active cavity B, on the other hand, the effective

loss rate κb = κi
b − ξ is reduced by the gain ξ (round-trip

energy gain). Whether κb > 0 (loss) or κb < 0 (gain) depends
on ξ . Specifically, κa > 0 and κb > 0 correspond to a passive-
passive double cavity, whereas κa > 0 and κb < 0 define a
passive-active (i.e.,PT -symmetric) double cavity, which have
been realized in recent experiments [33,34,36–38].

Before proceeding further, it is instructive to briefly
illustrate the principal mechanism behind PT symmetry in
our studied system. Under the condition of a very weak
nonlinearity Unl and switching off the driving field �d = 0,
we take into account the first three terms in Eq. (1) to look into
the PT phase transition point, with the result

H = (â† b̂†)

(
ωa − iκa/2 J

J ωb − iκb/2

)(
â

b̂

)
. (2)

Here it should be pointed out that the nonlinear Kerr term
Unlâ

†â†ââ in Eq. (1) may lead to an EP shift between
thePT -symmetric phase and the broken-PT phase. However,
the nonlinearity-induced shift of the EP can be ignored because

the Kerr nonlinearity Unl in our proposed model is very weak.
In the following, for convenience, we define P as the above 2 ×
2 matrix P ≡ (ωa − iκa/2 J

J ωb − iκb/2), D as the 2 × 2 diagonal

matrix D ≡ (ω− 0
0 ω+), and Q as the 2 × 2 transformation

matrix Q ≡ (Q11 Q12
Q21 Q22

) = (|q−〉 |q+〉) with |q−〉 = (Q11
Q21

) and

|q+〉 = (Q12
Q22

). Then the above Hamiltonian can be diagonalized
as

H = (â† b̂†)QQ−1PQ︸ ︷︷ ︸
D

Q−1

(
â

b̂

)

= (Â† B̂†)

(
ω− 0
0 ω+

)(
Â

B̂

)
, (3)

with the definition(
Â

B̂

)
= Q−1

(
â

b̂

)
⇒

(
â

b̂

)
= Q

(
Â

B̂

)
, (4)

where Q−1 is the inverse matrix of Q and QQ−1 = 1. From
the relationship Q−1PQ = D, we have the key expressions
PQ = QD ⇒ P |q−〉 = ω−|q−〉 and P |q+〉 = ω+|q+〉. This
implies that the so-called diagonalization or decoupling
problems turn into solving the eigenvectors (|q−〉,|q+〉) and
eigenvalues (ω−,ω+) of the given matrix P , i.e., solving the
secular equation det(P − ωI ) = 0, where I is a 2 × 2 identity
matrix. To summarize, the coupling of these two cavities
creates two supermodes Â and B̂ with the corresponding
eigenfrequencies ω+ and ω−, yielding

ω± = 1

2

(
ωa + ωb − i

κa + κb

2

)

± 1

2

√
4J 2 −

[
i(ωa − ωb) + κa − κb

2

]2

. (5)

Generally, the analytical expressions of Q are too cumbersome
and are not presented here.

It is clear from Eq. (5) that the two eigenfrequencies are
dependent on ωa , ωb, κa , κb, and J . To obtain purely real
eigenvalue spectra, i.e., Im(ω±) = 0, requires the imaginary
parts of ω± to disappear. According to Eq. (5), when ωb =
ωa , κb = −κa , and J � κa/2, this requirement can be well
satisfied. Note that the condition ωa = ωb = ω0 shows the
same cavity resonance frequencies and κb = −κa corresponds
to the balanced gain and loss for both cavity modes. In this
case, the PT -symmetric supermodes with a zero linewidth
are spectrally distributed at ω̃± = ±√

J 2 − κ2
a /4 away from

the central frequency ω0. For the case of J = κa/2, the
two supermodes coalesce into the central frequency ω0. For
the case of J > κa/2, the system is in the unbroken PT -
symmetric phase. However, when J < κa/2, the eigenfrequen-
cies become complex and the PT symmetry is spontaneously
broken. As a result, J = κa/2 is the EP and is often referred
to as the spontaneous PT -symmetric breaking point [33,34].
As the PT -symmetric phase is broken, one of the two
supermodes gradually vanishes because of the absorption
while the other experiences amplification. More generally, the
EP still exists and can be defined by J = (κa − κb)/4 when
ωb = ωa for the unbalanced gain and loss κb �= −κa [31]. The
threshold of symmetry breaking depends solely on the relation
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between the gain or loss and photon tunneling. This PT
phase transition can significantly influence the dynamics of the
passive-active double-cavity system. It has been demonstrated
experimentally that introducing optical gain to one of the
two cavities balances the passive loss of the other and the
transition point shows the characteristic features of an EP. For
example, both Peng et al. [33] and Chang et al. [34] realized
remarkable PT -symmetric behaviors in two directly coupled
whispering-gallery-mode (WGM) microtoroidal resonators by
properly adjusting the gain in one active resonator and the loss
in the other passive resonator. Moreover, the field localization
in the passive resonator and an accompanying enhancement of
optical nonlinearity leading to nonreciprocal light transmission
are found in such an optical compound structure. In addition,
Peng et al. [36], Feng et al. [37], and Hodaei et al. [38]
reported an unconventional single-mode lasing by delicately
manipulating the gain-to-loss ratio in the PT -symmetric
double cavity.

Transforming the above Hamiltonian (1) into the
rotating frame at the frequency ωd of the driv-
ing laser field by means of H0 = ωd (â†â + b̂†b̂),
U (t) = e−iH0t = e−iωd t(â†â+b̂†b̂), and Hrot = U †(t)HU (t) −
iU †(t) ∂U (t)

∂t
= U †(t)(H − H0)U (t) [51], we can rewritten the

system Hamiltonian (1) as

Hrot = (�a − iκa/2)â†â + (�b − iκb/2)b̂†b̂

+ J (âb̂† + â†b̂) + Unlâ
†â†ââ + �d (â† + â), (6)

where �a = ωa − ωd (�b = ωb − ωd ) is the frequency de-
tuning between the cavity mode A (B) and the related driving
field. Note that the same cavity resonance frequencies ωa =
ωb = ω0 lead to the same detunings �a = �b = �. Without
loss of generality, we have taken the driving strength �d above
to be real.

III. NUMERICAL SIMULATIONS

A. Outline of our numerical method

The dynamics of the PT -symmetric double-cavity system
can be determined by the nonlinear Schrödinger equation
i∂|ψ(t)〉/∂t = Hrot|ψ(t)〉, where |ψ(t)〉 describes the quan-
tum state of the system at time t . Here the cavity losses
or gains have been included phenomenologically in the
above non-Hermitian Hamiltonian [see Eq. (6)]. On the
basis of Fock states (photon number states) |na,nb〉 ≡ |na〉 ⊗
|nb〉, the system state |ψ(t)〉 can be expressed as |ψ(t)〉 =∑+∞

na,nb=0 Cna,nb
(t)|na,nb〉, where Cna,nb

(t) is the probability
amplitude and satisfies a coupled set of differential equations
by means of the above-mentioned Schrödinger equation (not
shown here), na represents the photon number of the passive
cavity mode, and nb represents the photon number of the
active cavity mode. The steady-state probability amplitude
Css

na,nb
can be obtained by setting ∂Cna,nb

(t)/∂t = 0 and then
the normalized equal-time second-order correlation functions
for the passive cavity field in the steady-state case can be
calculated as

g(2)
a (0) = 〈â†â†ââ〉

〈â†â〉2
=

∑
na,nb

na(na − 1)
∣∣Css

na,nb

∣∣2( ∑
na,nb

na

∣∣Css
na,nb

∣∣2)2 , (7)

An alternative method involves numerically solving the exact
master equation ∂ρ/∂t = −i[H̃rot,ρ] + Lρ, where H̃rot =
�aâ

†â + �bb̂
†b̂ + J (âb̂† + â†b̂) + Unlâ

†â†ââ + �d (â† + â)
excludes the cavity loss and gain, ρ is the system
density matrix, and L is the dissipative Liouvillian
superoperator given in Refs. [52–55], i.e., Lρ =
κa

2 (2âρâ† − â†âρ − ρâ†â) + κb

2 (2b̂ρb̂† − b̂†b̂ρ − ρb̂†b̂). The
formal solution of ρ above can be given in terms of the basis
|na,nb〉 as ρ(t) = ∑

na,nb

∑
n′

a ,n
′
b
ρna,nb ;n′

a ,n
′
b
(t)|na,nb〉〈n′

a,n
′
b|

and ρna,nb ;n′
a ,n

′
b
(t) = 〈na,nb|ρ(t)|n′

a,n
′
b〉. The steady-state

density operator ρss
na,nb ;n′

a ,n
′
b

can be obtained by setting
∂ρ(t)/∂t = 0. Similarly, the zero-delay-time correlation
function of the steady state is defined by

g(2)
a (0) = 〈â†â†ââ〉

〈â†â〉2
= Tr(ρssâ†â†ââ)

[Tr(ρssâ†â)]2

=
∑

na,nb
na(na − 1)ρss

na,nb ;na,nb(∑
na,nb

naρss
na,nb ;na,nb

)2 . (8)

Obviously, ρss
na,nb ;na,nb

= |Css
na,nb

|2, which always holds in
quantum optics [56].

Two approaches can offer us the same solutions and here
we demonstrate only the results obtained from the Schrödinger
equation, as this method is much faster and computationally
less demanding. In order to carry out fully quantum correlation
function calculations via MATLAB software, we have to truncate
the Hilbert space at some finite photon number that is
sufficiently large that the contribution of higher-order photon
number states is negligibly small (to this end, the convergence
is ensured under the condition of the weak driving field). The
measurement of the photon correlation function defined above
can be performed by the Hanbury-Brown-Twiss technique
[18,19].

B. Results for the second-order correlation function

Figure 2 presents the second-order correlation function
g(2)

a (0) as a function of the detuning �/κa for three possible
configurations: (i) a passive single nonlinear cavity (i.e., the
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of Ref.[5]
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/κ

a
=−1

FIG. 2. (Color online) Second-order correlation function g(2)
a (0)

as a function of the detuning �/κa between the driving field and
cavity resonance. The other parameters for the simulations are chosen
as Unl/κa = 0.1 and �d/κa = 0.01.
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model considered from Ref. [5] or setting J/κa = 0 in the
present work), (ii) a passive-passive double cavity (J/κa = 0.5
and κb/κa = 1), and (iii) a passive-active (i.e.,PT -symmetric)
double cavity (J/κa = 0.5 and κb/κa = −1), respectively.
For a passive single nonlinear cavity, according to Eq. (8)
in the weak driving limit from Ref. [5], the second-order
correlation g(2)

a (0) is calculated (see the black solid line
in Fig. 2). The antibunching (g(2)

a (0) < 1) is observed at
positive detunings and the maximum antibunching g(2)

a (0) ∼
0.8 is obtained for �/κa = 0.5. At negative detunings, the
bunching (g(2)

a (0) > 1) occurs due to the driving field hitting
the two-photon resonance of cavity A [5]. The maximum
bunching g(2)

a (0) ∼ 1.2 is achieved for �/κa = −0.5. When
the photon-tunneling strength between the two cavities is
switched off, i.e., J/κa = 0, the proposed model returns to the
passive single nonlinear cavity in Ref. [5]. The full behavior
of g(2)

a (0) via numerical simulation is very well reproduced
by the analytic solution from Ref. [5] under the weak driving
field (see the purple dashed line in Fig. 2). For a passive-passive
double cavity (J/κa = 0.5 and κb/κa = 1), the bunching and
antibunching effects are obviously weakened (see the blue
dotted line in Fig. 2). For a PT -symmetric double cavity
(J/κa = 0.5 and κb/κa = −1), the most striking feature is
the occurrence of the perfect photon blockade [g(2)

a (0) ∼ 0]
because the two-photon transition is largely suppressed in
comparison with the single-photon transition when the driving
field is on resonance with the cavity (see the red dash-dotted
line in Fig. 2).

Physically, around the spontaneous PT -symmetric break-
ing point, the field localization induces the dynamical ac-
cumulations of optical energy in the two supermode-based
cavities, corresponding to an increasing intracavity nonlin-
earity [33,34,46]. More specifically, the initial weak Kerr
nonlinearity from the passive cavity is redistributed between
the passive and active cavities and moreover it is enhanced by
field localization of the supermodes in the PT -broken phase.
This change of optical nonlinearity gives rise to an important
result that the strong photon blockade can be triggered even
when the photon-tunneling strength J and the driving strength
�d are smaller than the cavity decay rate κa due to the
field-localization-enhanced nonlinearity. On the other hand,
it is worth emphasizing that the supermodes become almost
lossless at EP in the PT case. The field localization is also
coupled with a reduction of the optical loss of the supermodes
due to the PT symmetry near the EP in the PT -broken
phase. In the PT -unbroken phase, however, there is no field
localization since both supermodes are intensity symmetric.

In order to explicitly show the enhancement of cavity
nonlinearity in the PT -broken regime, we focus on the
nonlinear Kerr term in the Hamiltonian (6), i.e., Hnl =
Unlâ

†â†ââ, and transform Hnl to a different supermode basis
(namely, a so-called supermode picture). By making good
use of â = Q11Â + Q12B̂ [see Eq. (4)] and dropping the
nonresonant terms in the rotating frame, we can rewrite Hnl in
terms of these supermodes Â and B̂ as Hnl � U1Â

†Â†ÂÂ +
U2B̂

†B̂†B̂B̂ + U3Â
†ÂB̂†B̂, where the nonlinear coefficients

are defined by U1 = Unl|Q11|4, U2 = Unl|Q12|4, and U3 =
4Unl|Q11|2|Q12|2. For our considered PT -broken case in
which ωa = ωb and κa = −κb, after performing the cum-
bersome algebraic calculations we find that these nonlin-
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FIG. 3. (Color online) Dependence of g(2)
a (0) on the photon-

tunneling strength J/κa at the detuning �/κa = 0. The inset shows
a zoom-in of g(2)

a (0) in a smaller region of the abscissa axis for
κb/κa = −1. The other parameters are the same as in Fig. 2.

ear coefficients satisfy Uj ∝ UnlJ
4/(J 2 − κ2

a /4 + ε2)2, where
j = 1,2,3 and ε is a small quantity arising from the Kerr
nonlinearity-induced shift of this boundary. Note that before
reviewing thePT -symmetric theory we omit this nonlinearity-
induced shift of the PT phase point. Clearly, when J ∼ κa/2
(in the vicinity of the PT phase transition point), these
effective nonlinear coefficients are greatly enhanced. That is
to say, the existing weak nonlinearity Unl can be significantly
increased by operating the system of two coupled cavities in
the vicinity of the spontaneous PT -symmetric breaking point.
Compared with the previous schemes for realizing the photon
blockade [1–5,7–11], our PT -symmetric system relaxes the
requirements and allows a more practical parameter range for
solid-state materials.

For further insight, it is useful to consider the effect of
the photon-tunneling strength. In Fig. 3 we display how the
second-order correlation function g(2)

a (0) explicitly depends
on the photon-tunneling strength J/κa for four different
values of the gain-to-loss ratio κa/κb. Here κa/κb > 0 and
κa/κb < 0 represent, respectively, a passive-passive double
cavity and a PT -symmetric double cavity. As can be seen,
g(2)

a (0) → 1 for κa/κb > 0 and J/κa > 1. Only a vanishingly
small antibunching is obtained in the range 0 < J/κa < 1.
Moreover, increasing the loss in the second cavity B from
κb/κa = 1 to κb/κa = 3 cannot change the full behavior of
g(2)

a (0). When the gain (i.e., κb/κa = −1 and −3) instead of
the loss (i.e., κb/κa = 1 and 3) is introduced into cavity B, the
behaviors of g(2)

a (0) become significantly different. The strong
photon antibunching [even the photon blockade g(2)

a (0) → 0]
can be obtained efficiently when J/κa < 1. In particular, for
the balanced gain and loss κb = −κa , g(2)

a (0) → 0 quite rapidly
even at an arbitrary small amount of the photon-tunneling
strength. Physically, this is because, in the vicinity of the
gain-loss balance, a strong nonlinear relation emerges between
the intracavity photon intensity and the input power [33,34].

Clearly, the efficiency of such a quantum system that is
used to create the photon antibunching is strongly dependent
on the effective value of the Kerr nonlinear interaction
strength Unl. In Fig. 4 we show the dependence of the

053837-4



PROPOSAL FOR ENHANCED PHOTON BLOCKADE IN . . . PHYSICAL REVIEW A 92, 053837 (2015)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

U
nl

/κ
a

g(2
)

a
(0

)

 

 

Eq.(8) from model of Ref.[5]
or J/κ

a
=0 in our model

J/κ
a
=1, κ

b
/κ

a
=3

J/κ
a
=1, κ

b
/κ

a
=−3

FIG. 4. (Color online) Dependence of g(2)
a (0) on the Kerr non-

linear interaction strength Unl at the detuning �/κa = 0. The other
parameters are the same as in Fig. 2.

second-order correlation function g(2)
a (0) on Unl/κa for the

three different configurations: (i) a passive single nonlinear
cavity (the model from Ref. [5] or J/κa = 0 in our model), (ii)
a passive-passive double cavity (J/κa = 1 and κb/κa = 3),
and (iii) a PT -symmetric double cavity (J/κa = 1 and
κb/κa = −3). As can be seen from this figure, g(2)

a (0) → 0
quickly with increasing Unl/κa for the PT -symmetric double
cavity with respect to both the passive single nonlinear cavity
and the passive-passive double cavity. As a consequence,
strong photon antibunching in the PT -symmetric double
cavity can be easily obtained under a small value of Unl/κa ,
relaxing the requirements of Ref. [5].

IV. PHYSICAL IMPLEMENTATION OF OUR PROPOSAL

In this section we briefly discuss the experimental platform
that can be used to implement our proposal. In the solid state,
various coupled-cavity systems have been realized, such as mi-
crodisks, nanowires, microtoroids, microrings, and photonic
crystals [57,58]. Here we consider two directly coupled WGM
microtoroidal resonators (see, e.g., Refs. [33,34]). Optical
WGM microtoroidal resonators trap and confine light in small
volumes by total internal reflection around the perimeter of
an air-dielectric interface. Thereby these features enhance the
light intensity and nonlinear interaction. As in Ref. [33], one
of the WGM microtoroidal resonators is fabricated from fused
silica without dopants and has passive loss (a no-gain medium),
where the elemental nonlinear interaction is third order in
the electric field. The other microtoroid is an active resonator
made from silica doped with Er3+ ions. By optically pumping
the Er3+ ions with a pump laser in the 1460-nm wavelength
band, one can provide optical gain to the active microtoroid
in the 1550-nm wavelength band. This provides the gain to
compensate for the loss and to amplify the weak signal laser
in the 1550-nm band. Evanescent coupling between the two
microtoroidal resonators exists only in the 1550-nm band.
The resonators do not have overlapping resonance lines in the
1460-nm band, so the light from the pump laser is coupled only
to the active microtoroid. That is to say, there is no coupling
between the resonators in the 1460-nm band.

As a paradigmatic example, the actual values of the system
parameters in relevant experiments [33] are chosen for the
passive microtoroid as the wavelength λa = 1550 nm, the
intrinsic quality factor Qi

a = 3 × 107, and the coupling loss
κe

a/2π = 4.25 MHz corresponding to the coupling quality
factor Qe

a ∼ 4.5 × 107, which leads to κi
a/2π = c/λaQ

i
a ∼

6.45 MHz (c is the light speed in free space) and the total loss
rate κa/2π ∼ 10.7 MHz (here κa = κi

a + κe
a ). Experimentally,

the above parameter κe
a can be continuously adjusted by

tuning the taper-resonator gap [57,58]. For the active mi-
crotoroid, the system parameter values are chosen as the
wavelength λb = 1550 nm and the intrinsic quality factor
Qi

b = 3.3 × 106, which results in κi
b/2π = c/λbQ

i
b ∼ 58.6

MHz. A 1460-nm narrow-linewidth tunable laser is applied to
produce an effective gain ξ/2π ∼ 69.3 MHz (corresponding
to the experimentally achievable condition [34]). In the active
microtoroid, the effective gain is κb/2π ∼ −10.7 MHz. The
coupling strength between the two microtoroids is J/2π ∼
5.35 MHz, which is readily achievable in state-of-the-art res-
onators [33,34,36–38]. The Kerr nonlinear interaction strength
from the passive microtoroid is Unl/2π ∼ 1.07 MHz, which
holds for silica glass materials. The strength of the external
pump laser driving the passive microtoroid is �d/2π ∼
0.107 MHz. Also, such values have been experimentally
demonstrated for other types of microcavities (such as mi-
crosphere resonators, microdisks, and microrings [57,58])
due to the fast pace of advancement of cavity design and
nanostructuring capabilities.

Alternatively, a small fluctuation of the system parameter is
inevitable in the process of experimental realization. In order to
estimate theoretically the influence of this fluctuation clearly,
in Fig. 5 we present the profiles of the second-order correlation
with a fluctuation of κb (for example, ±0.1κa). It is obvious that
the obtained results for the second-order correlation function
g(2)

a (0) ∼ 0 are almost insensitive to small deviations from
the exact used values mentioned above. As a consequence, it
is likely to produce the required conditions within the same
device [33] for realizing the enhanced photon blockade effects.
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κ
b
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FIG. 5. (Color online) Second-order correlation function g(2)
a (0)

as a function of the detuning �/κa between the driving field
and cavity resonance for a small deviation of κb (for example,
±0.1κa). The other parameters for the simulations are chosen as
J/2π = 5.35 MHz, κa/2π = 10.7 MHz, Unl/2π = 1.07 MHz, and
�d/2π = 0.107 MHz, respectively.
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The detection of emitted radiation and subsequent mea-
surement of correlation functions would be performed by
the Hanbury-Brown-Twiss interferometer [18,19], details de-
pending on the geometry of the system under consideration.
Finally, it should be pointed out that the present scheme
may be extended to the photonic crystal cavities and other
WGM resonators. Similarly, optical gain can be supplied by
a solid-state quantum emitter, e.g., quantum dots or other
rare-earth ions, and also through optical nonlinear Raman or
parametric amplification processes.

V. CONCLUSION

We have calculated numerically the normalized second-
order correlation function and discussed the photon correlation
behaviors for a PT -symmetric system of two tunnel-coupled
cavities, one of which has passive loss (passive cavity A with
weak nonlinearity but no optical gain) and the other optical
gain (active cavity B but no nonlinearity) balancing the loss
of cavity A. In contrast to a single passive nonlinear cavity or
coupled passive cavities, the present PT -symmetric double
cavity features a very strong effective nonlinearity in the
supermode picture, when this coupled system transits from
the PT -unbroken phase to the PT -broken phase by properly
adjusting the photon-tunneling strength or the gain-to-loss
ratio [33,34,46]. Namely, the existing weak nonlinearity can be
significantly increased by operating the system of two coupled
cavities in the vicinity of the EP. The physical mechanism

underlying this enhancement of the nonlinearity is rooted
in the field localization of the supermodes generated by the
two coupled cavities. In addition, this enhanced intracavity
nonlinearity is almost lossless because of the gain-loss balance
induced by the PT -symmetric structure. In view of this, the
proposed PT -symmetric device can exhibit strong photon
antibunching (even the perfect photon blockade) by tuning
the system parameters even if the Kerr nonlinearity strength,
the photon-tunneling strength, and the driving strength are
smaller than the cavity decay rate. Using experimentally
accessible parameter values, it was also shown that the results
obtained for the second-order correlation function g(2)

a (0) ∼ 0
are insensitive to small deviations from the exact used values.
The scheme proposed here may provide a promising alternative
to ongoing efforts in developing integrated single-photon
sources using a PT -symmetric architecture.
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Vučković, Coherent generation of non-classical light on a chip
via photon-induced tunneling and blockade, Nat. Phys. 4, 859
(2008); A. Faraon, A. Majumdar, and J. Vučković, Generation
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optical switching with a single quantum dot strongly coupled to
a photonic crystal cavity, IEEE J. Sel. Top. Quantum Electron.
18, 1812 (2012).

[52] A. Laucht, J. M. Villas-Bôs, S. Stobbe, N. Hauke, F.
Hofbauer, G. Böm, P. Lodahl, M.-C. Amann, M. Kaniber, and J.
J. Finley, Mutual coupling of two semiconductor quantum dots
via an optical nanocavity, Phys. Rev. B 82, 075305 (2010).
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