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Fields and propagation characteristics in vacuum of an ultrashort tightly focused radially
polarized laser pulse
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Analytic expressions for the electric and magnetic fields of a radially polarized ultrashort and tightly focused
laser pulse, propagating in vacuum, are derived from scalar and vector potentials satisfying simple initial
conditions. It is shown that for a pulse of axial length comparable to a wavelength, only the zeroth (lowest-order)
term in a power-series expansion of the vector potential is needed. A procedure is outlined which may be used
to obtain the fields analytically, to any desired order. Most of the needed analytic work is done that would lead
to the vector potential from which the fields may be derived and the main expressions are given.
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I. INTRODUCTION

There has been a recent surge in interest in radially polarized
light, motivated mainly by emerging practical applications
[1–3]. Theoretical efforts aimed at appropriately modeling
radially polarized laser beams and laser pulses thus continue
to appear in the scientific literature [4]. Most applications
require low laser intensity and low power [5–8], but the
demand for ultrahigh intensities and super powers [9], for such
applications as laser acceleration of particles, is also gaining
momentum [10–13]. Two special features of laser pulses of the
radially polarized variety make them most suitable for specific
applications. It has been experimentally demonstrated [14,15]
that such pulses may be focused to smaller spot sizes than
their linearly polarized counterparts. Radially polarized light
has two electric field components, one axial (oscillating along
the propagation direction) and one radial (oscillating towards
and away from the focus). The radial component vanishes at
all axial points, which qualifies it to play a confining role for
particles on the beam’s direction of propagation, while the
other component works to efficiently accelerate the particle
axially [16].

Earlier theoretical efforts to model the fields of ultrashort
and tightly focused laser light have been based on the so-
called Lax series [17,18] and complex-source-point methods
[19–22]. Both approaches, however, have their limitations. For
example, validity of the Lax series approach is in doubt when
used to model the fields of a pulse for which the diffraction
angle, defined as ε = λ/w0, approaches unity. In the definition
of ε,λ is the laser wavelength and w0 is the waist radius at
focus.

The aim of this paper is to present a systematic derivation
of analytic expressions for the electric and magnetic fields
of an ultrashort and tightly focused laser pulse, which takes
into account explicitly the axial extension of the pulse profile.
The approach benefits from one that was advanced twenty
years ago by Esarey et al. [23] for a linearly polarized
pulse, with an important point of departure, namely, the
use of vector and scalar potentials instead of just a vector
potential. Introduction of the scalar potential results in the
fields developing, automatically, axial components in addition
to the transverse ones [24]. This method has also been
implemented in our recent work [25]. The scalar and vector
potentials, linked by the Lorenz gauge condition, satisfy two

mathematically similar wave equations which are entirely
equivalent to the full set of Maxwell equations in vacuum [26].
A Fourier transform method will be employed to arrive, fully
analytically, at the sought vector potential. At some point in the
analytic work, a power-series expansion will be used, which
renders term-by-term evaluation of the complicated integrals
possible.

In Sec. II, solution to the vector potential wave equation
will be briefly outlined. This is followed in Sec. III by a simple
textbook model for the axial focusing of the pulse. The Fourier
transform of the square function axial profile leads to a simple
definition for the axial pulse extension, to be loosely referred
to, henceforth, as the initial pulse length. The general analytic
work will be presented in Secs. IV and V. Expressions for
the leading terms of the electric and magnetic fields, E and
B, respectively, will be derived in Sec. VI and their main
propagation characteristics will be discussed. Our conclusions
will be presented in Sec. VII.

II. SOLUTION TO THE WAVE EQUATION

The wave equations satisfied by the scalar and vector
potentials follow from the sourceless Maxwell equations, and
their solutions are linked by the Lorenz gauge. Starting with a
linearly polarized vector potential, say Az(x,y,z,t), similar
dependence upon the space-time coordinates of the scalar
potential �(x,y,z,t) will be assumed [24]. The wave equation
satisfied by the associated scalar potential is identical to that
satisfied by the only component of the vector potential. It
suffices, therefore, to develop a solution for Az and then use
the gauge condition to determine �.

To that end, a change of variables from a set based on the
cartesian (x,y,z) is carried out first to the set (ρ,ζ,η), where
ρ =

√
x2 + y2/w0 with w0 being the waist radius at focus of

the pulse, ζ = z − ct , and η = (z + ct)/2. For a point within
the pulse, moving at the speed of light, the coordinate η = ct

gives the position of the point at any time relative to the origin
of coordinates. On the other hand, ζ = 0 for such a point,
which qualifies ζ for serving as a coordinate relative to the
moving centroid of the pulse. In terms of the new variables,
the wave equation for the vector potential reads(

1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 2w2

0
∂2

∂η∂ζ

)
A = 0. (1)
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Solution to the wave equation of the vector potential, which
leads to the radially polarized fields, starts with the ansatz [17]

A = ẑa0a(ρ,ζ,η)eik0ζ , (2)

where a0 is a constant complex amplitude and k0 is some central
wave number, which corresponds to a central frequency ω0 =
ck0. Note that A is polarized axially, i.e., along the propagation
direction, which we take as the z axis of a Cartesian coordinate
system. Substitution of Eq. (2) into Eq. (1) gives an equation
for a(ρ,ζ,η). Then employing the Fourier transform

a(ρ,ζ,η) = 1√
2π

∫ ∞

−∞
ak(ρ,k,η)eikζ dk (3)

will turn that equation into(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 4izrk

∂

∂η

)
ak = 0 (4)

for the Fourier components ak . In Eq. (4) the quantity zrk =
(k + k0)w2

0/2.
Equation (4) admits the following exact solution, which

may readily be verified by direct substitution:

ak(ρ,k,η) = fk

1 + iαk

exp

[
− ρ2

1 + iαk

]
; αk = η

zrk

, (5)

in which fk is an appropriate function of k. With the focus
of the pulse taken initially (at t = 0) at the origin of the
Cartesian coordinate system, its initial position will be at η = 0
in the new system. From Eq. (5) follows that ak(ρ,k,0) =
fk exp(−ρ2), and Fourier transform of fk , to be denoted below
by f (ζ ), will then serve as an initial axial profile for the pulse
emitted at t = 0. Effectively, a plausible choice for fk will
yield an appropriate initial axial profile f (ζ ).

III. INITIAL AXIAL PULSE ENVELOPE

Suppose the initial pulse (at t = 0) has a narrow band of
wave numbers of width �k centered at some value k0. This
corresponds to the pulse having a frequency bandwidth of
�ω = c�k, centered about the frequency ω0 = ck0. These
features can be exhibited, in a most straightforward way, by
the following profile in k space:

fk =
{ √

2π
�k

, |k − k0| � �k
2 ;

0, elsewhere.
(6)

Graphically this is a square function of height
√

2π/�k and
width �k. This model will prove to be quite useful in arriving at
explicitly analytic field expressions. The corresponding spatial
profile (in ζ ) may be obtained as the Fourier transform:

f (ζ ) = 1√
2π

∫ ∞

−∞
fke

ikζ dk = eik0ζ
sin(ζ�k/2)

ζ�k/2
. (7)

Since ζ = z, at t = 0, it is plausible to take, as the initial
pulse length, the quantity L = �z = �ζ . Note that f (ζ ) has
zeros at ζ�k/2 = ±Nπ,N = 1,2, . . . . This suggests that an
appropriate choice for the axial length of the pulse may be
L = �ζ ∼ 2π/�k, which is roughly analogous to the full
width at half-maximum of a Gaussian profile. For fk to
represent an ultrashort pulse, �k must be large enough, as
will be demonstrated in the examples of Secs. V and VI below.

IV. THE VECTOR POTENTIAL

The vector potential amplitude a(ρ,ζ,η) may now be
synthesized from the Fourier components ak(ρ,k,η) according
to Eq. (3). In effect, one needs to evaluate

a(ρ,ζ,η) = 1√
2π

∫ ∞

−∞

fk

1 + iαk

exp

[
− ρ2

1 + iαk

]
eikζ dk,

= 1

�k

∫ k0+�k/2

k0−�k/2
ψke

ikζ dk, (8)

where

ψk = 1

1 + iαk

exp

[
− ρ2

1 + iαk

]
. (9)

The remaining integrations in Eq. (8) can be very difficult
to carry out analytically, so resorting to some well-known
textbook transformations is inevitable. In brief, ψk will be
viewed as a function of the combination k + k0 ≡ k′ and then
power series expanded about the central wave number k0.
Formally, this is done along the following lines:

ψk =
∞∑

m=0

∂mψk

∂k′m

∣∣∣∣
k′=k0

(k′ − k0)m

m!
,

=
∞∑

m=0

ψ
(m)
0

km

m!
; ψ

(m)
0 (ρ,η) ≡ ∂mψk

∂km

∣∣∣∣
k=0

. (10)

Now, using Eqs. (8)–(10) in Eq. (2) gives

A(ρ,ζ,η) = a0e
ik0ζ

�k

∞∑
m=0

ψ
(m)
0 (ρ,η)

m!

∫ k0+�k/2

k0−�k/2
kmeikζ dk. (11)

The remaining integrations may be carried out one order at
a time. For example, the zeroth-order fields may be obtained
from the vector potential which follows from evaluation of the
integral corresponding to m = 0, the first-order fields from the
integral which involves terms up to the one labeled by m = 1,
and so on. On the other hand, coefficients of the various powers
of k in the power-series expansion (10) can, in principle, be
evaluated to any desired order. Following are the first four such
coefficients:

ψ
(0)
0 = 1

P
exp

[
−ρ2

P

]
; ψ

(1)
0 = iα

k0

[
1

P
− ρ2

P 2

]
ψ

(0)
0 , (12)

ψ
(2)
0 = iα

k2
0

[
−2(1 + ρ2)

P 2
+ ρ2(4 + ρ2)

P 3
− ρ4

P 4

]
ψ

(0)
0 , (13)

ψ
(3)
0 = iα

k3
0

[
3(2 + 4ρ2 + ρ4)

P 3
− ρ2(18 + 12ρ2 + ρ4)

P 4

+ρ4(9 + 2ρ2)

P 5
− ρ6

P 6

]
ψ

(0)
0 . (14)

In Eqs. (12)–(14)

P = 1 + iα, α = η

zr

, zr = 1

2
k0w

2
0. (15)

Recall that zr is the depth of focus, otherwise known as the
Rayleigh length, of the corresponding Gaussian beam. Up to
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order n, Eq. (11) may now be written as

A(n)(ρ,ζ,η) = a0e
ik0ζ

�k

n∑
m=0

ψ
(m)
0

m!
Sm, (16)

in which

Sm(ζ ) =
∫ k0+�k/2

k0−�k/2
kmeikζ dk. (17)

These integrals can readily be carried out, to give

S0 = 2eik0ζ

ζ
sin

(
ζ�k

2

)
, (18)

Sm = (−i)m
∂mS0

∂ζm
. (19)

With these equations at our disposal, analytic expressions
can now, in principle, be obtained for the vector potential
of the ultrashort, tightly focused laser pulse to any desired
order. Before that is done, however, a small digression will be
made here to comment on the convergence of the series (11).
Unfortunately, convergence of this series is not manifestly
guaranteed. Introducing a dimensionless variable u by letting
k = k0 + u�k transforms Eq. (8) into

a = eik0ζ

∫ 1
2

− 1
2

ψue
iζ (�k)udu, (20)

where ψu = ψk(k = k0 + u�k). Now, a series expansion of
ψu about u = 0 turns (20) into

a = eik0ζ

∞∑
m=0

(�k)m

m!

∂mψu

∂um

∫ 1
2

− 1
2

umeiζ (�k)udu. (21)

With |u| � 1/2, successive terms in the series tend to decrease,
unless the derivatives of ψu increase with increasing order.
The first few such derivatives are related to the ones given
explicitly in Eqs. (12)–(14), which show that ψ

(m+1)
0 /ψ

(m)
0 ∼

1/k0. The issue of convergence will be alluded to further, albeit
numerically, at the end of Sec. V.

V. THE ZEROTH-ORDER VECTOR POTENTIAL

Adopting the initial axial envelope given by Eq. (7), the
zeroth-order vector potential, according to Eq. (16), may be
written as

A(0) = a0
exp

[ − ρ2

1+iα

]
1 + iα

e2ik0ζ
sin(ζ�k/2)

ζ�k/2
,

= A0

exp
[ − ρ2

1+α2

]
√

1 + α2

sin(ζ�k/2)

ζ�k/2
eiϕ(0)

, (22)

where

ϕ(0) = ϕ0 − tan−1 α + 2k0ζ + αρ2

1 + α2
, (23)

a0 = A0e
iϕ0 ; ϕ0 = constant. (24)

Based on Eq. (22) the quantity I (0) ≡ |A(0)|2, or

I (0) = I0

1 + α2
exp

[
− 2ρ2

1 + α2

][
sin(ζ�k/2)

ζ�k/2

]2

, (25)

may be considered an appropriate measure of the zeroth-order
intensity, in which I0 = A2

0 is to be taken as the initial peak
intensity at the pulse focus (ρ = ζ = η = 0). Strictly speaking,
the peak intensity is related to the square of the electric field
amplitude E0 ∼ ωA0. However, we will continue referring to
|A(0)|2 as an intensity, following Ref. [23]. The intensity profile
is obviously a Gaussian in the transverse dimensions and
has zeros along the axial direction at points corresponding to
ζ�k = ±2Nπ,N = 1,2,3, . . . . As has already been pointed
out above, it makes sense to adopt L = 2π/�k as a measure
of the initial (t = 0) axial length of the pulse. At any later time
t > 0 the axial length L(ζ ) ∼ �ζ may be taken as the full
width at half-maximum of the instantaneous axial intensity
profile.

For the sake of better intuitive understanding, the zeroth-
order intensity profile will, henceforth, be expressed explicitly
in terms of the initial axial pulse length, L. This will cast the
zeroth-order intensity into the following form:

I (0) = I0

1 + α2
exp

[
− 2ρ2

1 + α2

][
sin(πζ/L)

πζ/L

]2

. (26)

The main objective of this work, namely, to appropriately
model the electric and magnetic fields of an ultrashort tightly
focused laser pulse, has not yet been accomplished. Further
insight will be gained from considering some limiting forms
of the initial pulse intensity I (0). At t = 0, one has ζ = z,η =
z/2,α = z/(2zr ) = λ0z/(2πw2

0), and the following mathemat-
ical limits may easily be evaluated. First,

lim
z→0

I (0) = I0e
−2ρ2

(27)

clearly exhibits the Gaussian nature of the initial intensity
profile in the transverse coordinate ρ on the focal plane, z = 0.
Second, for a long pulse

lim
L→∞

I (0) = I0

1 + (z/2zr )2
exp

[
− 2ρ2

1 + (z/2zr )2

]
, (28)

the intensity falls down on the propagation axis (ρ = 0) to
80% of its peak value at z = ±zr , to 50% at z = ±2zr , and
so on.

On the other hand, let us think of the pulse, for a moment,
as containing a fixed number of photons per unit volume. With
the intensity defined as energy crossing a unit area per unit
time, this leads to the conclusion that I (0) is proportional to L,
which is roughly the case according to Eq. (26). Therefore,

lim
L→0

I (0) = 0 (29)

is quite plausible.
The mathematical limits considered so far seem to suggest

that our model should work well in representing the fields of
a long pulse, for which L � zr , as well as an ultrashort one
(L 	 zr ). For a tightly focused pulse, behavior of the intensity
at extreme values of the waist radius at focus, w0, ought to be
considered. For example, I (0) = I0 exp[−2r2/w2

0] in the focal
plane, z = 0. This quantity vanishes in the limit of w0 → 0
and reduces to I0 as w0 → ∞.

The limits calculated above shed some light on the initial
intensity profile and demonstrate that the intensity expression
arrived at is well behaved mathematically. They are not entirely
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conclusive about the general validity of the adopted model,
or specifically in scenarios involving a pulse that is both
tightly focused and ultrashort. For further insight, we resort to
numerical calculations and include terms in the vector potential
of order up to n = 3.

In Fig. 1, intensity profiles are shown which have been
calculated at t = 0 from Eq. (26) and like expressions
involving higher-order terms. The aim of this figure is twofold.
On the one hand, it highlights the need, if at all, to go
beyond the zeroth-order potential terms in modeling the
fields appropriately. On the other hand, the figure helps us
to understand what happens to the intensity as the pulse is
focused tightly (w0 < λ0) and made ultrashort (L < λ0). In
Fig. 1(a), the waist radius at focus is w0 = 2λ0 and the axial
pulse length is L = 2λ0. These parameter values do not fit our
definitions of tightly focused and ultrashort. For this parameter
set, the terms in the fields above the zeroth-order term do
not modify the intensity profile in any noticeable way. In
Fig. 1(b), w0 = 2λ0, the same as in Fig. 1(a), but L = 0.6λ0.
A pulse with these parameters may be considered ultrashort
but not necessarily tightly focused. Here, too, there appears
to be no need to include terms in the model of order higher
than the lowest. Recall that an axially short pulse has a broad
frequency spectrum, according to the relation �k = 2π/L.
In Fig. 1(a), �k = k0/2, whereas it is �k = 5k0/3 in Fig.
1(b). Hence, the change in axial pulse length from Fig. 1(a) to
Fig. 1(b). Figure 1(c) displays the intensity profile of a tightly
focused pulse (w0 = 0.6λ0) that is not necessarily ultrashort
(L = 2λ0). Its frequency spectrum is as broad as that of Fig.

FIG. 1. (Color online) Variation of the initial (at t = 0) normal-
ized intensity with distance along the propagation direction, at points
on the axis of propagation (x = 0 = y) of pulses for which (a) w0 =
L = 2λ0, (b) w0 = 2λ0 and L = 0.6λ0, (c) w0 = 0.6λ0 and L = 2λ0,
and (d) w0 = L = 0.6λ0. Note that w0 = 2λ0 and 0.6λ0 correspond
to the Rayleigh lengths zr ∼ 12.57λ0 and 1.13λ0, respectively. To
produce each panel of figures, fields to orders n = 0–3 have been
employed.

1(a), which is consistent with the fact that it has the same
axial length. Inclusion, in this particular case, of every term
of order n � 3 seems to alter the intensity profile slightly, and
sometimes even drastically when terms of order n > 3 are
employed.

The intensity profile of a pulse that is both tightly focused
and ultrashort (w0 = L = 0.6λ0) is shown in Fig. 1(d). It is
quite remarkable that, for these parameters, inclusion of terms
in the description of the fields, beyond what may be obtained
from the zeroth-order vector potential alone, does not alter the
intensity profile appreciably. Modification to the central part of
the profile is negligibly small, while the side lobes are altered
more significantly.

In some publications [23], ultrashort is defined in terms
of the axial length as it compares with the Rayleigh length
zr = k0w

2
0/2. Within this context, an ultrashort pulse is one

for which L 	 zr . The cases considered in Figs. 1(a)–1(d)
correspond to L/zr ∼ 0.159,0.159,0.531, and 0.531, respec-
tively. All cases, for which Fig. 1 displays the intensity profile,
may thus be considered ultrashort.

Figure 2 focuses on the case considered in Fig. 1(d)
(w0 = L = 0.6λ0,zr ∼ 0.531λ0) at t = 0 and at later times
(t = 1 fs and 1 ps). The centroid of the pulse, which initially
(at t = 0) is at z = 0, as depicted in Fig. 1(d), is shown to
advance to z = ct = 0.3λ0 and 300λ0, according to Figs. 2(a)
and 2(b), respectively. Note that the need to include terms
in the vector potential beyond those of n = 3 does not arise
in Fig. 2(b) before what may be considered convergence is
achieved. Calculations, whose results are not shown here, lead
to the conclusion that the convergence remains robust even
after terms of order n = 8 have been included.

FIG. 2. (Color online) Snapshots of the normalized intensity
along the propagation direction, at points on the axis of propagation
(x = 0 = y) of pulses for which w0 = L = 0.6λ0, taken at (a) t = 1 fs
and (b) t = 1 ps. To produce each panel of figures, fields to orders
n = 0–3 have been employed.
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VI. THE ELECTRIC AND MAGNETIC FIELDS

The discussion of Fig. 1 leads to the conclusion that the
zeroth-order vector potential does model an ultrashort, tightly
focused, pulse quite well. Therefore, this section is devoted to
analytic derivation of the electric and magnetic fields to zeroth
order only. Expressions for the higher order corrections may,
in principle, be found following the program outlined here and
in Sec. IV.

The electric and magnetic fields will be obtained from the
vector and scalar potentials, via the equations [26]

E = −∂ A
∂t

− ∇� and B = ∇ × A. (30)

Since the wave equations satisfied by � and Az are identical,
they must have identical formal solutions, apart from a
multiplicative constant to make the units right. Using the
ansatz (2) for the vector potential, the general structure
of the scalar potential must be the same, namely, � =
φ0φ(x,y,z,t) exp(ik0ζ ). Thus, one has

∂�

∂t
= φ0

(
∂φ

∂t
− ick0φ

)
eik0ζ ,

=
(

1

φ

∂φ

∂t
− ick0

)
�,

=
(

1

a

∂a

∂t
− ick0

)
�. (31)

In the last line of Eq. (31), the assertion made above that
the equations satisfied by the two potentials have identical
solutions has been used. Now, the Lorenz condition

∇ · A + 1

c2

∂�

∂t
= 0 (32)

gives

� = c2

R
(∇ · A); R = ick0 − 1

a

∂a

∂t
. (33)

Then, the first of Eq. (30) yields

E = −∂ A
∂t

− c2

R
∇(∇ · A) − c2

R2
(∇ · A)∇

(
1

a

∂a

∂t

)
. (34)

With A polarized in the axial (z) direction and employing
cylindrical coordinates (r,θ,z) in this equation, the electric
field will have radial and axial components, which follow
individually from

Er = −c2

R

∂

∂r

(
∂A

∂z

)
− c2

R2

(
∂A

∂z

)
∂

∂r

(
1

a

∂a

∂t

)
(35)

and

Ez = −∂A

∂t
− c2

R

∂2A

∂z2
− c2

R2

(
∂A

∂z

)
∂

∂z

(
1

a

∂a

∂t

)
. (36)

Note that the radial electric field, Er , is entirely due to
the scalar potential, the second and third terms in Eq. (34).
Similarly, the second and third terms in the axial electric field,
Ez, stem from the scalar potential. The magnetic field, on the
other hand, will have only an azimuthal component, which

may be obtained from

Bθ = −∂A

∂r
. (37)

In principle, Eqs. (35)–(37) may be used to derive fully
analytic expressions for the E and B fields of the pulse to
any desired order, but with the expected rising complexity
with increasing order. Some space will next be devoted to a
discussion of the lowest-order fields, ones derived from the
zeroth-order vector potential.

Keeping only the zeroth-order term in the vector potential,
expressions may be found for the lowest-order terms in the
fields. After some elaborate algebra, one gets

E(0)
r = E0

k0w0

ρe−ρ2/P

P 2

e2ik0ζ

πζ/L

{[
cQ2

R
− ic2Q3

2zrPR2

]

× sin

(
πζ

L

)
+ 2π

L

[
c

R
− ic2

2zrPR2

]
cos

(
πζ

L

)}
,

(38)

E(0)
z = E0

2k0

e−ρ2/P

P

e2ik0ζ

πζ/L

{[
Q1 + cQ4

R
+ c2Q3Q5

R2

]

× sin

(
πζ

L

)
+ 2π

L

[
1 − cQ3

R
+ c2Q5

R2

]
cos

(
πζ

L

)}
,

(39)

cB
(0)
θ = 2E0

k0w0

ρe−ρ2/P

P 2

e2ik0ζ

πζ/L
sin

(
πζ

L

)
. (40)

The superscript (0) is added to emphasize that it is the zeroth-
order fields that are considered here. The remaining terms in
Eqs. (38)–(40) have the following definitions:

E0 = ck0a0; R = c

2

[
Q1 + 2π

L
cot

(
πζ

L

)]
, (41)

Q1 = 4ik0 − 2

ζ
+ i(P − ρ2)

zrP 2
;

Q2 = 4ik0 − 2

ζ
− i(2P − ρ2)

zrP 2
; (42)

Q3 = 4ik0 − 2

ζ
− i(P − ρ2)

zrP 2
,

Q4 = 8k2
0 + 2π2

L2
+ 2Q3

ζ

−4k0(P − ρ2)

zrP 2
+ 2P 2 − 4Pρ2 + ρ4

2z2
r P

4
;

Q5 = 1

ζ 2
+ P − 2ρ2

4z2
r P

3
− π2

L2
csc2

(
πζ

L

)
. (43)

Note that the radial electric field, E(0)
r , and the azimuthal

magnetic field, B(0)
θ , vanish identically on the propagation axis

(ρ = 0). On the other hand, the axial component, E(0)
z , is quite

strong along the propagation axis, giving the fields the well-
known pencil-like focus. These results are quite important for
some applications, including particle laser acceleration [27]
and material processing [1].
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FIG. 3. (Color online) Density plots in the focal plane (z =
0) perpendicular to the propagation direction, of the normalized
intensities. The panel on the left is for t = 0 and that on the right
is for t = 1 fs. The plots are for a pulse with w0 = 0.6λ0 = L.

To further highlight the main characteristics of the radially
polarized fields of an ultrashort and tightly focused laser pulse,
density plots of the scaled intensities |E(0)

r /E0|2,|E(0)
z /E0|2,

and |cB(0)
θ /E0|2 in the focal plane (z = 0) are shown in Fig. 3.

Plots of the initial intensities (at t = 0) are displayed in Figs.
3(a)–3(c) and at t = 1 fs in Figs. 3(d)–3(f). First, note that the
axial symmetry of the fields, and the vanishing of E(0)

r and
cB

(0)
θ at points along the propagation axis, are reflected clearly

in the density plots. Signature of the pencil-like focus is also
reflected in the shape of the |E(0)

z /E0|2 density plots, in that it
peaks at the center (x = y = 0).

Not clearly exhibited in Fig. 3 are the relative strengths of
the various fields. To bring that out, three-dimensional (3D)
surface plots of the scaled intensities are shown in Fig. 4,
employing the parameter set used in Fig. 3. As expected for a
radially polarized pulse, the axial field strength Ez is stronger
than that of the radial component Er . Recall that Figs. 3 and
4 are snapshots at the time instants t = 0 and 1 fs. The initial
fields produce global intensity maxima at t = 0. Subsequent
evolution results in intensity profiles of lower height due to the
oscillatory nature of the fields and the inevitable diffraction
effects.

A minor issue related to the propagation characteristics of
the pulse will finally be addressed here. Snapshots displaying
the (spatial) variations (with the propagation distance, z) of
the normalized intensity profile |E(0)

z /E0|2 are shown in Fig. 5.
Decrease in the maximum intensity is due to the diffraction

FIG. 4. (Color online) Variations in the focal plane (z = 0) of the
normalized intensity distributions. Panel on the left is for t = 0 and
that on the right is for t = 1 fs. All parameters are the same as in
Fig. 3.

effects and the oscillatory nature of the fields, alluded to in the
previous paragraph. Also, the centroid of the pulse is shown to
advance along the propagation direction at roughly the speed
of light, so its position is always given by z ∼ ct . This behavior

FIG. 5. (Color online) Variation of the normalized axial intensity
with distance along the propagation direction, at points on the axis of
propagation (x = 0 = y) of a pulse that is both ultrashort and tightly
focused (w0 = L = 0.6λ0 and zr ∼ 1.13λ0). Shown are snapshots at
times t = 0,3 fs and 1 ps.
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is consistent with what has been encountered in Fig. 2, which,
it must be borne in mind, was based upon the total intensity
(derived from the full vector potential).

VII. CONCLUSIONS

This paper has been devoted to the derivation of analytic
expressions for the electric and magnetic fields of an ultrashort
and tightly focused radially polarized laser pulse. A solution to
the wave equation satisfied by the vector potential, polarized
in the direction of propagation, has been the starting point for
the derivation, which also brought into the picture a scalar
potential via the Lorenz gauge. The procedure employed to
arrive at the main results followed along lines similar to the
work of Esarey et al. [23] (for a linearly polarized pulse) with
two major differences. On the one hand, a scalar potential
has been used here explicitly and throughout the derivation.
This has resulted in expressions for the transverse as well
as axial fields in a natural way. In Ref. [23] only a vector
potential is used and it is suggested there that the axial electric
field could be obtained via the Maxwell equation ∇ · E = 0.

On the other hand, an intuitively clear and simple choice
for the initial pulse profile in k space has been used in our
work, instead of the Gaussian employed in Ref. [23]. This
choice has resulted in a number of simplifications, which, in
turn, led to straightforward integrals and to an intuitively clear
interpretation of the final results.

Final field expressions have been derived only to lowest or-
der, stemming from a power-series expansion which has been
employed at some point in the derivation in order to facilitate
analytic calculation of the otherwise quite involved inverse
Fourier transform integrals. The derived field expressions have
been used to produce the well-known donut-shaped intensity
profiles of the radial electric and azimuthal magnetic fields,
Er and Bθ , respectively, as well as the equally well-known
pencil-like focus of the axial electric field Ez. It has been
demonstrated, via specific numerical examples, that the need
to retain terms in the field expressions beyond the lowest
order may not be necessary. Nevertheless, a program has been
designed that would lead one to obtain analytic expressions
for the fields to all desired orders. The main steps have been
spelled out and most of the analytic work, needed to arrive at
the vector potential, has been done.
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