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Phase-sensitive properties of light play a crucial role in a variety of quantum optical phenomena, which
have been mostly discussed in the framework of photoelectric detection theory. However, modern detection
schemes, such as arrays of on-off detectors, are not based on photoelectric counting. We demonstrate that the
theory of homodyning with such click-counting detectors can be established by using a proper detection model.
For practical applications, a variety of typically occurring imperfections are rigorously analyzed and directly
observable nonclassicality criteria are studied. Fundamental examples demonstrate the general functionality of
our technique. Thus, our approach of homodyne detection with on-off detector systems is able to bridge the gap
between imperfect detection and the phase resolution demands for modern applications of quantum light.
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I. INTRODUCTION

Phase-sensitive measurements have a fundamental impact
on uncovering quantum properties of radiation fields [1–3].
Applications of quantum effects can be found in the vast fields
of quantum information science and quantum metrology
[4–7]. Those are typically studied in terms of homodyne mea-
surements with high intensities and the photoelectric detection
theory [8,9]. However, applications of light quanta in the
single- or few-photon domain face some flaws as realistic
photon-number-resolving detectors are often not available
[10].

The nonclassicality of light is usually determined with
reference to classical coherent states [11,12]. More precisely,
any quantum state can be represented in the basis of these
classical states by the Glauber-Sudarshan P phase-space rep-
resentation [13,14]. Whenever the P function is nonnegative,
it can be interpreted as a probability distribution of a classical
ensemble of electromagnetic waves. If the P function exhibits
negativities, no such interpretation can be made, and the
state of light is therefore a nonclassical one. Hence, the
categorization in classical or nonclassical radiation fields plays
a crucial role.

In particular, phase-dependent quantum phenomena are
often studied using interferometric measurement schemes such
as homodyne detection [15–18]. In a homodyning setup, a
signal (SI) is superimposed on a beam splitter with a local
oscillator (LO), with a controllable phase. This is usually done
with a strong LO and formulated in terms of the photoelectric
detection theory. Rigorous analysis for low LO intensities
turns out to be more involved but can be analyzed and
implemented [19–21]. In addition, homodyne detection serves
as a foundation for quantum state reconstruction techniques
[8,9,22] for uncovering all nonclassical features of light.

Hand in hand with the quantum nature of the photon comes
its particle nature, which may be confirmed by antibunching
effects [23–25]. Thus, to gain further knowledge of the nature
of light, the generation and analysis of states in a few-photon
regime has gained more and more importance [26,27]. This has
brought up the necessity for adequate detectors. For example,
hybrid detectors [28], superconducting detectors [29,30],
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and click-counting detectors [31–36], consisting of multiple
avalanche photodiodes (APDs) in the Geiger mode, may meet
this demand. The latter ones offer a nonlinear, but well-defined,
statistics [37–39]. Quantum correlations in the few-photon
domain can be inferred with such click detectors [38,40–44],
even without the need for additional data processing [45]. To
get the full quantum picture, it is desirable to investigate both
particle- and phase-dependent phenomena simultaneously. In
Ref. [46], a step towards a theory of phase-resolving click
counting was made. We aim at extending this investigation
by giving a more general approach and lay the foundation for
further applications, such as quantum state reconstruction [47].

In the current contribution, we formulate the theory for gen-
eral homodyne detection measurements with click detectors.
This includes balanced and unbalanced detection with four or
more port homodyning setups. The verification of nonclassical
features is formulated in terms of measured second-order
correlations, and the straightforward generalization to higher-
order correlations is outlined. We rigorously investigate the
influence of imperfections in such measurement scenarios,
which includes, e.g., the impact of detector imperfections
as well as LO fluctuations and mode mismatch between LO
and SI. Moreover, the identification of quantum correlations
between multiple SI fields is shown using several homodyne
detector settings.

This paper is structured as follows. In Sec. II we give
an overview of the treatment of click-counting detectors,
reviewing results achieved on this topic so far. The click
detection in general four-port homodyning schemes is derived
in Sec. III, including the cases of unbalanced and balanced
scenarios. The influence of imperfections is studied in Sec. IV.
Multiport homodyne detection schemes are treated in Sec. V
by means of the example of a balanced eight-port setup.
The discourse on phase-sensitive click counting is then
completed in Sec. VI, where we discuss homodyne correlation
measurements between multiple signal fields. Finally, we
summarize and conclude in Sec. VII.

II. CLICK-COUNTING THEORY

A. Click counting versus photoelectric counting

Most commonly, when detection processes of light are
discussed in quantum optics, the theory of photoelectric
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FIG. 1. (Color online) The top illustration shows the integrated
symbol “CC,” which we will further use for click-counting detectors
of any type. Two realizations of click detectors with N = 4 APDs
are additionally shown. In the spatial multiplexing setup (middle
scheme) the incident light is equally divided by multiple 50:50 beam
splitters. Time-bin multiplexing is an equivalent realization. In the
detector array scenario (bottom scheme), an array of APDs is equally
illuminated.

measurement is examined. For the single-mode case, the
resulting photoelectric counting statistics reads [1–3]

pn =
〈
:
(ηn̂ + ν)n

n!
e−(ηn̂+ν):

〉
, (1)

where : · · · : is the normal-ordering prescription, η is the
quantum efficiency, and ν is the dark count rate [48]. The
photoelectric statistics is (i) the true photon number statistics
for a perfect detection scenario, η = 1 and ν = 0, and (ii) a
true Poisson statistics for coherent light.

Alternatively, detector systems based on APDs can be
applied. In such a configuration, each APD acts as an on-off
detector [26,27]. Realizations of detector systems consisting
of multiple APDs are detector arrays or multiplexing setups
(see Fig. 1). Time-bin multiplexing is related to the spatial
multiplexing setup (cf., e.g., [31,37,41,49]). Experimental
characterizations of such click detector systems have been
performed in Refs. [50,51].

A fundamental approach to retrieve a kind of photon
number resolution is to equally distribute the incident light
onto N APDs. This yields a total number of k clicks, 0 � k �
N . The measured statistics of such click detector devices can
be described with a quantum version of a binomial statistics
[39]:

ck =
〈
:

(
N

k

)(
e−(η n̂

N
+ν))N−k(

1̂ − e−(η n̂
N

+ν))k
:

〉
, (2)

where N is the number of APDs and ck gives the probability
to measure k clicks. The mean value of this statistics may be
given by the expectation value of the operator π̂ :

〈π̂〉 =
N∑

k=0

kck, π̂ = N
(
1̂ − :e−( η

N
n̂+ν):

)
. (3)
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FIG. 2. (Color online) (a1)–(a3) The click statistics as given in
Eq. (2) for N = 8 is compared to (b1)–(b3) the corresponding
photoelectric counting statistics in Eq. (1). The considered states are
(top) the coherent state |α〉, as well as (middle) odd and (bottom) even
coherent states (4). For all plots we take α = 2, η = 1, and ν = 0.

This operator is a nonlinear function of the photon number
operator. Note that we use a rescaled version (factor N ) of the
operator introduced in Ref. [52].

Due to the finite nature of the click-counting statistics, 0 �
k � N , all possible events are accessible in experiments. In
contrast, the photoelectric detection model (1) (only in theory)
allows one to have arbitrarily high n values. For instance, the
prediction of a coherent state |α〉 yields pn �= 0 for all n values,
which cannot be achieved with a finite number of measured
events.

Let us give another example to underline the difference
between click counting and photoelectric counting theory.
Three prominent states will serve as our test states throughout
this paper. One is a classical coherent state |α〉, and to illustrate
the basic differences from nonclassical light fields, we analyze
the even (+) and odd (−) coherent states [53],

|α±〉 = |+α〉 ± |−α〉√
2[1 ± exp(−2|α|2)]

. (4)

In Fig. 2, we compare the click statistics [Figs. 2(a1)–2(a3)]
and photoelectric counting statistics [Figs. 2(b1)–2(b3)] of
these states for a perfect detection scenario, η = 1 and ν = 0.
Let us stress that the click statistics is limited to the displayed
plot range, 0 � k � 8 = N , whereas the photoelectric statis-
tics is not. Figures 2(a1), 2(b1), 2(a2), 2(b2), 2(a3), and 2(b3)
show the coherent, even coherent, and odd coherent states,
respectively. It is clearly visible that the true photon statistics of
the even (odd) coherent state includes only even (odd) photon
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numbers. This feature is not distinct in the corresponding click
statistics, even for the studied ideal detection.

B. Moment-based nonclassicality probes

Based on the variance of the click statistics, it has been
demonstrated that it is possible to infer nonclassical features
of quantum light, yielding the notion of subbinomial light
[54,55]. In general, it was also shown that higher-order ordered
moment criteria can be used to asses these criteria [52]. For this
reason the matrix of Kth-order moments of the click statistics
was defined as

M (K) = (〈:π̂m+m′
:〉)K/2

m,m′=0, (5)

where the even integer K satisfies K � N . If we do not restrict
ourselves to a particular moment order, we skip the upper
index and write M. For classical radiation fields this matrix is
non-negative, M � 0, and a violation of this property uncovers
quantum light.

It might be more convenient to formulate the modified
matrix of moments in terms of

〈:(N − π̂)m+m′
:〉 = 〈:(Ne−(ηn̂/N+ν))m+m′

:〉 (6)

or central moments

〈:(�π̂)m+m′
:〉 = 〈:(π̂ − 〈:π̂ :〉)m+m′

:〉. (7)

The resulting ways for determining nonclassicality are iden-
tical for all the different formulations of matrices of click-
counting moments, which is proven in Appendix A. The
non-negativity of all these matrices of moments can be inferred
from their principal minors. For example, a second-order
moment-based constraint for classical light is

0 �〈:[�π̂ ]2:〉 = det M (2)

= det

(
1 〈:π̂ :〉

〈:π̂ :〉 〈:π̂2:〉
)

= det

(
1 0
0 〈:(�π̂)2:〉

)

= det

(
1 〈:(N − π̂ ):〉

〈:(N − π̂ ):〉 〈:(N − π̂ )2:〉
)

. (8)

If, in addition, we consider two click-counting detectors, we
can also formulate cross-correlation criteria by the correspond-
ing minors [52]. For example, the second-order criterion is

0 � 〈:(�π̂1)2:〉〈:(�π̂2)2:〉 − 〈:�π̂1�π̂2:〉2, (9)

where each click detector (i = 1,2) is characterized by the
operator π̂i [see Eq. (3)]. These cross correlations have been
recently used to experimentally uncover quantum correlations
between two light beams [45].

Finally, it is worth mentioning that the moments for any
number of click-counting devices can be directly obtained
from the measured joint click statistics ck1,k2,... [52]. This yields
joint moments of the form〈

:
∏

i

π̂
mi

i :

〉
=

∏
i

N
mi

i

N1,N2,...∑
k1=m1,k2=m2,...

∏
i

(
ki

mi

)
(
Ni

mi

)ck1,k2,..., (10)

which makes the matrix of click-counting moments approach
easily accessible. Based on these moments, a construction
of higher-order or cross-correlation nonclassicality conditions

can be formulated for any number of click detector systems;
see also [52].

C. Outline

In summary, the click-counting approach is a directly appli-
cable technique to infer phase-insensitive quantum properties
of radiation. The click statistics (2) itself can be obtained from
the photoelectric statistics (1) only via a nonbijective mapping
from the infinite number of photon numbers to the finite
spectrum of click counts (cf. Ref. [39]). Due to this feature, it is
evident that the implementation of click detectors, in the theory
of phase-sensitive measurement, has to be carried out with
great care. In the same way, nonclassicality probes have to be
adjusted to avoid misleading interpretations of the probed state
of light. In the remainder of this work, we will perform such
an analysis for a number of established homodyning schemes
in quantum optics.

III. FOUR-PORT HOMODYNE DETECTION

We will start our treatment of phase-sensitive measurement
using click detectors with the most prominent setup in
homodyne detection: the four-port scheme (see Fig. 3). Appli-
cations of this measurement scheme, in terms of photoelectric
detection theory, include fundamental applications such as
quantum state tomography [8,9,22]. In this measurement
scheme, a SI is superimposed with the LO on a beam splitter.
The latter is described by a transmission coefficient t and a
reflection coefficient r . Let us emphasize that we will describe
this setup employing click-counting detectors instead of the
standard scenario with photoelectric detectors.

The input-output relation of the beam splitter can be
expressed by a unitary transformation matrix,

(
â1

â2

)
=

(
t r

−r∗ t∗

)(
âSI

âLO

)
, (11)

SI

LO

1

2

|t|
2 :|r

|
2

CC

CC

FIG. 3. (Color online) The homodyne four-port scheme. The LO,
having a controllable phase, and the SI are superimposed on a |t |2:|r|2
beam splitter. The output beams 1 and 2 are each detected with a click
detector.
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where |t |2 + |r|2 = 1. The click detectors in positions 1 and 2
in Fig. 3 yield a joint click-counting statistics

ck1,k2 =
〈
:

(
N1

k1

)(
e
−η1

n̂1
N1

−ν1
)N1−k1

(
1̂−e

−η1
n̂1
N1

−ν1
)k1

×
(

N2

k2

)(
e
−η2

n̂2
N2

−ν2
)N2−k2

(
1̂−e

−η2
n̂2
N2

−ν2
)k2 :

〉
, (12)

where n̂i = â
†
i âi is the photon number operator, ηi is the

quantum efficiency, νi is the dark count rate, and Ni is the
number of APDs of the click detector at position i = 1,2.
The reference beam is a coherent light field, |β〉 = |β〉LO. Thus,
we can insert the photon number operators in Eq. (12) in the
form

n̂1 =|t |2
(

âSI + r

t
β

)†(
âSI + r

t
β

)
, (13)

n̂2 =|r|2
(

âSI − t∗

r∗ β

)†(
âSI − t∗

r∗ β

)
. (14)

Note that this form corresponds, up to a scaling, to displaced
photon number operators,

n̂(γ ) = (âSI − γ )†(âSI − γ ), (15)

where n̂ = â
†
SIâSI is the photon number operator of the SI.

Eventually, the full click-counting statistics of a four-port
detection scheme is

ck1,k2 =
〈
:

(
N1

k1

)(
e−η1|t |2n̂(−rβ/t)/N1−ν1

)N1−k1

× (
1̂ − e−η1|t |2n̂(−rβ/t)/N1−ν1

)k1

×
(

N2

k2

)(
e−η2|r|2n̂(t∗β/r∗)/N2−ν2

)N2−k2

× (
1̂ − e−η2|r|2n̂(t∗β/r∗)/N2−ν2

)k2 :

〉
. (16)

This joint click statistics of the general four-port homodyne
detector may be used to infer nonclassical light fields via
moment criteria. For example, the normally ordered click-
counting variances or cross correlations certify quantumness
if

0 >〈:[�π̂1]2:〉 = N2
1 e−2ν1

〈
:
[
�e

− η1 |t |2
N1

n̂(−rβ/t)]2
:
〉
, (17)

0 >〈:[�π̂2]2:〉 = N2
2 e−2ν2

〈
:
[
�e

− η2 |r|2
N2

n̂(t∗β/r∗)]2
:
〉
, (18)

0 >〈:[�π̂1]2:〉〈:[�π̂2]2:〉 − 〈:�π̂1�π̂2:〉2. (19)

In the following, we will focus on two specific four-port
homodyning schemes with some relevance in quantum optics.

A. Unbalanced detection

Let us first consider the unbalanced measurement [56]
with the click detector only in channel 1 of Fig. 3. That
is, contributions of the detector at position 2 are traced out.
Alternatively, this corresponds to the case that ν2 = η2 = 0,
with a joint click-counting statistics (12), which has the

property ck1,k2 = 0 for k2 �= 0. For convenience, we may
replace the notations ck,0 = ck , N1 = N , η1 = η, and ν1 = ν

in this case. Thus, for a LO |β〉, we get

ck =
〈
:

(
N

k

)(
e− η|t |2

N
(âSI+rβ/t)†(âSI+rβ/t)−ν

)N−k

× (
1̂−e− η|t |2

N
(âSI+rβ/t)†(âSI+rβ/t)−ν

)k
:

〉

=
〈
:

(
N

k

)(
e− ηt

N
n̂(γ )−ν

)N−k(
1̂−e− ηt

N
n̂(γ )−ν

)k
:

〉
, (20)

using the beam-splitter transformation (11), with ηt = |t |2η
being an overall quantum efficiency and γ = −rβ/t . Recently,
it has been shown in Ref. [47] that such unbalanced homodyne
setups reveal nonclassical features in terms of click counter-
parts of s-parametrized quasiprobabilities.

If we decompose the coherent displacement in the form
γ = |γ |eiϕ , the phase-sensitive mean click counts are given as
the expectation value of the operator π̂ (ϕ) [see Eq. (3)]. For
instance, we get moments of the form

〈:[N − π̂ (ϕ)]m:〉 =(Ne−ν)m
〈
:e−m

ηt
N

n̂(γ ):
〉
. (21)

Now, nonclassicality criteria can be constructed. For example,
we have nonclassical light for the LO phase ϕ if

0 > 〈: [�π̂(ϕ)]2 :〉 = N2e−2ν
〈
:
[
�e− ηt

N
n̂(γ )

]2
:
〉
. (22)

Higher-order nonclassicality can be identified with the ma-
trix of phase-sensitive click-counting moments, M(ϕ) =
(〈:π̂m+m′

(ϕ):〉)m,m′ , which is non-negative for classical light,
M(ϕ) � 0. For example, the fourth-order nonclassicality
condition is

0> det M (4)(ϕ) = det

⎛
⎝ 1 〈:π̂ (ϕ):〉 〈:π̂2(ϕ):〉

〈:π̂ (ϕ):〉 〈:π̂2(ϕ):〉 〈:π̂3(ϕ):〉
〈:π̂2(ϕ):〉 〈:π̂3(ϕ):〉 〈:π̂4(ϕ):〉

⎞
⎠.

(23)

Examples of these phase-sensitive variances are given in
Fig. 4 for the even and odd coherent states in Eq. (4). A
phase-sensitive verification of nonclassicality can be observed
for the even coherent state, while the nonclassicality of the odd
coherent state is not revealed by this particular nonclassicality
probe. The effective quantum efficiency in this unbalanced
homodyne detection setup is chosen to be ηt = 32%. For the
plot of quantity (22), the analytic result of the expectation
value,

〈α±|: exp[−λ(â − γ )†(â − γ )]:|α±〉

= e−λ|γ |2 e−λ|α|2 cosh[2λRe(γ ∗α)]

1 ± e−2|α|2

± e−λ|γ |2 e−(2−λ)|α|2 cos[2λIm(γ ∗α)]

1 ± e−2|α|2 , (24)

was employed. It also yields the analytical results for the
following discussions.

Let us additionally study the verification of nonclassicality
for different N values. Click detection schemes in Fig. 1 may
also employ CCD cameras with a high number of APDs; see,
e.g., [57,58] for theoretical and experimental studies using
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)]
2 :

FIG. 4. (Color online) The application of nonclassicality crite-
rion in Eq. (22) is shown as a function of the phase ϕ for |α−〉 (dashed
line) and |α+〉 (solid line), where α = 1 and |β| = 4. Negativity of
the normally ordered variance determines nonclassicality. The click
detection parameters are η = 50%, ν = 0, N = 8, and the beam
splitter in Eq. (11) is characterized by t = 4/5 and r = 3/5.

CCD cameras. In Fig. 5, we show the N dependence of the
verified nonclassicality for an even coherent state for second-
and fourth-order criteria [see Eqs. (22) and (23), respectively].
The negativities are typically more pronounced for the fourth-
order criterion (right plot) in comparison with the second-order
one (left plot). It can be observed that higher numbers of APDs
are advantageous for those criteria too. In the limit N → ∞,
the negativities converge to those values which are expected
for an unbalanced homodyning scheme with a photoelectric
detector.

B. Balanced detection

Now we will study the balanced case of the four-port
scheme in Fig. 3. That is, the beam-splitter transformation
in Eq. (11) is specified by t = r = 1/

√
2. In addition, we

assume that both detectors have the same characteristics, i.e.,
N1 = N2 = N , η1 = η2 = η, and ν1 = ν2 = ν. On this basis,

0 500 1000

0.0

−0.2

−0.4

N

:[
(

/2
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2 :

0 8 16 24

− 0.1

− 0.2

− 0.3
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N

de
t

M
(4

) (
/2

)

0 8 16 24

− 0.2

− 0.4

FIG. 5. (Color online) (left) The application of the second-order
nonclassicality criterion in Eq. (22) for a fixed phase ϕ = π/2
and (right) the fourth-order criterion in Eq. (23) are shown as a
function of the number N of APDs for the even coherent state |α+〉
with α = 1. The displayed values determine nonclassicality, and the
insets illustrate the behavior for small N values. The click detection
parameters are η = 50%, ν = 0, |β| = 4, and the beam splitter in
Eq. (11) is characterized by t = 4/5 and r = 3/5.

the joint click-counting statistics in Eq. (12) reads

ck1,k2 =
〈
:

(
N

k1

)(
e− η

2N
n̂(−β)−ν

)N−k1
(
1̂−e− η

2N
n̂(−β)−ν

)k1

×
(

N

k2

)(
e− η

2N
n̂(β)−ν

)N−k2
(
1̂−e− η

2N
n̂(β)−ν

)k2 :

〉
. (25)

The theory of balanced homodyne detection with click
detectors has been established in Ref. [46]. Here, we will
recall some of its features and complete the discussion of
some aspects not considered previously.

When working with photoelectric detectors in the balanced
four-port scheme, one subtracts the photoelectric counts of the
two detectors from one another. In the limit of strong LO, one
measures the quadrature

x̂(ϕ) = âSIe
−iϕ + â

†
SIe

iϕ (26)

of the signal. Analogously, the click difference counts can
be analyzed, which yields the moments of a nonlinear click-
quadrature operator [46],

〈:X̂m(ϕ):〉 = 〈:(π̂1 − π̂2)m:〉
= ∑m

j=0

(
m

j

)
(−1)m−j

〈
:π̂ j

1 π̂
m−j

2 :
〉
, (27)

with

X̂(ϕ) = 2Ne− η

2N
|β|2−ν :e− η

2N
n̂ sinh

[
η|β|
2N

x̂(ϕ)

]
:. (28)

The quadrature x̂(ϕ) appears here in a hyperbolic sine function,
which is a skew-symmetric, analytical function, sinh(x) =
(ex − e−x)/2 = − sinh(−x). It transforms the features we
expect from a quadrature and thereby justifies the notion of
a nonlinear quadrature. Consequently, a nonlinear squeezing
condition can be given as

0 > 〈:[�X̂(ϕ)]2:〉. (29)

Moreover, additional phase-sensitive information can be
obtained from the jointly measured click statistics, as it reveals
some fundamental differences from the photoelectric detection
model. In particular, the sum of click counts does, in contrast to
its photoelectric counterpart, show phase-dependent behavior.
The number of the sum of photoelectric counts is independent
of the phase,

(ηn̂1 + ν) + (ηn̂2 + ν) = ηâ
†
SIâSI + η|β|2 + 2ν. (30)

The sum of click counts,

π̂1+π̂2 = 2N−2Ne− η

2N
|β|2−ν :e− η

2N
n̂ cosh

[
η|β|
2N

x̂(ϕ)

]
:,

(31)

clearly shows a phase-dependent behavior. Thus, a nonclas-
sicality criterion based on the variance of the sum can be
formulated similarly to the case of the click difference.

Examples of both criteria are shown for the even and odd
coherent states (4) in Fig. 6. Nonlinear squeezing can be
observed for the even coherent state, whereas a sub-shot-noise
variance of the sum of clicks, 〈:[�(π̂1+π̂2)]2:〉 < 0, is visible
for the odd state. Moreover, it is worth mentioning that we are
not limited to weak or strong LOs.
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FIG. 6. (Color online) The result of phase-dependent click statis-
tics for a balanced homodyning scheme. The left plot shows the
application of nonlinear squeezing criterion in Eq. (29), and the right
plot (scaled times 102) depicts the corresponding variance of the
sum of clicks. The plotted states are |α−〉 (dashed line) and |α+〉
(solid line), where α = 1 and |β| = 4. The detection parameters are
η = 50%, ν = 0, N = 8.

IV. IMPERFECTIONS

Let us now discuss the influence of imperfections, which
is crucial for the verification of nonclassicality [48,59–61].
From the nonlinear structure of the mean click operators,
e.g., Eqs. (3) and (21), it is directly evident that click
detectors respond differently to attenuations than photoelectric
detectors. Moreover, the impact of a mode mismatch between
the LO and the SI has not been studied so far. We will therefore
study these realistic perturbations for the determination of
nonclassicality while restricting ourselves to the fundamental
case of unbalanced homodyne detection.

A. Imperfections of the click-counting detectors

One imperfection is due to the dark count rate ν [see Eqs. (2)
and (20)]. That is, some clicks are recorded even if there was
no SI or LO field. Let us consider the nonclassicality criteria,
i.e., moments of the form (21). Comparing the case ν = 0 and
a nonzero ν, we can decompose the matrix of moments as

M|ν>0 = (〈:[N − π̂ (ϕ)]m+m′
:〉)
N/2�

m,m′=0

= (
e−ν[m+m′]〈:[Ne− ηt

N
n̂(γ )

]m+m′
:
〉)
N/2�

m,m′=0

= T ν M|ν=0T ν,

T ν = diag
(
e−0ν, . . . , e−
 N

2 �ν). (32)

This transformation property between the cases with and
without dark counts allows us to state the following: If
nonclassicality can be detected for no dark counts, ν = 0, then
nonclassicality can be detected for a finite dark count rate,
ν > 0. Thus, the impact of dark counts, excluding the case
ν → ∞, is not an issue for the verification of nonclassicality.
It solely scales the actual values of the minors, e.g.,

〈:[�π̂(ϕ)]2:〉|ν>0 = 〈:[�π̂(ϕ)]2:〉|ν=0e
−2ν . (33)

Thus, we can assume for our theoretical studies ν = 0. In
experiments ν can also be estimated, e.g., ν ≈ 0 [50] or ν ≈
0.5 [45].

Such a simple treatment is not possible when considering
a nonunit quantum efficiency, η < 1. This analysis has to be
performed specifically for the desired target state. Such a test,
in advance of an experiment, is helpful for estimating the
overall efficiency one requires to infer nonclassicality.

FIG. 7. (Color online) The nonclassicality criterion (22) is shown
depending on the quantum efficiency η and the phase ϕ. For
better visibility, the negative variance, −〈:[�π̂(ϕ)]2:〉, is plotted. We
consider an even coherent state |α+〉, where α = 1 and β = 4, the
click detector parameters are ν = 0 and N = 8, and the beam splitter
is characterized by t = 4/5 and r = 3/5.

Let us take a closer look at the even coherent state (see
Fig. 7). For this state the appearance of nonclassicality seems
to be quite independent of the quantum efficiency. That is, the
value of the negativity is diminished for lowered efficiency,
but the negativity is present for the π/2 and 3π/2 phases
for any η > 0. However, the significance, with which the
nonclassicality might be verified in experiments, decreases.

B. Saturation effects

The number N of APDs is finite. It can be shown (cf.
[39,46]) that we approach a true displaced number operator,

〈:π̂m(ϕ):〉 = 〈
:Nm

(
1−e− ηt

N
n̂(γ )

)m
:
〉 ≈ 〈:[ηt n̂(γ )]m:〉, (34)

in the limit N → ∞. Another version of the limit would be
that the powers of photon numbers are comparably small,
〈:n̂m(γ ):〉  Nm for m ∈ N \ {0}.

Both approximations are typically not justified. Even worse,
accepting these approximations would yield nonclassicality
for classical coherent states [54]. To counter these fake effects,
all our nonclassicality criteria are formulated in terms of
moments of the click statistics. This allows us to treat all
ranges of intensities without approximations. This also means
that saturation effects are included in our click-counting theory.
Namely, the case 〈:n̂m(γ ):〉 � Nm is properly described. For
m = 1 this means that the mean photon number 〈n̂(γ )〉 can be
on the same order as or can exceed the number of N on-off
diodes.

Let us show that fake nonclassicality will not occur for high
intensities. Thus, we may assume a quantum SI with many
photons and a classical SI with the same intensity. Basically,
the high-intensity limit of both cases yields that all APDs click
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at the same time, i.e.,

ck ≈
{

0 for k = 0, . . . ,N − 1,

1 for k = N.
(35)

Note that the same is true if the LO is strong. For the moments
[see formula (10)], we get

〈:π̂m(ϕ):〉 = Nm

N∑
k=m

(
k

m

)
(
N

m

)ck ≈ Nm, (36)

which consistently yields a positive matrix of moments,
(Nm+m′

)m,m′ > 0, for the classical and nonclassical states. In
conclusion, (i) too high intensities are not helpful for the
determination of nonclassicality, and (ii) a proper detector
description will not yield fake nonclassicality, even in the case
of saturation.

C. Imperfections due to the local oscillator

Imperfections in homodyne detection may also stem solely
from the LO. Typical examples in realistic measurement
scenarios are fluctuations of the LO itself or a mode mismatch
between the LO and the SI fields. Let us discuss the
implications for such sources of errors. Explicitly, the impact
on mth-order moments will be studied,

〈:[N − π̂ (ϕ)]m:〉 = (Ne−ν)m
〈
:e− m

N
ηt (âSI−γ )†(âSI−γ ):

〉
, (37)

with γ = −rβ/t (ϕ = arg γ ) being a linear function of the
amplitude of the LO state |β〉LO.

For small amplitudes some noise of the LO may occur,
e.g., due to thermal fluctuations. For the balanced four-port
homodyne detection, phase and amplitude noise have been
studied in Ref. [46]. Here, we will focus on perturbations in
the unbalanced scenario. If the source of noise is a classical
one, we may describe this effect by a classical probability
distribution, PLO(γ ) � 0, of the (scaled) LO amplitude. Thus,
we get a convolution of the moment with noise:

〈:[N − π̂ (ϕ)]m:〉PLO =
∫

d2γ ′ PLO(γ − γ ′)(Ne−ν)m

× 〈
:e− m

N
ηt (âSI−γ ′)†(âSI−γ ′):

〉
. (38)

Considering only thermal fluctuations, we can suppose
that the LO is a displaced thermal state, i.e., PLO(γ ′) =
exp(−|γ ′|2/n̄)/(πn̄). This allows us to compute the Gaussian
integral (38) as∫

d2γ ′ PLO(γ − γ ′)〈:e−λ(âSI−γ ′)†(âSI−γ ′):〉

= 1

1 + λn̄

〈
: exp

(
− λ

1 + n̄λ
n̂(γ )

)
:

〉
, (39)

where λ = ηtm/N ∈ [0,1]. Note that the prefactor of the initial
exponent λ in Eq. (37) is reduced to λ/(1 + n̄λ) in Eq. (39).
This can be regarded as a diminished quantum efficiency. The
analytical formula (39) may be used to estimate the impact of
thermal LO fluctuations on the nonclassicality probes.

An example of the impact of a thermal LO on the measure-
ment of a nonclassicality probe can be seen in Fig. 8. For the
even coherent state the nonclassicality cannot be determined
for strong fluctuations of the LO. Namely, in the studied

FIG. 8. (Color online) The nonclassicality criterion (22) is shown
for the even coherent state |α+〉 superimposed with a LO, where
α = 1 and β = 4. The negative normally ordered variance of π̂(ϕ) is
analyzed depending on the thermal photon number n̄ of the LO and
the phase ϕ. The detection and beam splitter parameters are η = 1,
ν = 0, N = 8, t = 4/5, and r = 3/5.

scenario the LO is much stronger than the SI, |α|2  |β|2,
which means that the click detector mainly detects the noisy
LO. Thus, experiments should avoid such intensity relations,
or the LO fluctuations have to be minimized.

A second effect, which is due to the LO, is a mode
mismatch. This imperfection occurs whenever the modes of
the LO and the SI field do not have a perfect overlap when
combining them on a beam splitter (see Fig. 3). The rigorous
derivation of the resulting modifications based on the spectral
response of the detector can be found in Appendix B.

Here, let us discuss solely the results. The moments change
to

〈:[N − π̂ (ϕ)]m:〉mismatch = (Ne−(ν+ν̃))m
〈
:e− m

N
ηt (âSI−γ )†(âSI−γ ):

〉
,

(40)

introducing an additional noise term ν̃. In particular, this noise
contribution is proportional to the intensity of the LO beam,

ν̃ ∝ |γ |2 (41)

(see Appendix B). As we have seen before [Eq. (32)], such a
noise contribution will not affect the nonclassical properties of
the matrix of click-counting moments. This situation changes
in combination with LO fluctuations since it will contribute to
the convolution (38). Therein, ν has to be replaced by ν + ν̃.

V. MULTIPORT HOMODYNE DETECTION

After this detailed consideration of imperfections, let us
proceed by generalizing the formalism of four-port detection
with click-counting detectors to prominent balanced multi-
port homodyning schemes. A standard balanced setup is the
well-known eight-port scheme, shown in Fig. 9 for four click
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FIG. 9. (Color online) Balanced eight-port homodyning scheme
consisting of four 50:50 beam splitter and a π/2 phase shifter. The
SI and LO are each fed into an input port, whereas two input ports,
vac.1 and vac.2, remain unused. The outgoing fields are detected
with click-counting detectors. Nonlinear click quadratures can be
subsequently obtained by subtracting the click counts of the detectors
in positions 1 and 2 as well as positions 3 and 4.

detectors. Its input-output relation can be written as [2]⎛
⎜⎝

â1

â2

â3

â4

⎞
⎟⎠ = 1√

4

⎛
⎜⎝

−1 1 1 −i

1 1 −1 −i

1 i 1 −1
1 −i 1 1

⎞
⎟⎠

⎛
⎜⎝

âSI

âLO

âvac.1

âvac.2

⎞
⎟⎠. (42)

Again, we assume that all click detectors have the same
characteristics. Thus, generalizing the previously introduced
approaches, we get

〈:(π̂1 − π̂2)k(π̂3 − π̂4)l :〉

=
〈
:
(
2Ne−[ η

4N
|β|2+ν]

)k
e−k

η

4N
n̂ sinhk

[
η|β|
4N

x̂(ϕ)

]

× (
2Ne−[ η

4N
|β|2+ν]

)l
e−l

η

4N
n̂ sinhl

[
η|β|
4N

x̂

(
ϕ + π

2

)]
:

〉
,

(43)

with k,l = 0, . . . ,N . The conjugate momentum to x̂(ϕ) is
p̂(ϕ) = x̂(ϕ + π

2 ). This can be adopted to define the nonlinear
momentum operator,

P̂ (ϕ) = 2Ne−[ η

4N
|β|2+ν]:e− η

4N
n̂ sinh

[
η|β|
4N

p̂(ϕ)

]
:, (44)

for the nonlinear quadrature operator, here in the form

X̂(ϕ) = 2Ne−[ η

4N
|β|2+ν]:e− η

4N
n̂ sinh

[
η|β|
4N

x̂(ϕ)

]
:. (45)

Let us point out that X̂(ϕ) in Eq. (28) for the four-port
scheme includes terms which scale with η/(2N ), whereas for
the eight-port scheme we have a scaling with η/(4N ) [see
Eq. (45)]. This deficiency could be corrected by taking half
the numbers of APDs for the eight-port homodyne detection.
Using photoelectric detectors, such a scaling also occurs

0 2
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2
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(
)]

2 :

0 2

0
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2
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2 :

0 2

−9.6560

−9.6562

−9.6564

:[ X ( )]2: :[ P( )]2: − : X ( ) P( ): 2

FIG. 10. (Color online) Both click quadratures variances [top
left: X̂(ϕ), top right: P̂ (ϕ)] and the covariance in Eq. (46) (bottom,
scaled times 103) are shown as a function of the phase ϕ for the even
coherent state |α+〉 with α = 1. As considered before, the detection
parameters are η = 50%, ν = 0, N = 8, and the LO amplitude is
|β| = 4.

[2,62]. There, however, the correction requires us to have a
doubled quantum efficiency in the eight-port scheme instead,
which is a quite demanding task. In click detection, the total
efficiency of the detector system, consisting of N APDs, each
having a quantum efficiency η, is given by the fraction η/N .
This allows us to modify N or η for manipulating the overall
efficiency. This relates to the findings in Ref. [47], where it has
been demonstrated that it can be advantageous to have fewer
on-off detectors in some scenarios.

Finally, we can formulate nonclassicality in terms of
variances, 0 > 〈:[�X̂(ϕ)]2:〉 or 0 > 〈:[�P̂ (ϕ)]2:〉, or we can
uncover nonclassical correlations between click position and
momentum via

0 > 〈:[�X̂(ϕ)]2:〉〈:[�P̂ (ϕ)]2:〉 − 〈:�X̂(ϕ)�P̂ (ϕ):〉2. (46)

In this form, the nonclassicality condition relates to a violation
of a normally ordered version of the Schrödinger-Robertson
uncertainty relation [63]. Let us stress again that not only can
moment-based nonclassicality criteria be constructed from the
second-order difference moments, but more general criteria
may be considered as well. For instance, the variance of the
sum of click events from different detectors could be used to
certify the quantum character of the odd coherent state.

Examples for the single quadrature variances and the
covariance are given in Fig. 10. Nonclassicality is determined
for the even coherent state. Here, it is worth pointing out that
the evaluated condition (46) includes very small oscillations,
and it is negative for any phase ϕ. The nonlinear position
and momentum variances are negative only for small phase
intervals.

In general, the method derived here applies to all kinds
of multiport homodyning schemes. For example, a six-port
scheme with photoelectric detectors was proposed in Ref. [62]
and could be similarly formulated with click-counting tech-
niques. Since the six-port scenario includes only one vacuum
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FIG. 11. (Color online) A two-mode correlation measurement
scheme consisting of four click counters. Each of the two SI and
LO beams are fed into a balanced homodyne detection (“HD1” and
“HD2”) four-port scheme. The individual, nonlinear click quadratures
of the two modes X̂i(ϕi), for i = 1,2, are subsequently obtained by
subtracting the click counts in each setting.

input, it yields smaller attenuations than the eight-port scheme
with two vacuum inputs discussed here (see Fig. 9).

VI. MULTIMODE MEASUREMENTS

So far, we have considered only a single SI field. Here,
we outline the multimode scenario of phase-sensitive click
detectors at different positions, which is especially interesting
for determining quantum correlations between beams. For
simplicity, we restrict our discussion to two-mode balanced
homodyne detectors as one example for a correlation mea-
surement (see Fig. 11). A generalization to multiport schemes
with more than two spatial modes or with other homodyning
schemes is straightforward.

In Fig. 11, each of the signal modes âSI.1 and âSI.2 is fed into
a balanced homodyne. Therein they are superimposed with the
corresponding LO modes of coherent states |βi〉, with i = 1,2.
The click difference counts in each balanced detectors yield
two nonlinear quadratures X̂1(ϕ1) and X̂2(ϕ2) (see Sec. III B).
Single-mode nonclassicality for the SI in mode i = 1 or i = 2
is verified if the corresponding normally ordered variance is
negative,

0 > 〈: [�X̂i(ϕi)]
2 :〉. (47)

Additionally, nonclassical two-mode correlation between the
two signals can be inferred from a negative covariance:

0 >〈:[�X̂1(ϕ1)]2:〉〈:[�X̂2(ϕ2)]2:〉
− 〈:�X̂1(ϕ1)�X̂2(ϕ2):〉2, (48)

which yields a nonlinear two-mode squeezing. It is also worth
mentioning that a quantum correlation between the SIs in
terms of a sum of the local balanced homodyne click-counting
devices can be formulated, as done for the single-mode case
in Sec. III B.
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FIG. 12. (Color online) The click quadrature variances (47) (top
left: i = 1, top right: i = 2) and the covariance in Eq. (48) (bottom,
scaled times 102) are shown as a function of the phases ϕi , i = 1,2.
Nonclassicality of the two-mode even coherent state |α+〉, with α = 1,
is revealed for click-counting detection parameters η = 50%, ν = 0,
N = 8, and the LO amplitudes are |β1| = |β2| = 4.

Let us apply this approach. The natural extensions of the
single-mode even and odd coherent states in Eq. (4) are the
two-mode odd and even coherent states,

|α(2)
± 〉 = |α,α〉 ± |−α,−α〉√

2[1 ± exp(−4|α|2)]
. (49)

The results for the second-order criteria are illustrated in
Fig. 12. For the given parameter range, the single-mode
variances of the two-mode even coherent state are negative
for a small neighborhood of π/2 and 3π/2. In contrast, the
nonclassical covariance between the modes is negative for
almost all phase values even for a detection efficiency of 50%.

Let us remark that multitime, multidetector correlation
measurements as reported in Ref. [64] can be achieved with
a similar approach. The multitime click-counting theory was
established [52] under the constraint that each APD produces
not more than one click in a given measurement interval. The
corresponding nonclassicality conditions, e.g., for the click
counterpart of the photon antibunching effect [23–25], have
also been formulated in terms of normally and time-ordered
matrices of click-counting moments.

VII. SUMMARY AND CONCLUSIONS

In summary, we have formulated a theoretical model
for the implementation of click detectors in phase-sensitive
homodyne measurement schemes. Based on such setups and
employing the click-counting theory, we studied the verifi-
cation of nonclassical light for realistic detection processes.
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Since our results have been expressed in terms of analytical
formulas, they may be helpful for predicting the experimental
results and for formulating bounds to imperfections in re-
alized setups. In addition, the moments for the considered
nonclassicality probes can be directly derived from measured
click statistics, making our findings easily accessible for
experimental implementations.

We formulated the four-port homodyning including the
balanced and unbalanced detection scenarios. Our approach
in terms of click-counting detectors was compared with
the traditional scenario using photoelectric detection models.
Perturbations stemming from the imperfect click-counting
detectors, e.g., efficiencies and saturation effects, or the
impurities of the local oscillator have been studied. Moreover,
the influence of a mode mismatch between the signal and the
local oscillator has been shown to result in an additional dark
count rate which is proportional to the intensity of the local
oscillator. In the case of multiport homodyning, we identified a
nonclassicality condition in the form of an uncertainty relation
between the nonlinear position and momentum operators.
In the same fashion, quantum correlations between multiple
signal fields have been studied. It is worth mentioning that
we focused our consideration of nonclassicality probes on
second-order criteria. The extension to higher-order moments
was also discussed.

We can conclude that click detectors are capable of
determining nonclassicality in various phase-sensitive optical
measurement scenarios. This supports the assumption that
click-counting devices can be employed whenever photoelec-
tric detectors are not available. Hence, our technique offers a
useful set of tools for current and future experiments. It may
also be the starting point for the development of a tomographic
state reconstruction approach with click-counting detectors,
which requires further studies.
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APPENDIX A: MATRIX OF MOMENTS EXPANSION

Nonclassicality conditions can be written in terms of
matrices of moments. The typically considered matrix of
normally ordered click-counting moments reads

M = (〈:π̂m+m′
:〉)m,m′ . (A1)

Note that 〈:π̂ :〉 � 0. Let us formulate two equivalent represen-
tations of matrices: (i) in terms of powers of N − π̂ , M ′ =
(〈:(N−π̂ )m+m′

:〉)m,m′ or (ii) in terms of centered moments
�π̂ , M ′′ = (〈:(�π̂)m+m′

:〉)m,m′ . All these notations may be
rewritten in the general form

M(x,y) = (〈:(x1̂ + yπ̂ )m+m′
:〉)m,m′ , (A2)

with x,y ∈ R and y �= 0. Thus, we have M ′ = M(N,−1) and
M ′′ = M(−〈:π̂ :〉,1). We will prove that the non-negativity is
preserved for all real parameters x and y �= 0; that is, we claim
that

M = M(0,1) � 0 ⇔ M(x,y) � 0. (A3)

To do so, let us expand an arbitrary matrix element

〈:(x1̂ + yπ̂ )m+m′
:〉 =

m∑
k=0

m′∑
k′=0

(
m

k

)(
m′

k′

)

× xm−kxm′−k′
ykyk′ 〈:π̂ k+k′

:〉. (A4)

Now, we can define a matrix T (x,y) = (tm,k)m,k with

tm,k =
{

0 for k > m,(
m

k

)
xm−kyk for k � m.

(A5)

The matrix T (x,y) is an upper triangular matrix with nonzero
diagonal elements, tm,m = ym �= 0. Therefore, T (x,y) is in-
vertible. In addition, the expansion in Eq. (A4) proves the
transformation

M(x,y) = T (x,y) M(0,1) T †(x,y). (A6)

Due to this transformation property and because T (x,y)−1

exists, the claim (A3) holds true.

APPENDIX B: MODE MISMATCH

We will derive the description of a mode mismatch between
LO and SI for click detectors. This approach is based on
multimode detection with spectral response functions (see
[2,52]). A single APD is properly characterized by two
operators for the click, P̂on = 1̂ − : exp[−�̂]:, and no-click
event, P̂off = : exp[−�̂]:, where �̂ is the detector response.
Restricting ourselves to spectral properties (spatial and polar-
ization degrees of freedom can be treated similarly), we have

�̂ =
∫

dω G(ω)â†(ω)â(ω), (B1)

with G(ω) � 0 being the so-called spectral response function
of a broadband detector [2]. The annihilation operator for a
frequency ω at the detector is â(ω). For simplicity, we assume
a vanishing dark count rate for the time being.

It has been derived in Ref. [52] that the click statistics for
multimode fields may be expanded in terms of expectations
values

I (λ) = 〈: exp[−λ�̂]:〉, λ ∈ {0/N, . . . ,N/N}. (B2)

Moreover, the semiclassical representation in terms of the
Glauber-Sudarshan representation of the SI field, ρ̂SI =∫

d2α P (α)|α〉〈α|, allows one to consider coherent SI first,
|α〉 = |α〉SI, and generalize the considerations to arbitrary
states by integrating the result with the P function. The spectral
decomposition of the LO and SI is

âi =
∫

dωfi(ω)âi(ω), i ∈ {LO,SI}, (B3)

and
∫

dω|fi(ω)|2 = 1. Thus, the coherent SI and LO states
can be written as

|α〉SI =
⊗

ω

|fSI(ω)α〉ω, |β〉LO =
⊗

ω

|fLO(ω)β〉ω, (B4)

respectively. Applying a beam-splitter transformation to the
spectral modes [1 = |t(ω)|2 + |r(ω)|2], we have for one output
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port of the beam splitter

â(ω) = t(ω)âSI(ω) + r(ω)âLO(ω). (B5)

Hence, the desired expectation value (B2) reads

I (λ) = exp [−λ(tfSIα + rfLOβ,tfSIα + rfLOβ)], (B6)

using the inner product

(a,b) =
∫

dω G(ω)a∗(ω)b(ω). (B7)

The derived expression (B6) can be further rewritten as

I (λ) = exp

[
−λ(tfSI,tfSI)

∣∣∣∣α + (tfSI,rfLO)

(tfSI,tfSI)
β

∣∣∣∣
2]

exp

[
−λ

(tfSI,tfSI)(rfLO,rfLO) − |(tfSI,rfLO)|2
(tfSI,tfSI)

|β|2
]
. (B8)

Now we can define the overall quantum efficiency ηt=(tfSI,tfSI), the coherent displacement γ = −[(tfSI,rfLO)/
(tfSI,tfSI)]β, and a rate for the mode mismatch

ν̃ = (tfSI,tfSI)(rfLO,rfLO) − |(tfSI,rfLO)|2
(tfSI,tfSI)

|β|2. (B9)

Note that Cauchy-Schwartz inequality implies ν̃ � 0. Using the P representation and the normal-ordering prescription, we get
our desired quantity (B2) for arbitrary SI states ρ̂SI from Eq. (B8) as

I (λ) = 〈: exp[−ληt (âSI − γ )†(âSI − γ ) − λν̃]:〉. (B10)

In comparison to a perfect mode matching (tfSI = rfLO ⇒ ν̃ = 0), we have (i) the same
structure of an exponential of a displaced photon number operator n̂(γ ) [see Eq. (21)] and
(ii) an additional dark count rate ν̃ which is proportional to the intensity of the LO [see Eq. (B9)], or, equivalently,

ν̃ ∝ |γ |2. (B11)
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2i

|2,
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