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We develop a scattering theory to investigate the multiphoton transmission in a one-dimensional waveguide in
the presence of quantum emitters. It is based on a path integral formalism, uses displacement transformations,
and does not require the Markov approximation. We obtain the full time evolution of the global system, including
the emitters and the photonic field. Our theory allows us to compute the transition amplitude between arbitrary
initial and final states, as well as the S matrix of the asymptotic in and out states. For the case of few incident
photons in the waveguide, we also rederive a generalized master equation in the Markov limit. We compare
the predictions of the developed scattering theory and that with the Markov approximation. We illustrate our
methods with five examples of few-photon scattering: (i) by a two-level emitter, (ii) in the Jaynes-Cummings
model; (iii) by an array of two-level emitters; (iv) by a two-level emitter in the half-end waveguide; and (v) by an
array of atoms coupled to Rydberg levels. In the first two, we show the application of the scattering theory in the
photon scattering by a single emitter, and examine the correctness of our theory with the well-known results. In
the third example, we analyze the condition of the Markov approximation for the photon scattering in the array
of emitters. In the fourth one, we show how a quantum emitter can generate entanglement of outgoing photons.
Finally, we highlight the interplay between the phenomenon of electromagnetic-induced transparency and the
Rydberg interaction, and show how this results in a rich variety of possibilities in the quantum statistics of the
scattering photons.
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I. INTRODUCTION

The exploration of quantum optical systems characterized
by strong photon-photon interactions has inspired a lot of
research and extensive studies recently [1–4]. Those systems
provide us with a versatile platform to investigate the gen-
eration [5] and transport of nonclassical light, as well as the
behavior of single-photon sources [6–8] and switches [3,9–12].
Those are the basic ingredients in quantum-optical [13] and
quantum information devices [14,15].

The manipulation of nonclassical light typically requires
devices displaying either strong nonlinearities [4], or quantum
interference effects [16,17]. Among many other phenomena,
they give rise to peculiar quantum statistical behavior of
the emitted or scattered photons, like antibunching [18] in
the generation of single photons or photon pairs [19,20].
Such devices are being investigated in different incarnations,
including cavity QED [1,2,16,17,21–25], solid state [6,8,26–
29], and circuit QED systems [30,31]. At the many-particle
level, the strong interaction between the nonlinear devices and
the photons results in the generation of many-body states,
which can be studied in terms of dissipative versions of
quantum spin models [32]. In particular, the investigations of
the atomic steady state and the photon transmission properties
reveal a rich variety of quantum phases [33–37] and photon
statistics [38].

In order to characterize how atomic (or any other) nonlinear
devices can be used to create and manipulate photonic states,
one can analyze the transmission spectra and the photon
statistics, for instance, in terms of the second order correlation
function of the photons emitted under the presence of weak
driving light. This analysis is typically addressed through
an input-output theory relating the correlation functions of
the emitted photons to those of the atomic system in steady

state [18]. Those can be determined using a master equation
approach, based on the Born-Markov approximation. This
approach has proven to be very successful in most of the
experimentally relevant situations. Even though that is a very
good approximation for most models in quantum optics, in the
presence of several emitters [39], or in certain regimes its use
may not be justified.

In order to analyze the transmission properties exactly,
several elegant approaches [21,22,40–49] have been developed
for the few-photon scattering process, where the Born-Markov
approximation is not involved. The exact analysis of single-
and two-photon transmissions was first addressed through
the Bethe ansatz approach [21], which is equivalent to
the Lippmann-Schwinger scattering theory. This approach
establishes the exact scattering matrix (S matrix) between the
in and out asymptotic states of photons, which determines
the transmission spectrum and the second order correlation
function of outgoing photons. It turns out that the Bethe ansatz
approach is very successful in the two-photon scattering by a
single emitter with simple structure, e.g., the two-level emitter;
however, the generalization to the photon transmission by
several emitters is difficult. The approach [40] based on the
input-output theory is able to provide the exact S matrix for
the two-photon scattering by two emitters. Here, since a closed
set of motion equations for emitter operators are required, the
exact S matrix can only be obtained in some very limited cases,
e.g., two emitters with simple structures.

The systematic approach to the exact S matrix in the
multiphoton scattering process is based on quantum field
theory. Through either the Lehmann-Symanzik-Zimmerman
reduction formalism [22] or the input-output theory, the exact
S matrix is related to the time ordered correlation function
of emitter operators, which can be obtained by the functional
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integration of the photonic bath modes. The functional inte-
gration provides an efficient approach to analyze the photon
statistical properties in the multiphoton scattering by emitters
with complicated structures, e.g., the Jaynes-Cummings (JC)
system [23] and the atom-coupled whispering gallery resonator
[25]. However, the exact S matrix is only able to describe the
evolution of photonic bath in the asymptotic limit, thus, it
fails to depict the transient dynamics of emitters, e.g., the
single-photon detection in the superconducting edge sensor
[50–52]. Recently, a generalized input-output theory [42] was
established by the subtle combination of the input-output
theory and the quantum regression theorem, which allowed
us to investigate both the transient dynamics and the photon
statistics in the asymptotic limit. Here, a generalized master
equation is obtained to describe the transient dynamics of
several emitters under the presence of few incident photons.
The generalized input-output theory and master equation
involve the Markov approximation, thus, they are not able to
provide the exact results. The use of the Markov approximation
in the presence of several emitters needs to be justified.

In this paper, based on the path integral formalism, we
develop the scattering theory to characterize the full time
evolution of the global system (including the emitters and the
photonic bath) exactly for the few-photon scattering by several
emitters with complicated structures. Our theory provides the
transition amplitudes from the arbitrary initial state to the
corresponding final state without the Markov approximation,
where both the quantum statistics of scattering photons and the
transient dynamics of emitters can be analyzed exactly. In the
Markovian limit, the exact results from our theory perfectly
agree with those from the quantum regression approach, which
justifies the validity of the Markov approximation. Similarly,
the generalized master equation is reproduced to describe the
dynamics of emitters in the presence of few incident photons.
Here, we emphasize that the generalized master equation
establishes the close relation between the properties of photons
emitted under the presence of weak driving light and those in
the few-photon scattering by the emitters.

Using the two paradigmatic examples, i.e., the few-photon
transmission to the two-level emitter and the JC system,
we examine the correctness of our theory in the photon
scattering by the single emitter. Here, the developed scattering
theory reproduces the well-known results [21–23,53] for
the transmission spectra and the second order correlation
function. For the few-photon scattering by several emitters,
we investigate the condition of the Markov approximation in
detail. In particular, we show that the Markov approximation
is valid under certain conditions relating the bandwidth of the
dynamics and the distance of separation between emitters. In
the non-Markovian regime, the exact results exhibit peculiar
features associated with retardation of pulses between emitters.

By the developed scattering theory, we explore some novel
phenomena in two new situations. For the photon scattering
by a single two-level emitter in the half-end waveguide, we
show how the two-level emitter can generate entanglement of
outgoing photons. For the photon transmission in the array
of atoms under conditions of electromagnetically induced
transparency (EIT) [54] and coupled to Rydberg levels, we
highlight the EIT phenomenon and the Rydberg interaction.
Here, the second order correlation functions of emitted pho-

tons, the co-propagation of dark polaritons, and the collision of
the counterpropagating polaritons in the transient process are
analyzed, which show a rich variety of the quantum statistics
of photons and Rydberg excitations. The developed scattering
theory is proven to be a very efficient and systematical
approach to investigate the quantum statistics of photons in the
array of the interacting emitters with complicated structures.

The paper is organized as follows. In Sec. II, the five
models are introduced, which are the two-level emitter and
the JC system coupled to the photonic waveguide, the two-
level emitter in the half-end waveguide, and the photon
scattering by an array of two-level atoms and EIT atoms
coupled to Rydberg levels. In Sec. III, the developed scattering
theory is established, where the exact S matrix relates the
asymptotic incident and final states. For the transient process,
the generalized master equation is derived to characterize
the time evolution of the quantum emitters. In Sec. IV, two
paradigmatic examples, i.e., the photon transmission to the
two-level emitter and the JC system, are used to examine our
theory and illustrate how our method works in the photon
scattering by the single emitter. In Sec. V, we analyze the
validity of the Markov approximation for the photon scattering
by several emitters. In Sec. VI, we show the generation of
entanglement between two scattering photons by a single
two-level emitter in the half-end waveguide. In Sec. VII, the
photon transmission to an array of EIT atoms coupled to
Rdyberg levels is investigated. In Sec. VIII, the results are
summarized with the outlook.

II. SCATTERING MODELS

In this section, we introduce the models we are going to
use in order to investigate the transmission of waveguide
photons interacting with quantum systems. Those could be
single emitters (e.g., a multilevel atom [3,12,21,22,46,55], an
atom coupled to a cavity mode [1,2]), or an array of emitters
coupled, for instance, to Rydberg levels [42,56].

The model Hamiltonian has the form H = Hw + Hsys +
H� + H�f

and contains four parts: (a) The free propagation of
photons in the waveguide is described by the Hamiltonian

Hw =
∑

k

[(k0 + k)r†k rk + (k0 − k)l†klk], (1)

where rk (r†k ) and lk (l†k) are the annihilation (creation)
operators for the right- and left-moving modes with the central
frequency k0 in the waveguide. (b) The system Hamiltonian
Hsys describes the quantum emitters, and will be explicitly
given later for different examples. (c) The interaction between
the waveguide photons and the emitters is given by the
Hamiltonian

H� =
∑

i

[
√

�r,ir
†(xi) + √

�l,i l
†(xi)]Oi + H.c., (2)

where the left- and right-moving photon fields r(xi) =∑
k rke

i(k+k0)xi /
√

L and l(xi) = ∑
k lke

i(k−k0)xi /
√

L couple to
the operator Oi of the ith emitter at the position xi with
coupling strengths �

1/2
r(l),i . In momentum space, the interaction
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(a) (b)

(c) (d)

FIG. 1. (Color online) Four examples of the problem studied
here: (a) single two-level system coupled to a waveguide; (b) JC
system coupled to a waveguide; (c) single two-level system coupled
to a one-sided waveguide; and (d) an array of atoms coupled to a
waveguide.

Hamiltonian reads

H� =
∑

k

(r†kOk,+ + l
†
kOk,−) + H.c., (3)

where the collective operators Ok,± =∑
i

√
�iOie

−i(k±k0)xi /
√

L, and we focus on the symmetric
coupling case, i.e., �r,i = �l,i ≡ �i . Without loss of generality,
we choose the position of the first emitter i = 1 at the origin
x1 = 0. (d) Apart from the decay to the waveguide, there
may exist other decay channels to free space (spontaneous
emission outside the waveguide). We describe this through
the Hamiltonian H�f

. Here, each emitter couples to some
system operator Õi with a JC-type coupling (2).

We now present some relevant examples for the system
Hamiltonian Hsys, and which will be analyzed in detail in
the following sections. As shown in Fig. 1(a), the simplest
example consists of a two-level system with the energy level
spacing ωe = k0 between states |e〉 and |g〉. The Hamiltonian
is Hsys = ωe|e〉〈e| and Oi=1 = Õi = O = Õ = |g〉〈e|.

The second example is the JC system shown in Fig. 1(b).
The Hamiltonian

Hsys = ωca
†a + ωe|e〉〈e| + g(a†|g〉〈e| + H.c.) (4)

describes a single two-level system, with the energy level
spacing ωe, coupled to a cavity mode of frequency ωc. The
annihilation operator a corresponds to the cavity mode, and the
coupling constant is g. Here, the cavity mode directly couples
to the waveguide, i.e., Oi=1 = O = a. The excitations of the
cavity field and the two-level system can decay into free space;
thus, Õi would be a and |g〉〈e|.

We analyze the validity of the Markov approximation and
the retardation effect using the third example. Here, as shown
in Fig. 1(d), the waveguide photons couple to an array of

two-level emitters with frequency ωe = k0 and lattice spacing
d. The emitter Hamiltonian is

Hsys =
∑

i

(
ωeb

†
i bi + 1

2U0b
†
i b

†
i bibi

)
, (5)

where the hardcore boson bi is introduced to describe a two-
level emitter, and the hardcore behavior is obtained in the limit
U0 → ∞. The waveguide photons couple to the collective
modes Ok,± = √

�/L
∑

i e
−i(k±k0)xi bi , where the decay rates

�r(l),i are taken to be the constant �r(l),i = �. The excitation
decays into the free space, i.e., Õi = bi .

The fourth example is a single emitter in front of a
mirror, as shown in Fig. 1(c). The system Hamiltonian is
Hsys = Hemitter + ωbb

†b, and the collective operators are

Ok,+ =
√

�

L
Oe−i(k+k0)x0 +

√
�b

L
b,

(6)

Ok,− =
√

�

L
Oe−i(k−k0)x0 +

√
�b

L
b,

where the boson mode b is introduced to describe the mirror
in the limit �b → ∞. The decay of the emitter excitation into
free space is characterized by Õi = |g〉〈e|.

The fifth example is an array of EIT atoms coupled to
Rydberg levels, with lattice spacing d, as is schematically
shown in Fig. 1(d). The emitter Hamiltonian is

Hsys =
∑

i

[ωee
†
i ei + ωss

†
i si + (�e−iωd t e

†
i si + H.c.)]

+HHC + 1

2

∑
ij

Uij s
†
i s

†
j sj si . (7)

Here, we use hardcore bosons e and s to describe a Rydberg-
EIT atom. There are three atomic levels: the ground state
|g〉, the excited state |e〉 with frequency ωe, and the Rydberg
state |s〉 with frequency ωs . The hardcore behavior is obtained
through

HHC = U0

2

∑
i

(e†i ei + s
†
i si)(e

†
i ei + s

†
i si − 1) (8)

in the limit U0 → ∞, which projects out the states |ee〉, |es〉,
and |ss〉 of each atom with double occupations. The atoms
in the Rydberg state |s〉 experience long-range interactions,
Uij , [57]. For instance, we can take the van der Waals
interaction Uij = C6/|xi − xj |6, the dipolar interaction Uij =
C3/|xi − xj |3, or the uniform interaction Uij = C0 [42]. The
transition between states |e〉 and |s〉 is induced by a classical
field of frequency ωd and corresponding Rabi frequency
�. The waveguide photons couple to the collective modes
Ok,± = √

�
∑

i e
−i(k±k0)xi ei/

√
L, where the decay rates �r(l),i

are taken to be the constant �r(l),i = �. The e excitations can
decay into the free space, i.e., Õi = ei .

For convenience, we transform the Hamiltonian in the
rotating frame rk → rke

−ik0t and lk → lke
−ik0t . The system

operators are also transformed correspondingly such that the
total Hamiltonian is time independent. As a result, in the
rotating frame, Hw = ∑

k k(r†k rk − l
†
klk), and the frequencies

in the system Hamiltonian are replaced by the detunings. This
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will be used in the five examples presented in the following
sections.

III. GENERAL FORMALISM

In this section, we show the general formalism to study
the full dynamics of the global system during the few-photon
scattering process. In Secs. III A and III B, we briefly review
the results based on the Markov approximation in Ref. [42].
Here, a different method, i.e., the displacement transformation,
is introduced to relate the transition amplitude between
arbitrary initial and final states with the correlators of emitter
operators. Based on the quantum regression theorem, these
correlators are obtained by the effective Hamiltonian of the
emitters, where the quantum regression theorem requires the
Markov approximation. In order to obtain the exact result and
examine the validity of the Markov approximation, in Sec. III C
we use the path integral formalism to derive the exact transition
amplitude, where the non-Markovian effects are taken into
account.

In both approaches, the S matrix of the asymptotic in and
out states and the transition amplitudes in the transient process
are obtained, which agree with each other in the Markov limit.
It turns out that for the single emitter coupled to the photon
with linear dispersion, the Markovian result is proven to be
exact by the path integral approach. For the photon scattering
by several emitters, the validity of the Markov approximation
is analyzed in Sec. V in detail. In the Markov limit, both
approaches give rise to the generalized master equation [42]
governing the dynamics of the emitters during the scattering
process, where the generalized master equation establishes a
close relation between the transient behaviors of emitters in the
presence of few incident photons and the dynamics of emitters
under the weak driving light.

A. S matrix by quantum regression theorem

In this section, based on the quantum regression theorem,
the displacement transformation is used to derive the
transition amplitude between arbitrary initial and final states,
where the quantum regression theorem involves the Markov
approximation.

We introduce the transition amplitude

A(T ) = sys〈ϕout|〈out|e−iH (tf −ti )|in〉|ϕin〉sys (9)

from the initial state |in〉|ϕin〉sys = |0〉free|ψin〉w|ϕin〉sys to the
final state |out〉|ϕout〉sys = |0〉free|ψout〉w|ϕout〉sys during the time
T = tf − ti . At the instant ti , the waveguide photons are in the
state |ψin〉w, and the initial state of the emitters is |ϕin〉sys =
γ
†
in|G〉sys, where |G〉sys and γ

†
in denote the ground state and

some creation operator of the emitters, respectively. Similarly,
at the instant tf , the corresponding final states are |ϕout〉sys =
γ
†
out|G〉sys and |ψout〉w, respectively. Here, we focus on the

transition process without excitations leaking to the free space,
and the initial and final states of the free space are the vacuum
state |0〉free.

The initial and final states of waveguide photons can be
generally written as

|ψin〉w =
∑
{nkα}

ψin({nkα})
∏
k

|nkα〉,
(10)

|ψout〉w =
∑
{mkα}

ψout({mkα})
∏
k

|mkα〉,

where {nkα} = {nk1α,nk2α,...} and {mkα} = {mk1α,mk2α,...} are
the number distribution of photons with different momenta ki

in the initial and final states, respectively, and α = r,l denote
the right- and left-moving modes. We notice that the relation

|nkα〉 = lim
Jkα→0

1√
nkα!

∂nkα

∂J
nkα

kα

|Jkα〉 (11)

between the Fock state and the unnormalized coherent state
|Jkα〉 = ∑

nk
J

nk

kα |nkα〉/√nkα! leads to the coherent represen-
tation of the initial and final states

|ψin〉w = Fin|{Jkα}〉,
(12)|ψout〉w = Fout|{Jkα}〉,

where

Fin = lim
{Jkα}→0

∑
{nkα}

ψin({nkα})
∏
kα

1√
nkα!

δnkα

δJ
nkα

kα

,

(13)

Fout = lim
{Jkα}→0

∑
{mkα}

ψout({mkα})
∏
kα

1√
mkα!

δmkα

δJ
mkα

kα

.

In terms of Eq. (12), the transition amplitude reads

A(T ) = F∗
outFinAJ (T ), (14)

where the transition amplitude

AJ (T ) = sys〈ϕout|b〈{Jkα}|e−iHT |{Jkα}〉b|ϕin〉sys, (15)

and |{Jkα}〉b = |0〉free|{Jkα}〉. The transition amplitude (15) can
be evaluated by either the quantum regression theorem or the
path integral approach.

We first show the result from the quantum regression
theorem, where the Markov approximation is required. In
the interacting picture, the time evolution operator U =
T exp[−i

∫ tf
ti

dt H (t)] is determined by the Hamiltonian
H (t) = Hsys + H�f

+ H�(t), where T is the time-ordering
operator and the interaction part H�(t) = eiHwtH�e−iHwt is

H�(t) =
∑

k

(r†kOk,+eikt + l
†
kOk,−e−ikt ) + H.c. (16)

In terms of U , the amplitude (15) reads

AJ (T ) = sys〈ϕout|b〈{Jkα,out}|U |{Jkα,in}〉b|ϕin〉sys, (17)

where Jkα,in = Jkαeiεkαti , Jkα,out = Jkαeiεkα tf , the dispersion
relations εk,α = σαk, and σr(l) = ± for the right- and left-
moving modes, respectively.

The displacement transformation U : |{Jkα}〉 =
e

∑
kα |Jkα |2/2U |{0kα}〉 is introduced to rewrite the amplitude

AJ (T ) = exp

( ∑
k,α=r,l

|Jk,α|2e−iεk,αT

)

× sys〈ϕout|b〈{0kα}|Ũ|{0kα}〉b|ϕin〉sys, (18)
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where the state of the waveguide photon is transformed
to the vacuum state, and the time evolution operator Ũ =
T e−i

∫ tf
ti

dt[H (t)+Hd(t)] is determined by H (t) and the driving
term

Hd(t) =
∑

k,α=r,l

[
J ∗

k,αOk,σα
e−iσαk(tf −t) + Jk,αO

†
k,σα

e−iσαk(t−ti )
]
.

(19)

It follows from Eq. (14) that the functional derivative of
AJ (T ) determines the transition amplitude A(T ), which is
composed of Fourier transforms of time ordered correlators

G(T ) = 〈T γout(tf )O1(t1) · · · On(tn)γ †
in(ti)〉 (20)

on the ground state |{0k}〉b|G〉sys. Here, Oj (tj ) = U†(t)OjU(t)

is given by the emitter operators Oj = Okj ,± and O
†
kj ,±.

By the quantum regression theorem, as shown in Ref. [42],
the bath degree of freedom can be traced out and the correlator

G(T ) = sys〈G|T γout(tf )Oeff,1(t1) · · ·Oeff,n(tn)γ †
in(ti)|G〉sys

becomes the average value of emitter operators Oeff,j (t) =
U†

eff(t)OjUeff(t) on the ground state |G〉sys. The time-evolution
operator Ueff(t) = exp(−iHeff t) is given by the non-Hermitian
effective Hamiltonian Heff = Hsys + Hdecay, where

Hdecay = −i
∑

i

�f,iÕ
†
i Õi − i

∑
ij

√
�i�jO

†
i Oje

ik0|xi−xj |,

(21)
and �f,i is the decay rate to the free space of the emitter at the
position xi .

Based on the quantum regression theorem, each term in
A(T ) is related to the correlator of emitter operators Oeff,j (t)
governed by the effective Hamiltonian Heff . The resummation
of these terms results in A(T ) = F∗

outFinAJ (T ) with the
compact form

AJ (T ) = sys〈ϕout|Ueff|ϕin〉syse
∑

k,α=r,l |Jk,α|2
e−iεk,αT

, (22)

where Ueff = T e−i
∫ tf
ti

dt(Heff+Hd). Equations (14) and (22) es-
tablish the relation between the transition amplitude A(T )
and the time-ordered correlators of emitters governed by the
effective Hamiltonian Heff .

By different choices of γin, γout, ti , tf , Fin, and Fout, the
dynamics of the global system can be fully characterized.
Hereafter, we refer the choice of γin(out), t(i,f ), and Fin(out)

as the boundary condition. For instance, A(T ) with the
boundary condition γin = γout = I (identity operator), ti →
−∞, and tf → ∞ leads to the photonic S matrix. For the
boundary condition γin = I , γout 	= I , ti = 0, and tf = T ,
A(T ) describes how the incident photons transform to the
emitter excitations and propagate in the transient regime. For
the boundary conditions γin 	= I , γout = I , ti = 0, and tf = T ,
the behaviors of spontaneous and stimulated emissions can
be investigated by A(T ). Using Eqs. (14), (21), and (22),
together with different boundary conditions, we shall study
the few-photon scattering process in the five models in
Secs. IV–VII.

B. Generalized master equation

In order to study the dynamics of emitters during the
scattering, one can either use the transition amplitude (14)
with proper boundary conditions or derive the master equation
of emitter reduced density operator by tracing out the photonic
degree of freedom. In quantum optics, the initial states of the
photonic bath are usually the vacuum state, the thermal state,
and Gaussian states, where the conventional master equation
is obtained based on the Born-Markov approximation.

During the scattering process, the initial state of photons
is dramatically changed. For instance, the single incident
photon resonant with the transition energy of the two-level
emitter is totally reflected, as predicted by the single-photon
scattering theory [3,12,21,22], where the photon in the initial
asymptotic state r

†
k |0〉 is totally scattered to the photon in the

outgoing asymptotic state l
†
−k|0〉. However, the conventional

master equation assumes that the initial state of the photonic
bath is unchanged, and the state of the global system is
always the product state of the emitter and the photonic
bath [18]. This assumption contradicts the exact result of
the single-photon scattering theory, thus, the conventional
master equation breaks down. The generalized master equation
is required to investigate the dynamics of emitters in the
few-photon scattering process.

For the initial state of few photons in the waveguide, the
evolution of the system state is described by the reduced
density matrix ρs(T ) = T rbath[Uρ(0)U†], where in terms of
the coherent state |{Jkα}〉

ρ(0) = F∗
inFin[ρsys(0) ⊗ |{Jkα}〉b〈{Jkα}|]. (23)

The displacement transformation U relates the density matrix

ρs(T ) = F∗
inFine

∑
kα |Jkα |2ρJ (T ) (24)

to the generating density matrix

ρJ (T ) = T rbath[UJ ρsys(0) ⊗ |{0kα}〉〈{0kα}|U†
J ], (25)

where UJ = U †UU describes the evolution of emitters under
the driving field. In ρJ (T ), the initial state of photons is
transformed to the vacuum state, thus, the conventional master
equation can be used to describe the time evolution of
ρJ (T ). Under the Markov approximation, the master equation
governing the evolution of ρJ (T ) reads

∂T ρJ (T ) = −i[H̃sys,ρJ (T )] + LρJ (T ), (26)

where the initial condition is ρJ (0) = ρsys(0). The displace-
ment transformation induces the driving term in

H̃sys = Hsys +
∑
ij

√
�i�jO

†
i Oj sin(k0|xi − xj |)

+
∑
k,α

(
J ∗

k,αOk,σα
eiσakT + Jk,αO

†
k,σα

e−iσakT
)
, (27)
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and the Lindblad operator is

LρJ (T ) = 2
∑
ij

√
�i�jOiρJ (T )O†

j cos[k0(xi − xj )]

−
∑
ij

√
�i�j cos[k0(xi − xj )]{O†

i Oj ,ρJ (T )}

+
∑

i

�f,i[2ÕiρJ (T )Õ†
i − {Õ†

i Õi ,ρJ (T )}].

(28)

The generalized master equations (24) and (26) are the
main results in this section, which lead to some significant
results: (a) In principle, once ρJ (T ) is obtained, ρs(T ) is
determined through Eq. (24), which describes the transient
dynamics of emitters during the scattering processes. In
practice, the evolution of emitters for the few incident photons
can be studied by the perturbative expansion of the classical
sources Jk,α and J ∗

k,α . For instance, for the single incident
photon, Eq. (24) contains at most the second order derivative
δ2ρJ (T )/δJ ∗

pα′δJkα; the second order perturbative expansion
of Jk,α and J ∗

k,α in ρJ (T ) determines ρs(T ). Here, the zero order
and second order contributions lead to the emitter reduced
density matrix for the single incident photon. The zero order
contribution ρsys(0) describes the unchanged emitter state
without interacting with the photon, while the second order
contribution F∗

inFinρJ (T ) describes the dynamics of emitters
responding to the single incident photon. Similarly, for two
incident photons, the reduced density matrix can be determined
by the fourth order expansion of Jk,α and J ∗

k,α .
(b) In quantum optics, we are interested in the transmission

properties of weak probe light to emitters, i.e., the transmission
spectrum and the quantum statistics. We notice that Eq. (26)
just describes the emitters under the classical probe light with
the strength Jkα . If the driving field is weak, we can solve
Eq. (26) by the perturbative expansion of Jk,α and J ∗

k,α . As
we discussed above, the second and fourth order perturbative
expansions describe the transient dynamics of emitters in the
single- and two-photon scattering processes. As a result, the
quantum properties of outgoing photons and emitters under the
weak driving light can be studied by the few-photon scattering
theory, where only the time evolution in the forward path is
involved, as shown in Eq. (22). We shall show in Sec. VII
that for the emitters with complicated structures the scattering
theory is still able to provide the analytic results, which
perfectly agree with the numerical results from the master
equation approach. The few-photon scattering theory enables
us to analytically investigate the quantum properties of photons
from emitters under the weak driving field.

(c) If we set the external source to be zero, Eq. (26) agrees
with the master equation [32] for the photonic bath initially in
the ground state.

C. Exact S matrix by path integral approach

Equations (14), (21), and (22) in Sec. III A relate the tran-
sition amplitude to the correlators of emitters governed by the
effective Hamiltonian, where under the Markov approximation
the quantum regression theorem leads to the instantaneous
effective Hamiltonian. In this section, we show the exact result
of the transition amplitude (14), from which the result obtained

by the quantum regression theorem is proven to be exact for
the single emitter coupled to the waveguide. The validity of
the Markov approximation and some non-Markov effects for
several emitters coupled to the waveguide will be investigated
by the exact transition amplitude in Sec. VI.

Following the procedure of path integral formalism, we
discretize the evolution time T by N → ∞ instants {t1 · · · tN }
and insert a coherent state basis at each instant ti . By integrating
out the free space modes we obtain

AJ (T ) =
∫

D[system]γout(tf )γ ∗
in(ti)e

iSsys

×
∫

D[αk,α
∗
k ]e

∑
k,α J ∗

k,ααk (tf )eiS, (29)

where the action

S =
∫ tf

ti

dt

{∑
k

[r∗
k (i∂t − k)rk + l∗k (i∂t + k)lk] − H�

}

(30)
describes free propagation of the right- and left-moving
photons in the waveguide and the interaction with the emitters,
and

∫
D[system] is the integral over the emitter field. The

action of the emitter is

Ssys = S(0)
sys + i

∫ tf

ti

dt
∑

i

�f,iÕ
†
i Õi , (31)

where the first term is the action of emitters, and the second
term describes the decay to the free space.

By δS/δr∗
k = 0 and δS/δl∗k = 0, the classical motion

equations read
(i∂t − k)rk,cl − Ok,+ = 0,

(32)
(i∂t + k)lk,cl − Ok,− = 0,

which give the classical paths

rk,cl(t) = Jk,re
−ik(t−ti ) − i

∫ t

ti

ds Ok,+(s)e−ik(t−s),

(33)

lk,cl(t) = Jk,le
ik(t−ti ) − i

∫ t

ti

ds Ok,−(s)eik(t−s).

Following the saddle-point method, we expand the photon
fields rk = rk,cl + δrk and lk = lk,cl + δlk by the quantum
fluctuation fields δrk and δlk around the classical paths, and
integrate out the fluctuation fields in AJ (T ). Due to the
quadratic form of the action (30),

AJ (T ) = exp

(∑
k,α

|Jk,α|2e−iσαkT

)

×
∫

D[system]γout(tf )γ ∗
in(ti)e

iSeff+iSJ (34)

is obtained exactly, where the nonlocal effective action Seff =
Ssys + Sre of emitters is determined by

Sre = i

∫ tf

ti

dt

∫ t

ti

ds
∑

k

[O∗
k,+(t)Ok,+(s)e−ik(t−s)

+O∗
k,−(t)Ok,−(s)eik(t−s)], (35)

and the source terms SJ = − ∫ tf
ti

dt Hd(t).
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Equations (34) and (35) are the central results in this section.
It follows from Eq. (14) that the functional derivatives of
AJ (T ) lead to the transition amplitude A(T ). We also notice
that, apart from the phase factor, AJ (T ) is the generating
functional [58] of the emitter correlators, namely, the func-
tional derivatives of AJ (T ) give the correlation functions of
emitter operators. As a result, the transition amplitude A(T )
is determined by the correlation functions of emitter fields,
where the effective action Seff is generally time nonlocal.

For the single emitter coupled to the waveguide with the
linear dispersion, the action Seff turns out to be time local,
and the effective Hamiltonian Heff is deduced. Here, the
renormalized part (35) has the time-local form

Sre = i�

∫ tf

ti

dt O∗(t)O(t), (36)

and effective Hamiltonian

Heff = Hsys − i�f Õ†Õ − i�O†O (37)

of emitters is obtained. In fact, the functional integral in
Eq. (34) is just the amplitude sys〈ϕout|Ueff|ϕin〉sys in Eq. (22),
thus, the result based on the quantum regression theorem
agrees with the exact result (34).

For several emitters, the renormalization part

Sre = i

∫ tf

ti

dt
∑
ij

√
�i�jO

∗
i (t)Oj (t − |xi − xj |)eik0|xi−xj |

is time nonlocal. If the wavelength of frequency fluctuations
around k0 is much larger than the size Nd of the emitter array,
the time delay effect can be neglected, which leads to the
time-local action

Sre = i

∫ tf

ti

dt
∑
ij

√
�i�jO

∗
i (t)Oj (t)eik0|xi−xj |, (38)

and the effective Hamiltonian (21). In this limit, the result (22)
agrees with the exact result (34) for several emitters.

At the end of this section, we briefly summarize the results.
We use two approaches to obtain the transition amplitude
and the generalized master equation for the photon scattering
process, where the derivation of the generalized master
equation (26) from the path integral approach is left in the
Appendix. The relation between the few-photon scattering
by emitters and the emitters under weak driving light is
established. For the single emitter case, the result (22) based
on the quantum regression theorem is proven to be exact. For
several emitters, in the Markovian limit, the result (22) agrees
with the exact result from the path integral approach.

IV. PARADIGMATIC EXAMPLES

In this section, as paradigmatic examples, the few-photon
scattering by the single emitter is studied by the scattering
theory developed in Sec. III. The emitter is chosen to be the
two-level emitter or the JC system, where the decay to the free
space is neglected, i.e., �f = 0. For the two-level emitter, we
investigate the transmission spectra and the quantum statistics
of outgoing photons for the single and two incident photons.
For the emitter initially in the excited state without the incident
photon, the spontaneous emission of the emitter is studied. The

transient process, i.e., the response of the two-level emitter in
the ground state to the single-photon wave packet, is analyzed
by the exact transition amplitude of the emitter in the excited
state. For the stimulated emission of the two-level emitter
initially in the excited state, the wave-packet shape of the
single incident photon is designed, such that the probability
of stimulated emission is maximal. For the JC system, we
show the transmission spectra and the quantum statistics of
scattering photons. By these two examples, we examine our
theory by a comparison with the well-known results in Refs.
[21–23,53], which justifies the correctness of the developed
scattering theory.

A. Two-level emitter

For the two-level emitter, O = σ− and the effective
Hamiltonian Heff = Hsys − i�σ+σ− follows from Eq. (37),
where Hsys vanishes in the rotating frame since the transition
frequency ωe = k0 is resonant with the central frequency of
the waveguide. It follows from Eq. (19) that the external source
term is

SJ = −
√

�

L

∫ tf

ti

dt
∑

k,α=r,l

[J ∗
k,ασ−(t)e−iσαk(tf −t)

+ Jk,ασ+(t)e−iσαk(t−ti )]. (39)

For the scattering of single right-moving photon with the
momentum k by the emitter in the ground state, the boundary
condition in the asymptotic limit ti → −∞ is γin = I and
Fin = lim{Jk}→0 δ/δJk,r . By the boundary condition γout = I

and Fout = lim{Jk}→0 δ/δJp,(r,l) in the asymptotic limit tf →
∞, Eqs. (14) and (34) lead to the reflection and transmission
coefficients

Rkδp,−k = −i�

k0 + i�
δp,−k (40)

and

Tkδp,k = k0

k0 + i�
δp,k, (41)

in the asymptotic limits ti → −∞ and tf → ∞. For the
scattering of two right-moving photons with momenta k1 and
k2 by the emitter in the ground state, the boundary condition
in the asymptotic limit ti → −∞ is γin = I and Fin =
lim{Jk}→0 δ2/δJk1,r δJk2,r . By the boundary condition γout = I

and Fout = lim{Jk}→0 δ2/δJ−p1,lδJ−p2,l in the asymptotic limit
tf → ∞, it follows from Eqs. (14) and (34) that the S matrix

Sp1p2;k1k2 = �2
∫ +∞

−∞

dt ′1dt ′2dt1dt2

(2π )2
eip1t

′
1+ip2t

′
2−ik1t1−ik2t2

×〈T σ−(t ′1)σ−(t ′2)σ+(t1)σ+(t2)〉 (42)

of two reflected photons with momenta −p1 and −p2 is given
by the time-ordered correlator of spin operators. Here, the
time evolution σ±(t) = σ±e±�t governed by Heff determines
the four-point correlator, which leads to the S matrix

Sp1p2;k1k2 = Rk1Rk2

(
δp1k1δp2k2 + δp1k2δp2k1

)
+ i�2

π

δp1+p2,k1+k2 (k1 + k2 + 2i�)

(p1 + i�)(p2 + i�)(k1 + i�)(k2 + i�)
.

(43)
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The wave function of two reflected photons is obtained
directly from the Fourier transform of Eq. (43) [22] as

ψ(x1,x2) = 1

2

∫
dp1dp2e

ip1x1+ip2x2Sp1p2;k1k2

= eiExcRk1Rk2 [cos(kx) − e[i(1/2)E−�]|x|], (44)

where the total momentum E = k1 + k2, the relative mo-
mentum k = (k1 − k2)/2, the center-of-mass coordinate xc =
(x1 + x2)/2, and the relative momentum x = x1 − x2. The
results (43) and (44) agree with those in Refs. [21,22].

For two photons with the resonant frequency k1 = k2 = 0,
the reflection coefficients are Rk1 = Rk2 = 1 and the wave
function

ψ(xc,x) = 1 − e−�|x|. (45)

In Sec. III, we prove that the quantum statistics of outgoing
photons from the emitter under the weak driving light can be
characterized by the two-photon wave function ψ(xc,x). More
precisely, for the weak driving light with the zero detuning
�d = ωd − ωe, the second order correlation function g(2)(x) =
|ψ(xc,x)|2 of the emitted photons can be obtained by the two-
photon wave function ψ(xc,x) from the scattering theory. Here,
g(2)(x) = (1 − e−�|x|)2 display the antibunching behavior.

The spontaneous decay of the two-level emitter in the
excited state can be investigated by the boundary conditions
γin = σ−, Fin = 1 and γout = I , Fout = lim{Jk}→0 δ/δJp,(r,l) at
the initial and the final instants ti = 0 and tf = T . Equations
(14) and (34) give the amplitude

A(T ) =
√

�

2π

e−iσαpT − e−�T

σαp + i�
(46)

to detect a single outgoing photon with the momentum p. The
Fourier transform gives the wave function

ψ(x) =
∫

dp√
2π

eipxA(T )

= −i
√

�e−�(T −σax)θ (T − σax)θ (σax) (47)

in the coordinate space for the right- and left-moving photons.
Since the emitter couples to the left- and right-moving modes
symmetrically, the wave packets of the right- and left-moving
photons are symmetric with respect to the origin. As shown
in Fig. 2(a), |ψ(x)|2 for the right-moving photon exhibits the
Lorentzian shape with the different widths 1/�.

The reverse process of the spontaneous decay is the
response of the two-level emitter in the ground state to
the single-photon wave packet fin(k). Here, the boundary
conditions are γin = I , Fin = lim{Jk}→0

∫
dkfin(k)δ/δJk,r and

γout = σ− and Fout = 1 at the instants ti = 0 and tf = T ,
respectively. Equations (14) and (34) result in the amplitude

A(T ) = −i

√
�

2π

∫
dk fin(k)

∫ T

0
dt e−ikt 〈σ−(T )σ+(t)〉

=
√

�

2π

∫
dk fin(k)

e−ikT − e−�T

k + i�
(48)

FIG. 2. (Color online) Emission and absorption of a single pho-
ton by a single emitter: (a) The spatial amplitude |ψ(x)|2 of a
right-propagating single-photon wave packet, produced by an emitter
initially prepared in the excited state at T = 0. The wave packet
shown here is after an evolution time T = 10/�. (b) The probability
|A(T )|2 of the emitter in the excited state for the incident wave packet
with the width 1/γ and localized at x0. Here, the emission rate � = 1
into the waveguide is taken to be the unit.

of the emitter in the excited state. For the right-moving photon
wave packet

fin(k) =
√

γ

π

e−ikx0

k + iγ
(49)

with the width 1/γ initially at the position x0 < 0, the residue
theorem gives

A(T ) =
√

2γ�

� − γ
[e−�(x0+T ) − e−γ (x0+T )]θ (x0 + T ). (50)

In Fig. 2(b), we show |A(T )|2 of the emitter in the excited
state for different widths γ .

In the stimulated emission, the two-level emitter is initially
prepared in the excited state at the instant ti = 0, and the wave
packet of single right-moving photon is designed to realize the
maximal probability of emitting two right-moving photons in
the asymptotic limit tf → ∞.

With the initial and final boundary conditions γin =
σ−, Fin = lim{Jk}→0

∫
dk fin(k)δ/δJk,r and γout = I , Fout =

lim{Jk}→0 δ2/δJp1,r δJp2,r , Eqs. (14) and (34) result in the S

matrix

Sp1p2,k =
√

�

2π

∫
dk fin(k)

[
δkp1

1

p2 + i�
+ �

2π

1

p1 + i�

× 1

p1 − k + i0+
1

p1 + p2 − k + i�

]
+ (p1 ↔ p2)

(51)

of two right-moving photons with momenta p1 and p2. The
Fourier transform of Sp1p2,k results in the wave function

ψ(x1,x2) =
∫

dp1dp2

2π
Sp1p2,ke

ip1x1+ip2x2

=
∫

dx fin(x)[B(x1,x2; x) + B(x2,x1; x)], (52)

in the coordinate space, where

B(x1,x2; x) = −i
√

�e�x2θ (−x2)[δ(x − x1)

−�e−�(x−x1)θ (x2 − x)θ (x − x1)], (53)
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and

fin(x) =
∫

dk√
2π

fin(k)eikx (54)

describes the incident wave packet in the coordinate space.
We design the shape of the wave packet fin(x) to maximize

the stimulated emission probability

Pst = 1

2

∫
dx1dx2|ψ(x1,x2)|2. (55)

The amplitude (52) leads to

Pst =
∫

dx dyf ∗
in(x)W (x,y)fin(y), (56)

where

W (x,y) =
∫

dx1dx2B∗(x1,x2; x)

× [B(x1,x2; y) + B(x2,x1; y)]. (57)

The function (53) gives

W (x,y) = 1

2
δ(y − x) + �

4
(3e�(x+y) − e−�|x−y|)θ (−x)θ (−y).

The manifest effect of two photons to the system is realized
by the initial wave packet fin(x) localized at x < 0. The
largest eigenvalue of W (x,y) gives the maximal probability
of stimulated emission, and the corresponding eigenstate
determines the shape of the single-photon wave function
fin(x).

Fortunately, the eigenequation, i.e., the integral equation∫ 0

−∞
dy W (x,y)fin(y) = λfin(x) (58)

can be solved exactly. In Eq. (58), the second order derivative
to x leads to the differential equation

∂2
xfin(x) = λ

λ − 1
2

�2fin(x), (59)

where the solution is

fin(x) =
(

4�2λ

λ − 1
2

)1/4

exp

[√
λ

λ − 1
2

�x

]
θ (−x). (60)

The eigenvalue λ = 2/3 is obtained by the fact that fin(x) is
the solution of Eq. (58). Finally, we conclude that the largest
probability of stimulated emission in the two-level emitter is
P max

st = 2/3, and the corresponding incident wave packet is
f (x) = 2

√
�e2�xθ (−x).

We notice that this result agrees with that in Ref. [53],
where two types of the incident wave packets, i.e., the Gaussian
type and the Lorentzian shape are considered. By tuning the
width of the wave packet, the maximal probability 2/3 of
the stimulated emission was found for the initial wave packet
with the Lorentzian shape. Here, we proved the exact result
P max

st = 2/3 by solving the integral equation (58) analytically.

B. JC system

In this section, we consider the JC system as the single
emitter coupled to waveguide photons, and apply the scattering

theory to study the different scattering processes. The emitter
Hamiltonian in the rotating frame reads

Hsys = �ca
†a + �e|e〉〈e| + g(a†|g〉〈e| + H.c.), (61)

where the detunings are �c = ωc − k0 and �e = ωe − k0. For
convenience, we focus on the resonant case �c = �e = 0.
The effective Hamiltonian Heff = Hsys − i�a†a follows from
Eq. (37). The external source term is

SJ = −
√

�

L

∫ tf

ti

dt
∑

k,α=r,l

[J ∗
k,αa(t)e−iσαk(tf −t)

+ Jk,αa†(t)e−iσαk(t−ti )]. (62)

For the single incident photon with the momentum k and
the emitter initially in the ground state, the boundary condition
is γin = I and Fin = lim{Jk}→0 δ/δJk,r in the asymptotic limit
ti → −∞. By the boundary condition γout = I and Fout =
lim{Jk}→0 δ/δJp,(r,l) in the asymptotic limit tf → ∞, Eqs. (14)
and (34) lead to the reflection and transmission coefficients

Rkδp,−k = − i�k

(k + i�)k − g2
δp,−k,

(63)

Tkδp,k = k2 − g2

(k + i�)k − g2
δp,k.

For the two incident photons with momenta k1 and k2 to the
emitter initially in the ground state, the boundary condition is
γin = I and Fin = lim{Jk}→0 δ2/δJk1,r δJk2,r in the asymptotic
limit ti → −∞. By the boundary condition γout = I and
lim{Jk}→0 δ2/δJ−p1,lδJ−p2,l in the asymptotic limit tf → ∞,
Eqs. (14) and (34) lead to the S-matrix element

Sp1p2;k1k2 = �2
∫ +∞

−∞

dt ′1dt ′2dt1dt2

(2π )2
eip1t

′
1+ip2t

′
2−ik1t1−ik2t2

× 〈T a(t ′1)a(t ′2)a†(t1)a†(t2)〉, (64)

of two reflected photons with momenta −p1 and −p2. Here,
the correlator for operators a(t) = eiHeff t ae−iHeff t and a†(t) =
eiHeff t a†e−iHeff t leads to the S-matrix element

S−p1−p2;k1k2 = Rk1Rk2

(
δp1k1δk2p2 + δp2k1δk2p1

)
+ i

�2

π

g4(E + i�)δp1+p2,k1+k2

(E + i�)(E + 2i�) − 2g2

× E(E + 2i�) − 4g2∏
i=1,2[ki(ki+i�)−g2][pi(pi + i�) − g2]

.

(65)

The Fourier transform of Eq. (65) leads to the wave function

ψ(xc,x) = 1

2

∑
p1p2

Sp1p2;k1k2e
ip1x1+ip2x2

= eiExc

{
Rk1Rk2 cos(kx)

− �2g4

λ+ − λ−

∑
s=± s(E − 2λs)ei[(E/2)−λ−s ]x

(E + i�)(E + 2i�) − 2g2

× 1∏
i=1,2[ki(ki + i�) − g2]

}
(66)
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of two photons, where λs is the solution of k2 + i�k − g2 = 0.
As we discussed in Sec. III, under the weak driving light
with frequency ωd , the quantum statistics of photons emitting
from the JC system can be described by the second order
correlation function g(2)(x) = |ψ(xc,x)|2, where ψ(xc,x) is
the two-photon wave function for the incident photons with
frequency k1 = k2 = ωd − k0. The above results agree with
those in Ref. [23].

As a summary, in this section, we use the single emitter
case as the example to show how our theory works in the
few-photon scattering process. All the results agree with the
previous studies, which justifies the validity of the developed
scattering theory.

V. VALIDITY OF MARKOV APPROXIMATION

In this section, we use the simple example to study
the condition of the Markov approximation in the array
of two-level emitters. As shown in Secs. III and IV, the
dynamics of the single emitter coupled to the waveguide
with the linear dispersion can be exactly described by the
effective Hamiltonian (37) and the generalized master equation
(26). For the array of emitters, the dynamics is exactly
characterized by the effective time-nonlocal action Seff , where
the effective Hamiltonian (37) and the generalized master
equation (26) only describe the emitter evolution under the
Markov approximation.

In order to justify the validity of Markov approximation, we
compare the exact result given by the path integral approach
and the approximate result based on the quantum regression
theorem. This comparison shows that the exact result and
Markovian limit coincide when the bandwidth of the dynamics
is sufficiently small compared to the distance between emitters.

We focus on the single- and two-photon scattering pro-
cesses, where the effective action

Seff =
∫

dω
∑
ij

b
†
i (ω)[ωI − H0(ω)]ij bj (ω)

− U0

2

∫
dt

∑
j

b
†
j (t)b†j (t)bj (t)bj (t) (67)

of emitters is given by the matrix with elements
[H0(ω)]ij = −i�f δij − i�ei(k0+ω)|xi−xj |. The driving action
SJ = − ∫ tf

ti
dt Hd(t) is given by Eq. (19) with Ok,σα

=√
�/L

∑
j e−i(k+σαk0)xj bj . Equations (14) and (34) lead to the

exact results of the transmission spectrum and the second
order correlation function by the effective action Seff and SJ .
Under the Markov approximation, Eqs. (14) and (34) give
approximate results by the effective Hamiltonian H0(ω) ∼
H0(0) ≡ HM

0 and Ok,σα
∼ O0,σα

.

A. Single-photon processes

For the single incident photon with the momentum k and the
emitters initially in the ground state, the boundary condition
is γin = I and Fin = lim{Jk}→0 δ/δJk,r in the asymptotic limit
ti → −∞. It follows from Eqs. (14) and (34) that the reflection

(a) (b)

FIG. 3. (Color online) (a) Single incident photon reflection spec-
tra in a two-emitter system, where the distance between emitters is d .
(b) Excitation probability of second emitter |A(2,T )|2 as a function
of time T in a two-emitter system, when the second (first) emitter is
initially prepared in the ground (excited) state. Here, �f = 0 and �

is taken as the unit. The Markovian results are also given by the solid
(blue) curves.

coefficient

Rk = −i�
∑
ij

[G(k)]ij e
i(k+k0)(xi+xj ) (68)

of the photon with momentum p = −k is determined by the
boundary condition γout = I and Fout = lim{Jk}→0 δ/δJp,l in
the asymptotic limit tf → ∞, where the Green’s function
matrix G(k) = [k − H0(k)]−1. In the Markovian limit, the
reflection coefficient

RM
k = −i�

∑
ij

[GM(k)]ij e
ik0(xi+xj ). (69)

is determined by the approximate Green function GM(k) =
[k − H0(0)]−1.

The difference in Eqs. (68) and (69) is that the phase
factor eikxi in H0(k) is neglected in GM(k), which results in
the condition kNd � 1 of the Markov approximation in the
single-photon scattering. In Fig. 3(a), we show the reflection
probabilities |Rk|2 and |RM

k |2 of the scattering photon by two
atoms with lattice spacing d, where k0d = 2πn and n is an
integer. The approximate result |RM

k |2 does not depend on d,
which agrees with the exact result |Rk|2 very well for small
kd � 1. In the non-Markovian regime kd > 1, the dotted
(black) curve (d = 1) shows that the reflection probability
has the peaks localized around n0π/d and n0 is an integer.
The positions of these peaks are the resonant frequencies of
eigenmodes in the “cavity” formed by the two emitters.

The behavior of single excitation propagation in the
emitter array can also be analyzed by Eqs. (14) and (34),
where the exact result gives the condition of the Markov
approximation. For the first emitter initially in the excited state
and the rest of the emitters in the ground state, the boundary
conditions areFin = I and γin = b1 at the initial instant ti = 0.
The propagation of single excitation in the emitter array is
described by the boundary condition Fout = I and γout = bj

at the final instant tf = T . Equations (14) and (34) lead to the
amplitude

A(j,T ) = i

∫
dω

2π

[
1

ω − H0(ω)

]
j1

e−iωT (70)
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of detecting the excitation at the j th emitter. The single photon
emitted by the excitation of the first emitter is described by the
amplitude

Aα(x,T ) = −i
√

�
∑

j

e−iσαk0xj θ [σα(x − xj )]

× θ [T − σα(x − xj )]A(j,T − σα(x − xj ))

(71)

of detecting a single photon at the position x in the waveguide,
where α denotes the right- and left-moving modes, and the
boundary condition is Fout = lim{Jk}→0 δ/δJk,(r,l) and γout = I

at the final instant tf = T . In the Markovian limit, the
amplitudes become

AM(j,T ) = i

∫
dω

2π

[
1

ω − H0(0)

]
j1

e−iωT (72)

and

AM
α (x,T ) = −i

√
�

∑
j

e−iσαk0xj θ [σα(x − xj )]

× θ [T − σα(x − xj )]AM(j,T − σα(x − xj )).

(73)

To investigate the non-Markovian effects and justify the
validity of the Markov approximation, we compare the exact
results and the approximate results. It follows from the residue
theorem that the poles ξλ and the corresponding residues Zλ

of {1/[ω − H0(ω)]}j1 determine the time evolution A(j,T ) ∼∑
λ Zλe

−iξλT . Similarly, AM(j,T ) ∼ ∑
λ ZM

λ e−iξM
λ T is given

by the poles ξM
λ and the corresponding residues ZM

λ of
{1/[ω − H0(0)]}j1. Under the condition ξM

λ Nd � 1, the phase

factor eiξM
λ |xi−xj | ∼ 1, and ξM

λ and ZM
λ are approximately

the pole ξλ and the corresponding residue Zλ of the exact
propagator {1/[ω − H0(ω)]}j1. As a result, the condition of
the Markov approximation is ξM

λ Nd � 1.
To understand this condition, we consider two emitters in

the waveguide, where the first emitter is placed at the origin,
and the effective action is determined by the 2 × 2 matrix

H0(ω) =
(

−i�f − i� −i�ei(k0+ω)d

−i�ei(k0+ω)d −i�f − i�

)
. (74)

It follows from Eqs. (70) and (71) that the exact amplitudes
are

A(1,T ) = 1
2e−(�f +�)T [C+(T ) + C−(T )],

(75)
A(2,T ) = 1

2e−(�f +�)T [C−(T ) − C+(T )],

and

Aα(x,T ) = −i
√

�{θ (σαx)θ (T − σαx)A(1,T − σαx)

+ e−iσαk0dθ [σα(x − d)]θ [T − σα(x − d)]

×A(2,T − σαx + σαd)}, (76)

where

C±(T ) =
∞∑

n=0

1

n!
[±�eik0d+(�f +�)d (T − nd)]nθ (T − nd).

(77)

The amplitude AM
α (x,T ) under the Markov approximation has

the same form of Eq. (76), where A(j,T ) is approximated by

AM(1,T ) = cosh(�T eik0d )e−(�f +�)T ,
(78)

AM(2,T ) = − sinh(�T eik0d )e−(�f +�)T .

The agreement between Eq. (78) and the exact result (75)
is verified in the Markovian limit (�f + �)d � 1, where
C±(T ) ∼ e±�T eik0d

.
The time evolution of the two emitters exhibits two non-

Markovian effects. The first is the retardation effect. The
amplitude AM(2,T ) shows that once T > 0 the second emitter
has the probability in the excited state. However, this is an
artificial effect of the instantaneous effective Hamiltonian Heff

under the Markov approximation. In fact, the single-photon
wave packet emitted by the first emitter takes the time T = d

to arrive at the second emitter. Hence, the second emitter has to
stay at the ground state for T < d, i.e., A(2,T < d) = 0. This
retardation effect is fully characterized by the exact result (75)
and C±(T ). We show the probability |A(2,T )|2 in Fig. 3(b)
for �f = 0 and k0d = 2πn, where the dotted (black) curve for
d = 1 displays the retardation effect explicitly. In the small
d limit, i.e., �d/c � 1, the Markovian result agrees with the
exact result very well, as shown by the solid (blue) and dashed
(red) curves in Fig. 3(b), where the speed of light c is taken to
be the unit.

The second effect is the formation of the entangle state
(|eg〉 − |ge〉)/√2 in the limit T → ∞. For the vanishing �f =
0, both the exact and Markovian results show that in the steady
state T → ∞ the emitters have the probability Pe to form the
entangle state. Under the Markov approximation, the proba-
bility Pe = 1/2 is determined by AM(1,∞) = −AM(2,∞) =
1/2. The exact result A(1,∞) = −A(2,∞) = 1/(2 + 2�d)
gives the probability Pe = 1/[2(1 + �d)2] to form the entangle
state. In the limit �d � 1, the Markov approximation works
perfectly, i.e., A(j,∞) ∼ AM(j,∞) = 1/2.

During the formation of the entangled state, the dynamics
of the waveguide photon is described by the amplitudes
Ar,l(x,T ). In Fig. 4, we show the propagation of the right- and
left-moving wave packets by Ar,l(x,T ) for the distance d = 1.
In the steady state T → ∞, the entangle state is established,
where the standing wave in the regime 0 < x < d forms to
mediate the interaction of two emitters.

B. Two-photon processes

In this section, we study the scattering process of two
incident photons with momenta k1 and k2. By comparing
the exact result and the approximate result, we investigate
the condition of the Markov approximation in the two-photon
processes.

The initial boundary condition is γin = I and Fin =
lim{Jk}→0 δ2/δJk1,r δJk2,r in the asymptotic limit ti → −∞. It
follows from Eqs. (14) and (34) that the S matrix

Sp1p2,k1k2 = Rk1Rk2

(
δp1k1δp2k2 + δp2k1δp1k2

)
− i

�2

π
δp1+p2,k1+k2

∑
ij

Ḡi(p1,p2)Tij (E)Ḡj (k1,k2)

(79)
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(a) (b)

(c) (d)

FIG. 4. (Color online) The solid (blue) and the dashed (red)
curves show the wave functions of the right- and left-moving photons
after the evolution time T , where the first (second) emitter is initially
prepared in the excited (ground) state. Here, �f = 0 and � is taken
as the unit, and the green dots denote the two emitters.

of two reflected photons with momenta −p1 and −p2 are
determined by the boundary condition γout = I and Fout =
lim{Jk}→0 δ2/δJ−p1,lδJ−p2,l in the asymptotic limit tf → ∞.
Here,

Ḡi(p1,p2) =
∑
i1i2

Gi1i(p1)Gi2i(p2)ei(p1+k0)xi1 ei(p2+k0)xi2 ,

(80)
and the T matrix T (E) = −�−1(E) is given by the Dyson
expansion with the bubble

�ij (E) = i

∫
dω

2π
Gij (ω)Gij (E − ω) (81)

and E = k1 + k2.
Under the Markov approximation, Sp1p2,k1k2 is given by the

same form of Eq. (79), where Rki
∼ RM

ki
,

Ḡi(p1,p2) ∼
∑
i1i2

GM
i1i

(p1)GM
i2i

(p2)eik0(xi1 +xi2 ) (82)

and the bubble (81) are determined by the approximate Green’s
function GM(ω) ∼ [ω − H0(0)]−1. The exact result shows that
the Markov approximation is valid in the limits kiNd, piNd,
and �Nd � 1.

In order to understand the condition, we investigate the
two-photon scattering processes explicitly by considering the
photon scattering by two emitters, where k0d = 2πn. We
first compare the exact T matrix T (E) with the T matrix
T M(E) under the Markov approximation, where the ele-
ments �M

11(E) = �M
22(E) = �M

a (E) + �M
b (E) and �M

12(E) =

(a) (b)

(c) (d)

FIG. 5. (Color online) (a),(b) The exact and Markovian T -matrix
elements for E = 1. (c),(d) The second order correlation functions of
outgoing photons: In (c) τ = 0, in (d) E = 0, and Markovian results
are shown by the solid (blue) curves. Here, �f = 0 and � is taken as
the unit.

�M
21(E) = �M

a (E) − �M
b (E) are given by

�M
a (E) = 1

4

∑
σ=±1

1

E + 2i�f + 2i�(1 + σeik0d )
,

(83)

�M
b (E) = 1

2

1

E + 2i�f + 2i�
.

The absolute values of the exact T -matrix elements are shown
in Figs. 5(a) and 5(b) for k0d = 2πn, which illustrate the
perfect agreement between the Markovian result T M(E) and
the exact result in the limit Ed,�d � 1.

The Fourier transformation of S matrix leads to the wave
function

ψ(xc,x) = 1

2

∫
dp1dp2Sp1p2,k1k2e

ip1x1+ip2x2 (84)

of two reflected photons, where the center-of-mass coordinate
xc = (x1 + x2)/2 and the relative coordinate x = x1 − x2. For
two incident photons with the same momentum k1 = k2 =
k, the photon statistics is characterized by the second order
correlation function

g(2)(τ ) = |ψ(xc,τ )|2
|Rk|4

. (85)

In Figs. 5(c) and 5(d), we show g(2)(0) as the function of
E = 2k and g(2)(τ ) for the resonant frequency k = 0, where
the Markovian results perfectly agree with the exact result in
the small kd and �d limit. When d is increasing, e.g., �d = 0.1
and 1, the Markovian result deviates from the exact one.

As the summary in this section, we use the exact result to
study the non-Markovian effects and examine the condition
of the Markov approximation. We conclude that in the limit
�Nd,kNd � 1, the Markov approximation works perfectly.
For the large �Nd and kNd, some non-Markovian effects
emerge, e.g., the retardation effect. In the following sections,
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we assume the system length Nd is small enough and the
Markov approximation is always valid.

VI. ENTANGLED PHOTON PAIRS BY SINGLE EMITTER

In this section, we use the scattering theory to study the
generation of entangled photons in the scattering process.
In order to realize the deterministic generation of reflected
photons, the two-level emitter is placed at the left-hand side of
a perfect mirror, i.e., in the half-end waveguide, as shown in
Fig. 1(c). Here, the mirror is put at the origin, and the position
of the emitter is x0 < 0.

It follows from Eq. (35) that the effective action is

Seff = Ssys + i

∫
dt �e†(t)e(t) + i

∫
dt �bb

†(t)b(t)

+ i
√

��b

∫
dt b†(t)e(t + x0)e−ik0x0

+ i
√

��b

∫
dt e†(t)b(t + x0)e−ik0x0 , (86)

where the emitter action Ssys is determined by the Hamiltonian
Hsys = Hemitter. By the creation (annihilation) operator e† (e),
the hardcore boson is introduced to describe the two-level
emitter, where the energy level spacing is ωe = k0 and
Hemitter = U0e

†e†ee/2 in the limit U0 → ∞. The external
source term SJ = − ∫ tf

ti
dt Hd(t) is given by Eqs. (19) and

(6) with the jump operator O = e.

A. Single- and two-photon scattering

For the single incident photon with the momentum k and
the emitter initially in the ground state, the boundary condition
is γin = I and Fin = lim{Jk}→0 δ/δJk,r in the asymptotic limit
ti → −∞. By the boundary condition γout = I and Fout =
lim{Jk}→0 δ/δJp,l in the asymptotic limit tf → ∞, Eqs. (14)
and (34) result in the reflection coefficient

Rkδp,−k = −iδp,−k

[
�Gee(k)e2i(k+k0)x0 + �bGbb(k)

+ 2
√

��bGeb(k)ei(k+k0)x0
]
, (87)

where the Green’s functions Gss ′ (k) = −i
∫

dt eikt 〈s(t)s ′†〉
with s,s ′ = e,b. The effective action determines the single
particle Green’s functions(

Gee(k) Geb(k)

Gbe(k) Gbb(k)

)

=
(

k + i� i
√

��be
−i(k0+k)x0

i
√

��be
−i(k0+k)x0 k + i�b

)−1

,

(88)

which give the reflection coefficient

Rkδp,−k = −k − i� + i�e−2i(k+k0)|x0|

k + i� − i�e2i(k0+k)|x0| δp,−k (89)

and |Rk| = 1 in the limit �b → ∞. The phase shift arg(Rk) is
shown in Fig. 6(a) for d = 10−4, where θ0 = k0|x0|.

For two incident photons with momenta k1 and k2 and the
emitter initially in the ground state, the boundary condition

FIG. 6. (Color online) (a) The phase shift of the single photon. (b)
The von Neumann entropy of the reflective photons. Here, d = 10−4,
and � is taken as the unit.

is γin = I and Fin = lim{Jk}→0 δ2/δJk1,r δJk2,r in the asymp-
totic limit ti → −∞. By the boundary condition γout = I

and Fout = lim{Jk}→0 δ2/δJ−p1,lδJ−p2,l in the asymptotic limit
ti → −∞, the S-matrix element

S−p1−p2;k1k2

= Rk1Rk2

(
δp1k1δp2k2 + δp1k2δp1k2

)
− i

16

π
�2δp1+p2,k1+k2T (E)

×
∏
i=1,2

sin[(ki + k0)|x0|] sin[(pi + k0)|x0|]
[ki+i�−i�e2i(k0+ki )|x0|][pi+i� − i�e2i(k0+pi )|x0|]

(90)

of two reflected photons with momenta p1 and p2 is given by
Eqs. (14) and (34) in the asymptotic limit tf → ∞. Here, the
T -matrix element

T (E) = 1

U−1
0 − �(E)

(91)

is determined by the vacuum bubble

�(E) = i

∫
dω

2π
Gee(ω)Gee(E − ω) (92)

and E = k1 + k2 = p1 + p2.

B. Entangled photon pairs

For the state
∑

k1k2
f (k1)f (k2)r†k1

r
†
k2

|0〉/√2 of two indepen-
dent incident photons, the S matrix (90) leads to the asymptotic
state

|ψout〉 = 1√
2

∑
p1p2

ψout(p1,p2)l†−p1
l
†
−p2

|0〉 (93)

of two reflected photons, where the wave function is

ψout(p1,p2) = f (p1)f (p2)Rp1Rp2 − 16i�2T (E)F2(E)

×
∏

i=1,2

sin[(pi + k0)|x0|]
pi + i� − i�e2i(k0+pi )|x0| , (94)

and the integral

F2(E) =
∫

dk

2π

∏
σ=±1

f
(

E
2 + σk

)
sin

[(
E
2 + σk + k0

)|x0|
]

E
2 + σk + i� − i�e2i( E

2 +σk+k0)|x0|
.

(95)
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The von Neumann entropy SVN = −tr(ρ1 ln ρ1) is
given by the single-photon reduced density matrix ρ1 =
tr2(|ψout〉〈ψout|), where the degree of freedom for the other
photon is traced out. The von Neumann entropy SVN =
− ∑

λ λ2 ln λ2 can be obtained by the singular value decompo-
sition of ψout(p1,p2) = ∑

λ gλ(p1)λg̃λ(p2). Here, the singular
values λ measure the entanglement of two photons in different
modes gλ and g̃λ. For the single-photon wave packet

f (k) =
√

γ

π

1

k + iγ
, (96)

we show SVN in Fig. 6(b) for d = 10−4, which displays the
generation of entangled photons by the two-level emitter.

VII. RYDBERG-EIT SYSTEM

In this section, we consider the application of the scattering
theory in the photon transmission in the EIT atoms coupled to
the Rydberg level. We shall show that the developed scattering
theory is an efficient approach to the photon transmission in the
array of interacting emitters with complicated structures. Here,
we highlight the interplay between the EIT phenomenon and
the Rydberg interaction, and show a rich variety of quantum
statistics of the scattering photons and polariton exitations.

In the rotating frame, the Hamiltonian (7) becomes

Hsys =
∑

i

[�ee
†
i ei + �ss

†
i si + (�e

†
i si + H.c.)]

+HHC + 1

2

∑
ij

Uij s
†
i s

†
j sj si, (97)

where �e = ωe − k0, �s = ωs − k0 + ωd , and we focus on the
two-photon resonance case �s = 0. The waveguide photons
couple to the N atoms collectively through the operator Ok,± =√

�
∑N

i=1 e−i(k±k0)xi ei/
√

L, and the free space modes couple
to the atom operator ei locally, which induces the decay of the
excited state e. The effective action

Seff =
∫

dt

{∑
i

[e†i (t)(i∂t+i�f )ei(t)+| s†i (t)i∂t si(t)]−Hsys

}

+ Sre (98)

of EIT atoms is given by

Sre = i�

∫
dt

∑
ij

e∗
i (t)ej (t − |xi − xj |)eik0|xi−xj |. (99)

The source term SJ = − ∫ tf
ti

dt Hd(t) is determined by
Eq. (19). Here, the lattice spacing d satisfies k0d = (2n +
1/2)π .

Based on the general results (14) and (34), we first study the
single- and two-photon scatterings, and show the transmission
spectrum and the second order correlation function of outgoing
photons. In the second part, we investigate the transient
processes and show how the wave packets of single and two
incident photons transfer to the atom excitations, propagate
in the Rydberg-EIT atom array, and finally emit back to the
waveguide. For the single incident photon, we show the free
propagation of the dark polariton. For two incident photons,

we show the counterpropagation and copropagation of two
polaritons.

A. Single- and two-photon scatterings

For the single incident photon with the momentum k and
the atoms initially in the ground state, the boundary condition
is γin = I and Fin = lim{Jk}→0 δ/δJk,r in the asymptotic limit
ti → −∞. By the boundary conditions γout = I and Fout =
lim{Jk}→0 δ/δJp,(r,l) in the asymptotic limit tf → ∞, Eqs. (14)
and (34) lead to the reflection and transmission coefficients

Rkδp,−k = −i�δp,−k

∑
ij

[G0(k)]eeij ei(k+k0)(xi+xj ),

(100)

Tkδp,k = δpk

⎧⎨
⎩1 − i�

∑
ij

[G0(k)]eeij e−i(k+k0)(xi−xj )

⎫⎬
⎭

of the photon with momentum p.
The free Green’s function

G0(ω) = 1

ω − H0(ω)
(101)

of atoms is determined by the block form

H0(ω) =
(

(�e − i�f )δij − i�ei(k0+ω)|xi−xj | �δij

�δij �sδij

)

(102)

in the basis |ei〉 and |si〉, where each matrix element is the
N -dimensional matrix in the coordinate basis. In the notation
[G0(k)]σσ ′

ij , σ (σ ′) = e,s denotes the different “spin” blocks
and i,j denote the coordinate in the block. In the Markov limit
ωd � 1,H0(ω) is approximated by the frequency independent
effective Hamiltonian

HM
0 =

(
(�e − i�f )δij − i�eik0|xi−xj | �δij

�δij �sδij

)
, (103)

In Fig. 7, the exact transmission probability is compared
with that under the Markov approximation. As shown in
Figs. 7(a) and 7(b), for the small lattice spacing d = 10−4, the
Markov approximation works very well, which leads to the
same result as that from Eq. (102). When the lattice spacing
d = 10−2 is larger, Fig. 7(c) shows the difference between the
results under the Markov approximation (103) and the exact
result (102). In the realistic case, the small length of the array
justifies the validity of the Markov approximation. Henceforth,
we focus on the Markov limit. In Figs. 7(b) and 7(d), we
have taken into account the decay of the excited state |ei〉 to
the free space, i.e., �f 	= 0. The single-photon transmission
shows the EIT nature of atoms, where the total transmission
appears at the resonant frequency k = 0 in the EIT window.
The reason for the total transmission is that the resonant photon
transforms to the free-propagating dark polariton excitation,
which is only the superposition of states r

†
k |gi〉 and |si〉. As

a result, the free space decay �f of the state |ei〉 does not
affect the total transmission of the resonant dark polariton
with k = 0.

For the two incident photons with momenta k1 and k2 and
the atoms initially in the ground state, the initial boundary
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(a) (b)

(c) (d)

FIG. 7. (Color online) The single-photon transmission spectra,
where � = 1, �e = 0, � = 1, and the atom number is 20. (a) �f = 0
and d = 10−4; (b) �f = 1 and d = 10−4; (c) �f = 0 and d = 10−2;
(d) �f = 1 and d = 10−2.

condition is γin = I and Fin = lim{Jk}→0 δ2/δJk1,r δJk2,r in
the asymptotic limit ti → −∞. By the boundary condition
of the final state γout = I and Fout = lim{Jk}→0 δ2/δJp1,r δJp2,r

in the asymptotic limit and tf → ∞, Eqs. (14) and (34) lead
to the two-photon S matrix

Sp1p2;k1k2 = Tk1Tk2

(
δp1k1δp2k2 + δp1k2δp2k1

)
+ �2

(2π )2

∑
i1i2,j1j2

eik0(xj1 +xj2 −xi1 −xi2 )

×G
ee;ee
i1i2;j1j2

(p1,p2; k1,k2) (104)

for two transmitted photons with momenta p1 and p2. Here,
the Green’s function

G
ee;ee
i1i2;j1j2

(p1,p2; k1,k2) =
∫

dt ′1dt ′2dt1dt2e
ip1t

′
1+ip2t

′
2−ik1t1−ik2t2

×〈
T ei1 (t ′1)ei2 (t ′2)e†j1

(t1)e†j2
(t2)

〉
c

(105)

is the Fourier transformation of the four-point connected
Green’s function.

The Dyson expansion in terms of the two-body interaction
HHC + ∑

ij Uij s
†
i s

†
j sj si/2 leads to

Sp1p2;k1k2 = S
(0)
p1p2;k1k2

− i
�2

2π
δp1+p2,k1+k2

×
∑
ij i′j ′

σ1σ ′
1σ2σ ′

2

[w∗(p1,p2)]
σ1σ

′
1

ij [T (E)]
σ1σ

′
1;σ2σ

′
2

ij ;i ′j ′

× [w(k1,k2)]
σ2σ

′
2

i ′j ′ + (p1 ↔ p2), (106)

(a) (b)

(c) (d)

FIG. 8. (Color online) Bunching and antibunching behaviors of
transmitted photons, where � = 1, �f = 1, �e = 0, � = 1, k0d =
π/2, U0 = 108, and the atom number is 20: (a) the Feynman diagram
for the T matrix; (b) the second order correlation functions g(2)(x) for
C = C3 = C6 = 1, E = 0, and k = 0; (c) the second order correlation
functions ln g(2)(0) for the uniform case C = 0.46, where the relative
momentum k = 0, and the inset shows g(2)(x) for the frequency
E/2 = 0.2 of each photon; (d) the schematic for the generation of the
bunched and antibunched photons, where the incident photons have
different frequencies. s ′ is the shifted energy level due to the Rydberg
interaction.

where we define the independent scattering part S
(0)
p1p2;k1k2

=
Tk1Tk2δp1k1δp2k2 , and the function

[w(k1,k2)]σσ ′
i ′j ′ =

∑
j1j2

eik0(xj1 +xj2 )[G0(k1)]σe
i ′j1

[G0(k2)]σ
′e

j ′j2
.

(107)
The T matrix, depicted by the ladder diagram in Fig. 8(a),

satisfies the Lippmann-Schwinger equation

[T (E)]
σ1σ

′
1;σ2σ

′
2

ij ;i ′j ′

= U
σ1σ

′
1

ij δi ′iδj ′j δσ1σ2δσ ′
1σ

′
2

+U
σ1σ

′
1

ij

∑
i1j1;μ1μ

′
1

[�(E)]
σ1σ

′
1;μ1μ

′
1

ij ;i1j1
[T (E)]

μ1μ
′
1;σ2σ

′
2

i1j1;i ′j ′ , (108)

where the vacuum bubble is

[�(E)]σσ ′;μμ′
ij ;i ′j ′ = i

∫
dω

2π
[G0(ω)]σμ

ii ′ [G0(E − ω)]σ
′μ′

jj ′ . (109)

In the matrix form, the Lippmann-Schwinger equation is
formally solved as

T (E) = 1

U−1 − �(E)
, (110)

where the vacuum bubble �0(E) = (E − H2)−1 is given by
H2 = HM

0 ⊗ I2N + I2N ⊗ HM
0 , and the interaction matrix U
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has the diagonal element Uee
ij = Ues

ij = Use
ij = U0 → ∞ and

Uss
ij = Uij in the basis {|eiej 〉,|eisj 〉,|siej 〉,|sisj 〉}.
The wave function

ψ(xc,x)

=
∫

dp1dp2

2π
Sp1p2;k1k2e

ip1x1+ip2x2

= eiExc

2π

{
2T(E/2)+kT(E/2)−k cos(kx) − i�2

∑
ij i′j ′

σσ ′μμ′

[F (x)]σσ ′
ij

× [T (E)]σσ ′;μμ′
ij ;i ′j ′

[
w

(
E

2
+ k,

E

2
− k

)]μμ′

i ′j ′

}
(111)

of two transmitted photons is the Fourier transform of
Sp1p2;k1k2 , where

[F (x)]σσ ′
ij = −i

∑
i1i2

e−ik0xc,12

E − εl − εl′

∑
ll′

χl(i1e)χl′(i2e)

× χ̃∗
l (iσ )χ̃∗

l′ (jσ ′)[ei[(E/2)−εl′ ]xθ (x)

+ e−i[(E/2)−εl ]xθ (−x)] + (x → −x) (112)

is determined by xc,12 = xi1 + xi2 and the eigenstates |χl〉
(|χ̃l〉) of HM

0 (HM†
0 ) with the corresponding eigenenergies εl

(ε∗
l ). Here, 〈iσ |χl〉 = χl(iσ ) and 〈iσ |χ̃l〉 = χ̃l(iσ ).
By the wave function (111), we show the normalized

second order correlation function g(2)(x) = |πψ(xc,x)/T 2
E/2|2

of outgoing photons for the two incident photons with the
same momentum k1 = k2 = E/2 in Figs. 8(b) and 8(c). For
the resonant case E = 0, Fig. 8(b) shows the second order
correlation functions for the uniform interaction Uss

ij = C, the

van der Waals interaction Uss
ij = C6/|i − j |6, and the dipolar

interaction Uss
ij = C3/|i − j |3, which exhibit the antibunching

behavior of outgoing photons.
It can be understood in the following way. As shown in the

left panel of Fig. 8(d), if two Rydberg excitations are close to
each other, the Rydberg state is shifted by the strong Rydberg
interaction, such that the classical light is off-resonant with
respect to the transition between |ei〉 and |si〉. As a result, the
photon with k = 0 is resonant with the transition |gi〉 → |ei〉
and reflected. For two transmitted photons, to maintain that
the frequency k = 0 of the photon is in the EIT transmission
window, they repulse each other and show the antibunching
behavior such that the Rydberg state is not shifted.

For the incident photons with frequency E/2 larger than
some critical value, the transmitted photons can also display
bunching behavior, as shown in Fig. 8(c). The mechanism of
the generation of bunched photons is illustrated in the right
panel of Fig. 8(d). For two Rydberg excitations close to each
other, the Rydberg energy levels |si〉 are shifted. The photons
with finite momentum E/2 realize the two-photon resonance
with the shifted energy level |si〉, and can be transmitted. In
order to achieve the transmission of photons by the shifted
Rydberg levels |si〉, the two Rydberg excitations prefer to stay
next to each other, which induces the bunching behavior of the
transmitted photons.

As discussed in Sec. III, the second order correlation func-
tion g(2)(x) obtained by the scattering theory can characterize

the quantum statistics of photons emitted by the Rydberg-EIT
atoms under the weak driving field. In Ref. [42], the result
from the scattering theory and the numerical solution of the
master equation for the effective spin model under the weak
driving light are compared, where the two results agree with
each other perfectly.

B. Propagations of single and two excitations

In this section, we investigate how the single and two
incident photons transform to the excitations of the Rdyberg
atoms, and the propagation of excitations.

For the single incident photon with the wave packet f (k)
and the atoms initially in the ground state, the boundary
condition is γin = I and Fin = ∑

k f(r,l)(k) lim{Jk}→0 δ/δJk,(r,l)

at the instant ti = 0, where the wave packets of the right- and
left-moving photons are

f (k) = fr (k) =
√

γ

π

1

k + iγ
(113)

and

f (k) = fl(k) =
√

γ

π

e−ikxN

k − iγ
, (114)

with the width 1/γ . By the final boundary conditions Fout = 1
and γout = μi = ei ,si at the instant tf = T , Eqs. (14) and (34)
lead to the amplitude

A(α)
iμ (T ) = iσα

√
2γ�

∑
lj

eiσαk0xj θ (Tα − σαxj )

× χl(iμ)χ̃∗
l (je)

εl + iγ
[e−γ (Tα−σαxj ) − e−iεl (Tα−σαxj )]

(115)

of the excitation μ = e,s at the position i, where Tα = T − zα

and zr = 0, zl = xN . For this situation, the dark polariton
forms, where the probability of the occupation in the excited
state |ei〉 is quite small, ∼10−4. In Fig. 9, we show the dark
polariton propagation for the single right-moving incident
photon. In order to show the slow propagation of the dark
polariton, we choose the small ratio �/� = 0.1.

For the wave packet of two incident photons and the atoms
initially in the ground state, we consider both the copropaga-
tion and counterpropagation cases. For the copropagation, the

(a) (b)

FIG. 9. (Color online) (a) Probability of Rydberg states for the
single incident photon wave packet, where � = 1, �f = 0, � = 0,
� = 0.1, d = 10−4, γ = 0.01, and the atom number is 20. (b) The
Feynman diagram for the two excitation propagation.
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initial boundary condition at the instant ti = 0 is γin = I and

Fin =
∑
k1k2

fr (k1)fr (k2) lim
{Jk}→0

δ2

δJk1,r δJk2,r

, (116)

while for the counterpropagation, the initial boundary condi-
tion at the instant ti = 0 is γin = I and

Fin =
∑
k1k2

fr (k1)fl(k2) lim
{Jk}→0

δ2

δJk1,r δJk2,l

. (117)

By the boundary condition Fout = 1 and γout = μ1,i1μ2,i2

(μ1,2 = e,s) at the instant tf = T , Eqs. (14) and (34) result in
the amplitude

A(r,α)
i1i2;μ1μ2

(T )

= Pi1μ1;i2μ2

⎧⎨
⎩A(r)

i1μ1
(T )A(α)

i2μ2
(T )+2γ�σα

∑
j1j2

eik0xj1 +iσαk0xj2

× θ
(
T − xj1

)
θ

(
T − zα − σαxj2

) ∫
dω1

2π

∫
dω2

2π

×
∑

i ′j ′,σσ ′

[
1

ω1 + ω2 − H2

]μ1μ2;σσ ′

i1i2;ij

Uσσ ′
ij [G(ω1)]σe

ij1

× [G(ω2)]σ
′e

jj2

e−iω1(T −xj1 )

ω1 + iγ

e−iω2(T −zα−σαxj2 )

ω2 + iγ

⎫⎬
⎭ (118)

of two excitations μ1 and μ2 at the positions i1 and i2 for the
copropagation α = r and the counterpropagation α = l case,
where the operator Pi1μ1;i2μ2 symmetrizes the wave function
under the interchange i1μ1 ←→ i2μ2.

In the first row of Fig. 10, we show the propagation of two
dark polaritons for two counterpropagating incident photons.

(a) (b) (c)

(d) (e) (f)

FIG. 10. (Color online) Probabilities in the state |s〉 for two
counter- and copropagating polaritons with the dipolar case C3 = 1,
where � = 1, �f = 0, �e = 0, d = 10−4, and the atom number is
20. (a)–(c) show the probabilities at the instants T = 600, 1200,
and 1800 for the counterpropagation case: � = 0.1 and γ = 0.01;
(d)–(f) show the probabilities at the instants T = 12, 20, and 28 for
the copropagation case: � = 1 and γ = 0.1.

Here, we choose �/� = 0.1 to show the collision of two slow
polaritons. When the two excitations approach each other, the
states |si〉 are shifted by the Rydberg interaction, which results
in the off-resonance with the transition from |ei〉 to |si〉 induced
by the classical light. As a result, the photon is resonant with
the excited state |ei〉 and reflected. After the collision of two
excitations, they propagate away from each other, and the
interaction gradually vanishes, which results in the reformation
of two free propagating dark polaritons.

In the second row of Fig. 10, the propagation of two dark
polaritons for the copropagation incident photons is shown.
When the first photon transforms into the dark polariton
in the atom array, it blocks the transmission of the second
photon. This blockade occurs over a characteristic distance
rb ∼ (C3�/�2)1/3. For an incoming two-photon wave packet
whose size is larger than rb, the blockade manifests itself as
a suppression of the probability of two photons to overlap
with each other as they propagate through the medium [see
Figs. 10(d)–10(f)]. During the propagation in the Rydberg-EIT
atoms, the two polaritons keep away from each other such
that the energy levels |si〉 are not shifted, which results in the
transmission of two antibunched dark polaritons.

VIII. CONCLUSION

We summarize our results in this section. We developed
the scattering theory to investigate propagation of photons
through an array of quantum emitters using the path integral
approach. The exact transition amplitude for arbitrary initial
and final states is obtained to describe the quantum statistics
of scattering photons and the dynamics of emitters in the
transient process. The exact result justifies the correctness
of the Markov approximation for the single emitter coupled
to the waveguide photons with linear dispersion. The exact
and Markovian results coincide when the bandwidth of the
dynamics is sufficiently small compared to the distance
between emitters. Here, the generalized master equation for
the few-photon scattering process is obtained to describe
the transient dynamics of emitters. The generalized master
equation establishes the relation between two equivalent
systems, i.e., few photon scattering by the emitters and the
emitters under weak driving light.

For the single emitter case, two paradigmatic examples,
i.e., the two-level emitter and the JC system, are used to
show the correctness of our theory by comparison with the
well-known results. For an array of emitters, the validity of
the Markov approximation is examined in the system with
two-level emitters coupled to waveguide photons. Here, the
dynamical evolution of emitters show some non-Markovian
effects, i.e., the retardation effect.

The generation of entangled photons by the single emitter
in front of the mirror is also analyzed by the exact result from
our theory. Finally, the photon transmission in an array of
EIT atoms coupled to the Rydberg level is investigated by
the scattering theory. We highlight the interplay between the
EIT phenomenon and the Rydberg interaction, and show how
this results in the bunching and antibunching behaviors of the
scattering photons and the dark polaritons propagating in the
array.
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The scattering theory also provides a way to explore some
non-Markovian effects of emitters coupled to the waveguide
with nonlinear spectrum, where the multiphoton bound states
[59,60] may form. The general result of the transition ampli-
tude and the generalized master equation enable us to study
the photon transmission in more complicated quantum optics
systems and the dissipative many-body systems.

ACKNOWLEDGMENTS

This project has been supported by the EU project SIQS.
D.E.C. acknowledges support from Fundacio Cellex Privada
Barcelona, ERC Starting Grant FOQAL, and the Ramon y
Cajal program. T.S. acknowledges the useful discussions with
Y. Chang, A. G. Tudela, C. N. Benlloch, V. Paulisch, C. S.
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APPENDIX: GENERALIZED MASTER EQUATION
BY PATH INTEGRAL

In this Appendix, we derive the generalized master equation
(26) by the path integral approach. To simplify the notation,
we neglect the term H�f

describing the independent decay of
each emitter to the free space, and the derivation including
the free space mode follows the same procedure. In the end,
we show the result by considering the effect of the free space
decay.

Here, we need to introduce the emitter field explicitly.
In quantum optics systems, the emitter operators are usu-
ally the annihilation (creation) operators of bosonic modes
and the ladder operators. If one use the hardcore boson
to describe the emitters, all the operators are bosonic
operators (bl), where l denotes the different modes of
the emitters. In the coherent basis, the reduced density
operator ρs(T ) = T rbath[e−iHT ρ(0)eiHT ] becomes ρs(T ) =
F∗

in,−Fin,+e
∑

k,α J ∗
k,α,−Jk,α,+ρJ (T ):

ρJ (T ) =
∫

dμ(βl,+,out,β
∗
l,+,out)dμ(βl,−,out,β

∗
l,−,out)

× e− ∑
k,α J ∗

k,α,−Jk,α,+ρJ (β∗
l,+,out,βl,−,out; T )

× |{βl,+,out}〉〈{βl,−,out}|, (A1)

where α = r,l denotes the right- and left-moving photon
modes,

Fin,± = lim
{Jkα}→0

∑
{nkα}

ψin({nkα})
∏
kα

1√
nkα!

δnkα

δJ
nkα

k,α,±
, (A2)

the measure for the unnormalized coherent state |{βl}〉 is
dμ(βl,β

∗
l ) = ∏

l(e
−|βl |2d2βl/π ), and the element

ρJ (β∗
l,+,out,βl,−,out; T )

=
∫

dμ(βl,±,in,β
∗
l,±,in)

× ZJ (β∗
l,+,out,βl,−,out; βl,+,in,β

∗
l,−,in; T )ρ0(β∗

l,+,in,βl,−,in)

is given by the propagator

ZJ (β∗
l,+,out,βl,−,out; βl,+,in,β

∗
l,−,in; T )

=
∫

dμ(Jk,α,J ∗
k,α)〈{Jk,α}|〈{βl,+,out}|e−iHT |{βl,+,in}〉

×|{Jk,α,+}〉〈{Jk,α,−}|〈{βl,−,in}|eiHT |{βl,−,out}〉|{Jk,α}〉
(A3)

in the closed time path. Here, we define ρ0(β∗
l,+,in,βl,−,in) =

〈{βl,+,in}|ρsys(0)|{βl,−,in}〉.
The propagator (A3) is obtained by the saddle-point method

shown in Sec. III C, which is

ZJ (β∗
l,+,out,βl,−,out; βl,+,in,β

∗
l,−,in; T )

= eiSb

∫
dμ(Jk,α,J ∗

k,α)

× exp

{ ∑
k,α=r,l

[J ∗
k,αJk,α,+e−iσαkT + J ∗

k,α,−Jk,αeiσαkT ]

}

×
∫

D[system]eiSeff,+−iS∗
eff,−+iSJ,+−iS∗

J,− . (A4)

Here, iSb = ∑
l[β

∗
l,+,outβl(T ) + β∗

l (T )βl,−,out] is the boundary
term for the emitters, and Seff,± are the effective actions in
the forward and backward time-evolution paths, which are
given by substituting the fields βl,± for the emitter fields in the
effective action Seff . The external source term is

SJ,± = −
∫ T

0
dt

∑
k,α

[
J ∗

k,αOk,σα,±(t)e−iσαk(T −t)

+ Jk,α,±O∗
k,σα,±(t)e−iσαkt

]
. (A5)

Finally, the Gaussian integral over Jk,α,J ∗
k,α leads to the

propagator

ZJ (β∗
l,+,out,βl,−,out; βl,+,in,β

∗
l,−,in; T )

= e
∑

k,α J ∗
k,α,−Jk,α,+

∫
D[system]ei(Sd,+−Sd,−+Sjump)

× exp

{∑
l

[β∗
l,+,outβl(T ) + β∗

l (T )βl,−,out]

}
, (A6)

where

Sd,+ = Seff,+ −
∫ T

0
dt

∑
k,α

[
J ∗

k,α,−Ok,σα,+(t)eiσαkt

+ Jk,α,+O∗
k,σα,+(t)e−iσαkt

]
, (A7)

Sd,− = S∗
eff,− −

∫ T

0
dt

∑
k,α

[
J ∗

k,α,−Ok,σα,−(t)eiσαkt

+ Jk,α,+O∗
k,σα,−(t)e−iσαkt

]
, (A8)

and the jump term

Sjump = −i

∫
dt dt ′

∑
k,α

eiσαk(t−t ′)Ok,σα,+(t)O∗
k,σα,−(t ′).

(A9)
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Under the Markov approximation, the actions read

Seff,± = Ssys,± + i

∫ tf

ti

dt
∑
ij

√
�i�j

× O∗
i,±(t)Oj,±(t)eik0|xi−xj | (A10)

and

Sjump = −2i

∫ T

0
dt

∑
ij

√
�i�j cos[k0(xi − xj )]

× Oi,+(t)O∗
j,−(t). (A11)

By taking the time derivative of Eq. (A1) and using Eq. (A6),
we obtain the motion equation

∂T ρJ (T ) = −i[H̃sys(T ),ρJ (T )] + LρJ (T ) (A12)

for the generating density matrix ρJ (T ) with the initial
condition ρJ (0) = ρsys(0), where the Lindblad term is

LρJ (T ) = 2
∑
ij

√
�i�jOiρJ (T )O†

j cos[k0(xi − xj )]

−
∑
ij

√
�i�j cos[k0(xi − xj )]{O†

i Oj ,ρJ (T )}.

(A13)

Finally, by adding the Lindblad term describing the free
space decay, we reproduce the results (26), (27), and (28).
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