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Frequency shift in three-photon resonant four-wave mixing by internal atom-field interaction
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We report on experimental results of four-wave mixing processes in rubidium vapor where coherence is induced
on the three-photon resonant transition from 5s to 6p states via intermediate Rydberg levels. It is shown that
the use of two beams in a noncollinear configuration, i.e., θ �= 0, and high atomic density unveil new features.
First, the θ = 0 (collinear configuration) odd-photon destructive interference between the incident and generated
fields is strongly inhibited for θ �= 0. Second, most importantly, the observed cooperative frequency shift of the
three-photon transition is strongly enhanced for small, but nonzero, values of θ due to the factor (1 − cos θ )−1,
which is not present if the generated radiation field is not considered self-consistently in the Maxwell-Bloch
equations.
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I. INTRODUCTION

Modifications of resonant absorption and emission spectral
lines by dense atomic samples are of fundamental importance
in the investigations of a variety of quantum and nonlinear
phenomena. In fact, intriguing properties can be obtained
when many atoms collectively interact via a common elec-
tromagnetic field, such as superradiance [1] and cooperative
frequency Lamb shift [2,3]. Recently, the latter N -atom
phenomenon was shown to play a prominent role in distinct
experiments: evidence of connection to the superradiance of
resonant 57Fe nuclei [4], Rb vapor confined in a cell of tunable
thickness [5], and a mesoscopic array of Sr+ ions in a Paul
trap [6]. Moreover, effects due to the competition between
different excitation pathways [7,8] or quantum interference
with the internally common radiation field [9,10] have also
been explored, under resonant conditions, using nonlinear phe-
nomena. In this scenario, nonlinear four-wave mixing (FWM)
processes involving highly excited Rydberg atoms appear to
be a promising laboratory to investigate the phenomena caused
by N -atom interaction induced by the generated radiation
field. We also remark that two-photon resonant FWM can be
used to generate new frequencies with possible applications
for quantum communication [11] and quantum information
processing [12,13].

In this work, we apply FWM techniques to study the
nonlinear response of a thermal rubidium sample in which
coherence is induced on the three-photon resonant transition
from 5s to 6p states via Rydberg levels and to investigate
the associated cooperative frequency shift induced by the
interaction between the atoms through the reabsorption of
photons of the generated radiation field. The above-mentioned
three-photon resonance has already been investigated in a
collinear beam configuration, i.e., θ = 0, and low atomic
density [14]. Under these conditions, interference between
different excitation pathways was studied for the case when
two neighboring Rydberg levels play the role of near two-

*Present address: Joint Quantum Centre Durham-Newcastle, De-
partment of Physics, Durham University, South Road, Durham DH1
3LE, United Kingdom.
†vianna@ufpe.br

photon resonant intermediate levels. Recently [15], we also
investigated this system in the high-atomic-density regime
but maintaining the collinear beam configuration. In these
conditions, a collision-induced broadening of the two-photon
resonant lines was observed, as well as an odd-photon
destructive interference involving the incident and generated
fields [16].

The main focus of the present investigation is to show that
the use of the noncollinear beam configuration, i.e., θ �= 0,
and high atomic density unveil new features, in which case
propagation effects such as absorption and phase matching are
important. At the three-photon resonance, two main effects are
observed: first, the θ = 0 odd-photon destructive interference
between the incident and generated fields is strongly inhibited
for θ �= 0; second, most importantly, the cooperative frequency
shift is strongly enhanced for small, but nonzero, values of θ

due to the factor (1 − cos θ )−1, which is not present if the
generated radiation field is not considered self-consistently in
the Maxwell-Bloch equations.

The remaining sections of the paper are organized as
follows. In Sec. II, we describe the experimental setup and
present the main FWM data. The theoretical treatment based
on the Maxwell-Bloch equations is introduced in Sec. III, and
in Sec. IV these equations are used to discuss the unveiled
interesting features. Finally, closing remarks are presented in
Sec. V.

II. EXPERIMENT

The experimental setup and the excitation scheme are
displayed in Fig. 1. An Nd:YAG laser (pulse duration 10 ns
and repetition rate 5 Hz) is frequency doubled and used to
pump a dye laser with a wavelength of approximately 602 nm
and a linewidth of 0.5 cm−1. The dye laser with frequency
ω1 can be tuned to resonance via two-photon transitions from
the ground state 5s to Rydberg levels 16d or 18s. Part of
the fundamental mode (IR) of the Nd:YAG laser, with fixed
frequency ω2 (λ = 1.06 μm), is combined with the dye laser
and the two beams, crossed at an angle θ , are focused into
a sealed Rb cell. In the four-wave mixing process, a fourth
photon is generated at frequency ω3 = 2ω1 − ω2 and brings
the atoms back to the ground state. This fourth photon has a
wavelength of approximately 420 nm, and it is close to the
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FIG. 1. (Color online) (a) Experimental setup, where the symbols
PMT and F stand for the photomultiplier tube and filter, respectively.
(b) Schematic representation of the energy levels of Rb that are
relevant for the experiment, where ω1 represents the dye laser
frequency.

one-photon resonance with the transition 5s → 6P3/2. The
generated signal is analyzed in a monochromator and detected
by a photomultiplier tube. The electronic processing of the
signal is conducted using a boxcar and computer. The vapor
cell, which is 5 cm long and contains both 85Rb and 87Rb
isotopes in their natural abundances, with no buffer gas, can
be heated to control the atomic density. Typically, we vary the
atomic density from 1014 to 1016 atoms/cm3.

Figure 2 shows the intensity of the FWM-generated signal
as a function of the dye laser frequency detuning, �ω =
2ω1 − ω16d−5s , where ω16d−5s ≡ (E16d − E5s)/�, with E16d

being the energy of the state 16d and E5s being the 5s

θ
Δω

FIG. 2. (Color online) Four-wave mixing intensity as a function
of the dye laser detuning �ω relative to the two-photon transitions
5s → 16d for different θ angles. Dye and IR beam intensities are
Idye = 2 GW/cm2 and IIR = 4 GW/cm2. The atomic density is N ≈
1 × 1015 cm−3. The curves are shown (a) horizontally displaced and
(b) superposed (the dashed arrow indicates the position of the three-
photon resonance).

ground-state energy. Each curve corresponds to the excitation
spectrum for a specific crossing angle θ between the two
incident beams. The results were obtained at atomic Rb density
N ≈ 1 × 1015 cm−3, with the dye and IR beams having linear
and parallel polarizations and intensities of 2 and 4 GW/cm2,
respectively. All curves were obtained for the same spectral
range with the monochromator fixed at 420 nm and a window
of order of 10 nm. Under this condition, we can observe two
peaks associated with the two-photon resonant transitions,
5s-16d (at �ω = 0 cm−1) and 5s-18s (at �ω = 14.4 cm−1),
and one peak at an intermediate frequency corresponding to
the three-photon resonant transition 5s-6P3/2.

In the collinear configuration, the focusing of the two beams
in the middle of the cell allows for good phase matching, and
a strong FWM signal is observed. However, as θ increases
from 0 to 17 mrad, the phase mismatching also increases,
causing a decrease in the intensity of the generated signal
by two orders of magnitude. For comparison, the curves in
Fig. 2(a) have the 16d peak intensity normalized to 1, and
they are horizontally displaced. We also note that the intensity
ratio between the 16d and 18s two-photon resonant peaks is
almost constant, indicating that the signal generated at these
two resonances presents a similar behavior in this range of θ .
On the other hand, as θ increases, the 6P3/2 peak intensity,
associated with the three-photon resonance, decreases more
slowly when compared with the 16d peak intensity. In this case,
the intensity variation behaves in such a way that the 16d and
6P3/2 peaks have almost the same intensity for θ ≈ 17 mrad.

Another salient feature is observed by superposing all
curves, as shown in Fig. 2(b). First, we notice that the
maximum intensity of the 16d and 18s peaks occurs always
at the same dye laser excitation frequency. However, as θ

decreases, the maximum intensity of the 6P3/2 peak exhibits
a frequency shift to the red side, in comparison with the
unperturbed three-photon resonance position (indicated by the
arrow).

In Fig. 3, we compare the nonlinear response of the atomic
system for two θ values as the atomic density increases:

θ

Δω Δω

θ

FIG. 3. (Color online) Four-wave mixing intensity as a function
of the dye laser detuning �ω relative to the two-photon transi-
tions 5s → 16d for different atomic densities. (a) θ = 0 mrad and
(b) θ = 78 mrad (the arrows indicate the position of the three-photon
resonance).
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θ = 0 mrad [Fig. 3(a)], collinear configuration, and θ =
78 mrad [Fig 3(b)]; from bottom to top, the curves correspond
to N ≈ 0.5 × 1015 cm−3, N ≈ 1.0 × 1015 cm−3, and N ≈
5.0 × 1015 cm−3, respectively. Again, for both values of θ ,
there is no variation on the dye laser excitation frequency
for the 16d and 18s peaks, indicating no dependence on
the atomic density; however, the 6P3/2 peak displays a θ -
dependent behavior. In the collinear configuration [Fig. 3(a)],
when all beams are propagating along the forward direction,
including the generated blue beam, we observe an odd-photon
destructive interference that becomes more important as the
atomic density increases. As discussed in Ref. [16], the
interaction of the atomic system with the new generated beam
leads to a competition between two out-of-phase excitation
pathways. Therefore, as the angle increases, the superposition
between the incident and generated beams decreases, and
the interference disappears as observed for θ = 78 mrad. As
mentioned before, at large values of θ the phase mismatching
is quite large, and the signal is very small. Regardless, we can
clearly see in Fig. 3(b) that the 6P3/2 peaks appear at the same
excitation frequency, indicating no dependence on the atomic
density, with the position of the peaks at the frequency of the
three-photon resonance. We also verify that, as expected for a
nonlinear signal, the intensity increases as N2, indicating no
odd-photon destructive interference.

III. THEORETICAL MODEL

The main features observed in Figs. 2 and 3 can be described
by a model based on the density-matrix formalism applied to a
four-level system. In particular, the scheme of levels shown in
Fig. 1 allows the possibility of developing different processes
in a complex and highly nonlinear manner. As discussed by
Boyd [7], under two-photon resonant excitation conditions,
competition between coherent (FWM) and incoherent (am-
plified spontaneous emission) nonlinear optical processes can
occur.

For low-field intensities, we can solve Liouville’s equation

∂ρ̂

∂t
= −i

�
[Ĥ ,ρ̂] + (relaxation terms), (1)

following the perturbative treatment given in Ref. [14]. We
denote the levels |5s〉, |6P3/2〉, |16d〉, and |18s〉 by |a〉, |b〉, |d〉,
and |s〉, respectively, and the peaks by the quantum numbers
nl associated with the involved resonances. The Hamiltonian
of the system in the rotating frame is given by Ĥ = Ĥ0 + Ĥint,
where Ĥ0 is the Hamiltonian of the free atom, and

Ĥint = −��
(2)
ad ei2k1z|a〉〈d| − ��(2)

as ei2k1z|a〉〈s|
−��bde

ik2z|b〉〈d| − ��bse
ik2z|b〉〈s|

−��abe
ik3z|a〉〈b| + H.c. (2)

describes the electric-dipole coupling of the atom with the
electromagnetic field

E(z,t) =
3∑

i=1

1

2
[Eie

−iωi t+iki z + c.c.], (3)

where the fields with frequencies ω1 and ω2 are the incident
ones and that with frequency ω3 is the generated radiation

field. Here �kl = (1/2�)μklEm is the Rabi frequency with the
electric dipole matrix element μkl , Em is the amplitude of the
most resonant field with the |k〉 ←→ |l〉 transition, and �

(2)
ia =∑

j �ij�ja/(ωja − ω1) is the two-photon Rabi frequency with
i = d or s.

We are interested in the internally generated four-wave mix-
ing field at frequency ω3 = 2ω1 − ω2, which is determined by
the density-matrix element ρba . As the atomic polarization is
related to the density matrix through P = N〈μ〉 = Ntr(ρμ),
ρba must be solved in order to be consistent with Maxwell’s
equations.

The steady-state solution for σba = ρba exp(iω3t − ik3z) is
calculated in the rotating-wave approximation and by applying
perturbation theory up to second order in the dye laser field
(E1) and up to first order in both the IR field (E2) and generated
field (E3). The steady-state solution is supported by the rapid
destruction of the induced coherence in the atomic system
caused by the short coherence time of the nanosecond lasers.
Under these conditions, σba can be written as the sum of two
terms:

σba = − �ba

�′
ba + iγab

+
[

�
(2)
da �bd

�da + iγad

+ �(2)
sa �bs

�sa + iγas

]
e−i�kz

�′
ba + iγab

, (4)

where we have introduced the detunings �ia = 2ω1 − ωia for
i = d or s and �′

ba = 2ω1 − ω2 − ωba and also the relaxation
rates γab and γai.. The first term corresponds to the linear
interaction of the atomic system with the internally generated
field, while the second term describes the nonlinear interaction
with the incident fields and takes into account the contributions
of the two neighboring 16d and 18s Rydberg levels. Hyperfine
structure and Doppler broadening, which are unresolved by the
lasers, are neglected. In this equation, �k = (
k3 − 2
k1 + 
k2)z
is the component of the wave-vector mismatch in the generated
field propagation direction, and it exhibits a dependency on the
angle between the two incident fields θ given by

�k = (2ω1 − ω2)

c

⎡
⎣1 −

(
1 + 8ω1ω2

[
sin

(
θ
2

)]2

(2ω1 − ω2)2

) 1
2

⎤
⎦. (5)

At high atomic densities, as in the present experiment,
where the mean spacing between the atoms is of the order of
〈r〉 ∼ λ/20 (Nk−3 ∼ 100), the light generated at ω3 = 2ω1 −
ω2 ≡ (E6p − E5s)/� is resonantly absorbed in a distance
less than a wavelength. In this case, the polarization of the
neighboring atoms gives rise to an effective field, called
the local field or Lorentz field, EL

3 [17,18]. The relationship
between the local field and the macroscopic field E3 that enters
in Maxwell’s equations is given by the Lorentz-Lorenz relation
[19]: EL

3 = E3 − P3/3ε0, where P3 is the polarization of the
medium at frequency ω3. This local field correction results in
a shift in the resonance frequency known as the Lorentz shift
�LL, which, in the present study, modifies the three-photon
resonance position �′

ab of Eq. (4) to �ba = �′
ba + �LL,

where �LL = Nμ2
ab/3�ε0 [5,18].

The four-wave-mixing field is calculated using Maxwell’s
equations in the slowly varying amplitude approximation. We
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thus find

∂�ba

∂z
= iκabσba, (6)

where κab = N (k3μ
2
ab/2�ε0) and σba is given by Eq. (4).

Therefore, Eq. (6) allows us to determine �ba , i.e., the
generated radiation field E3, in a self-consistent fashion
through the emission and reabsorption of photons by the atoms
in the sample.

Assuming now that at the entrance of the cell there
is no radiation field at frequency ω3, �ba(z = 0) = 0, and
neglecting depletion of the incident beams, we can obtain an
analytical expression for the Rabi frequency of the generated
beam at the end of the cell with a thickness z:

�ba(z) = iκabF (�ba)R(�ia)

[
e−i�kz − e−iκabF (�ba )z

iκabF (�ba) − i�k

]
, (7)

where the function

F (�ba) = 1

�′
ba + �LL + iγab

contains the three-photon resonance with the Lorentz shift,
while the function

R(�ia) =
[

�
(2)
da �bd

�da + iγad

+ �(2)
sa �bs

�sa + iγas

]

describes the two-photon resonances with levels 16d and 18s.

IV. ANALYSIS AND DISCUSSION

The theory developed in the previous section allows us to
predict the shape and dependence of the FWM signal as a
function of the dye laser frequency and its dependence on the
crossing angle between the two incident beams. In order to
do so, it is necessary to take into account the Clebsch-Gordan
coefficients when calculating the effective couplings. We also
need the relaxation rates, which are not purely radiative.
Instead of estimating the ionization cross sections involved
in the one- and two-photon processes, we prefer to use the
parameters adjusted through the spectra obtained at low atomic
density, as described in Ref [15]. For N ≈ 1014 cm−3, we
obtain γai ≈ 0.1 cm−1 for the two Rydberg levels and the
value of γab ≈ 0.5 cm−1 for the 6P3/2 peak, which is limited
by the linewidth of the IR beam. We also take into account the
finite linewidth of the dye laser and perform a convolution of
its measured Gaussian line shape.

A detailed discussion of the excitation spectrum of the
FWM signal in the collinear configuration, when θ = 0,
is given in Ref. [15]. As shown, at high atomic density,
a self-broadening contribution proportional to the atomic
density needs to be consider for the two Rydberg levels.
In this case, the total relaxation rates are given by 
nl =
γnl + 
self = γnl + βN , where the adjusted values for the
self-broadening were β/2π = (2.1 ± 0.9) × 10−12 MHz cm3

and β(16d)/β(18s) = √
3. It is interesting to note that this

collinear configuration is described by Eq. (7) when �k = 0

and can be written as

�ba(z) = R(�ia)[1 − e−iκabF (�ba )z]. (8)

For the condition of θ = 0, the exponential term of Eq. (8)
goes to zero at high atomic density, yielding a limit form to �ba

that, used in Eq. (4), gives σba = 0. This means that at elevated
concentrations and on the three-photon resonance, 5s-6P3/2,
the generated polarization becomes zero, characterizing the
odd-photon destructive interference as described in Ref. [16].

For the noncollinear configuration the experimental results
indicate a strong dependence on the crossing angle between
the two incident beams. Focusing our attention on this non-
collinear configuration, we consider θ �= 0 and rewrite Eq. (7)
by combining the denominators related to the three-photon
resonance:

�ba(z) =
(

κab

�k

)
�ba − κab

�k
+ iγab

R(�ia)[e−i�kz − e−iκabF (�ba )z].

(9)

Since θ �= 0, we are out of the condition of odd-photon
destructive interference. Remarkably, we have now a term
that explicitly exhibits the dependence on the crossing angle
of the three-photon peak position when compared with the
unperturbed resonance. This frequency shift term is given by

�coop = −κab

�k
(10)

and appears only if we consider the interaction of the atomic
system with the internally generated radiation field derived
via Eqs. (6) and (7). The strong dependence on the crossing
angle is given by the phase-matching coefficient [2,20,21].
Similar behavior was observed in xenon using three-photon
excitation and multiphoton ionization techniques [22,23] and
also through a third-harmonic generation process [24].

We note that both �LL and �coop move the position of
the three-photon peak to lower energy; that is, the peak shifts
to a position closer to the 16d peak. However, the Lorentz
shift does not depend on θ , and for a small crossing angle,
such as those studied in the present experiment, �coop is much
higher than �LL. Therefore, we shall neglect the local field
corrections and focus our attention on the θ dependence of the
cooperative frequency shift.

The theoretical curves for the FWM excitation spectra at
different angles can be obtained by numerical integration of
Eq. (7), and the results are depicted in Fig. 4. To compare
these results with the experimental data plotted in Fig. 2, the
16d peak intensity was also normalized to 1. The qualitative
agreement between the experiment and theory with respect
to the shape of the resonances, the intensity relations, and the
shift of the three-photon peak to the red side is very rewarding.

A quantitative comparison of the intensity relation between
the peaks as a function of the crossing angle θ between the
incident beams is shown in Fig. 5. The symbols represent
the experimental data, and the solid lines are from the
theoretical calculation, corresponding to three values of dye
laser frequencies in resonance with the 16d, 18s, and 6P3/2

levels. The calculations are performed neglecting the laser
linewidths and using the maximum intensity of the 16d peak
at the collinear configuration as a normalization parameter. In
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Δω
θ

FIG. 4. (Color online) Theoretical calculation for the four-wave
mixing intensity as a function of the dye laser detuning �ω relative
to the two-photon transitions 5s → 16d for different θ angles [from
Eq. (7)]. The atomic density is N ≈ 1 × 1015 cm−3. The curves
are shown (a) horizontally displaced and (b) superposed (the arrow
indicates the position of the three-photon resonance).

this way, we obtain a good description not only of the intensity
variation with θ but also of the intensity relation between the
peaks. However, for θ � 14 mrad, the signal is very weak,
and we do not have the resolution to observe the oscillatory
behavior in the intensity of the generated beam, given by the
square of Eq. (7), due to the propagation and phase-matching
effects.

The frequency shift in the three-photon peak position can be
measured from the experimental excitation spectra presented
in Fig. 2 and compared with corresponding theoretical spectra
shown in Fig. 4. The frequency difference between the position
of the three-photon resonance and the three-photon peak

θ ( )

FIG. 5. (Color online) Peak intensity variation as a function of θ

at the two-photon resonances, 16d and 18s, and at the three-photon
resonance.

FIG. 6. (Color online) Frequency difference between the position
of the three-photon resonance and the three-photon peak position as a
function of θ for the experimental measurements (dots), �6P3/2 , and,
in the inset, for the theoretical values (squares), �coop. The stars in
the inset are the results considering the phase-matching contribution
but neglecting the interaction with the internally generated radiation
field. The solid red lines are fits using Eq. (10).

position as a function of θ is shown in Fig. 6, where the dots
are the experimental measure �6P3/2 and the squares in the
inset correspond to the theoretical values �coop. Measurements
of the frequency shift from the excitation spectra allow us
to consider effects like the linewidth of the lasers and the
self-broadening relaxation rates. However, we can use Eq. (10)
to directly analyze the dependence on θ [21–23]. In the limit
for small angles, the cooperative frequency shift can be written
as

�coop = −κab

�k
≈ c(2ω1 − ω2)κab

2ω1ω2[1 − cos(θ )]
= D

1 − cos(θ )
, (11)

where θ �= 0. The solid lines in Fig. 6 are fits of the exper-
imental and theoretical results using Eq. (11). The adjusted
coefficients are Dexp = (1.5 ± 0.8) × 10−5 cm−1 for the exper-
imental measurements and Dtheo = (5 ± 1) × 10−5 cm−1 for
the calculate values. Despite the difference between theoretical
and experimental values of D, it is clear that Eq. (11) describes
the behavior of the red frequency shift with θ .

We have also plotted in the inset of Fig. 6 (stars) the
frequency shift obtained by the theoretical calculation when
we neglect the interaction of the atoms with the internally
generated radiation field. Under this condition, we have solved
Eq. (6) by considering only the contribution of the second term
of σba in Eq. (4). Although we have taken into account the
phase-matching coefficient given by Eq. (5), for the parameters
used in the present work, no θ dependence is obtained. This
result reinforces our statement that the underlying mechanism
responsible for the observed frequency shift comes from the
quite strong cooperative effect between the atoms by the
reabsorbing photons of the generated radiation field.
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V. CONCLUSIONS

We have investigated the nonlinear response of a rubidium
vapor, in which two- and three-photon resonant transitions
are driven by a four-wave-mixing process using two beams
in a noncollinear configuration, i.e., θ �= 0, and high atomic
density. In particular, the coherence induced on the three-
photon resonant transition from 5s to 6p states, excited
via intermediate Rydberg states, unveiled interesting features
related to the interaction of the atoms with the internally
generated radiation field. These features required a careful
interpretation. First, the θ = 0 (collinear configuration) odd-
photon destructive interference between the incident and
generated fields is strongly inhibited for θ �= 0. Second,

most importantly, a cooperative frequency shift of the three-
photon transition is not present if the generated radiation
field is not considered self-consistently in the Maxwell-Bloch
equations. Remarkably, this shift is strongly enhanced for
small, but nonzero, values of θ due to the factor (1 − cos θ )−1,
in agreement with the description based on a cooperative
frequency shift.
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