
PHYSICAL REVIEW A 92, 053829 (2015)

Multiplexed single-photon-state preparation using a fiber-loop architecture
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Heralded spontaneous parametric down-conversion (SPDC) has become the mainstay for single-photon-state
preparation in present-day photonics experiments. Because they are heralded, in principle one knows when a
single photon has been prepared. However, the heralding efficiencies in experimentally realistic SPDC sources
are typically very low. To overcome this, multiplexing techniques have been proposed which employ a bank of
SPDC sources in parallel and route successfully heralded photons to the output, thereby effectively boosting the
heralding efficiency. However, running a large bank of independent SPDC sources is costly and requires complex
switching. We analyze a multiplexing technique based on time-bin encoding that allows the heralding efficiency
of just a single SPDC source to be increased. The scheme is simple and experimentally viable using present-day
technology. We analyze the operation of the scheme in terms of experimentally realistic considerations, such as
losses, detector inefficiency, and pump power.
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I. INTRODUCTION

Single-photon-state preparation has numerous applications
in the field of quantum photonics. Most notably, it is an
essential requirement for optical quantum information pro-
cessing protocols, such as linear optics quantum computing
[1], boson sampling [2], and optical quantum metrology [3],
which require high-efficiency heralded single-photon sources.

Spontaneous parametric down-conversion (SPDC) has
become the de facto standard for generating heralded
single-photon states, owing to the relative simplicity of its
experimental implementation. However, single-source SPDC
suffers from being nondeterministic, and generating a se-
quence of photons in this manner is exponentially inefficient.
To overcome this problem, previous authors have proposed and
theoretically studied various schemes for combining multiple
independent SPDC sources, making use of both spatial [4–11]
and temporal [4,12–17] multiplexing. Experiments have also
been performed with spatial [18–20] and temporal [21–24]
multiplexing schemes.

Recently a fiber-loop architecture for implementing boson
sampling was presented [25], where the input state is time
bin encoded, and multiphoton interference is implemented via
dynamically controlled beam splitters. Subsequently it was
shown [26] that the same architecture can be modified to
implement universal linear optics quantum computing.

The viability of loop- and delay-line-based architectures
has previously been experimentally demonstrated in the con-
text of multiplexed, number-resolved photodetection [27–30],
quantum random walks [31,32], and quantum memory [33].
These demonstrations show that temporally encoded schemes
are capable of maintaining quantum coherence over realistic
delay lengths with present-day technology.
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Here we show that a simplified loop-based architecture
can implement multiplexed single-photon state preparation,
using time-bin encoding. The scheme requires only a single
SPDC source with high repetition rate, a single fiber loop, a
dynamically controlled switch, and a single photodetector with
time resolution on the order of the time-bin separation. The
SPDC source is operated at a high repetition rate to minimize
the length of the fiber loop and thus losses. This protocol
allows a source to be constructed with very high heralding
efficiency and fidelity, limited only by loss rates in the switch
and fiber loop and the detector efficiency. The experimental
requirements to build this architecture are largely available
today, and some of the key elements have previously been
experimentally demonstrated.

Using a single instance of the source, loop, and detector
immediately confers some advantages over a multiplexed
array of such elements as we do not have to manufacture
each element identically to ensure that the photons generated
are indistinguishable. Generating indistinguishable photons
is a stringent requirement for a source suitable for quantum
information processing.

The concept of the scheme is to employ a single SPDC
source, repeatedly triggered at a high repetition rate, yielding
a correlated pulse train in two output spatial modes. The
pulse train is temporally multiplexed, such that a successfully
heralded photon is routed to one of the output time bins, which
then closely approximates a single-photon source.

We build on a circuit layout employed by Pittman et al. [24],
extending their results by explicitly deriving the heralding
efficiency and fidelity of the prepared state, taking detector
efficiency and fiber and switch loss rates into account.
Additionally, we describe the optimal switching sequence
to employ, so as to maximize fidelity. We further consider
the steady-state behavior of the device, which allows single-
photon preparation to take place with asymptotically close to
unit heralding efficiency and allows immediate extraction of
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FIG. 1. Architecture for multiplexed single-photon-state prepara-
tion, as first described by Pittman et al. [24]. A single SPDC source is
pumped with a coherent state, |α〉, with high repetition rate, preparing
a pulse train with time-bin separation τ . One port of the SPDC
source is monitored with a photodetector (either number resolving
or “bucket,” i.e., on or off), which must have time resolution better
than τ so as to distinguish the time bins. The other port is coupled to
a fiber-loop delay of duration τ , with a dynamically controlled on-off
switch that can be switched within time τ . The control sequence of
the switch is chosen according to the measurement signatures in the
detected mode. Here ηs , ηf , and ηd are the efficiencies of the switch,
fiber loop, and detector respectively. At the output we have some state
ρ̂, which describes a pulse train in which the last time bin ought to
closely approximate a single-photon Fock state.

a stored photon, without having to wait for a multiplexing
sequence to complete (i.e., an on-demand source).

II. ARCHITECTURE

The full architecture for our protocol is shown in Fig. 1.
The goal is to prepare an output pulse train in which the last
time bin in a sequence closely approximates the single-photon
Fock state, |1〉. The pulse train in one mode is measured using
time-resolved photo-detection, while the other enters a loop
architecture comprising a single fiber loop and a dynamically
controlled switch. The dynamic switch need only toggle
between completely reflective and completely transmissive.
The switching sequence is controlled by the measurement
signatures in the measured mode. Specifically, the switch
settings at each time bin are chosen so as to route the most
recent successful SPDC heralding event to the last output time
bin. Then, in the ideal case, that time bin will contain a single
photon if at least one SPDC heralding event was successful.

When considering schemes for multiplexed sources, there
are a range of strategies. Spatial multiplexing allows for many
particular configurations with a wide variation in efficiency
of resources from logarithmic (as for binary tree structures of
sources, detectors, and switches) to linear (as for a linear chain
of sources, detectors, and switches). These configurations
also come with different susceptibilities to loss, and some
variation in the precise output state and heralding efficiencies
(see, e.g., Ref. [7]). In the temporal case, configurations
range from logarithmic to single-component efficiency (here)
with different complexity as well. Despite this variation, all
approaches have the same zero-loss upper bounds [8]. In this
work we concentrate on cost minimization through the use
of minimal components—our scheme requires only a single
SPDC source, a single dynamically controlled switch, and a
single time-resolved photodetector. The architecture presents
a significant efficiency improvement over standalone SPDC

sources without multiplexing, and the components are largely
available today.

Below, we explicitly take into account the effects of the
different losses in the architecture (loss being the dominant
experimental obstacle), as well as considering both number-
resolved and so-called bucket (or on-off) detectors. The latter
is standard in present-day experiments, while the former is
presently very challenging and expensive but is becoming
more common. The theoretical treatment we present could
easily be extended to incorporate other error models, such as
dark counts.

III. PHOTODETECTION

In the photon-number basis, a number-resolved photode-
tector may be characterized in terms of a matrix of condi-
tional probabilities—the probability of measuring m photons,
given that n photons were incident on the detector. For a
number-resolved detector with efficiency ηd , these conditional
probabilities are given by

pdet(m|n) =
(

n

m

)
ηd

m(1 − ηd )n−m. (1)

The pdet(m|n) matrix completely characterizes the operation
of the detector in the photon-number basis and can easily be
modified to include other effects, such as dark counts, which
we do not treat here.

In the architecture we present, only two measurement
outcomes are of interest—a single photon is detected (m = 1)
or no photons are detected (m = 0). In this instance, the
conditional probabilities are given by

pdet(0|n) = (1 − ηd )n,

pdet(1|n) = ηd (1 − ηd )n−1n. (2)

For bucket detectors, which can only distinguish between
zero photons and more than zero photons, the conditional
probabilities of the two measurement outcomes are given by

pdet(no click|n) = pdet(0|n)

= (1 − ηd )n,

pdet(click|n) = 1 − pdet(0|n)

= 1 − (1 − ηd )n. (3)

IV. HERALDED SPONTANEOUS PARAMETRIC
DOWN-CONVERSION

The photon source that forms the basis of our architecture
is an SPDC source operating with a high repetition rate (i.e.,
being rapidly pumped). An SPDC source comprises a crystal
with a second-order nonlinearity, which is pumped with a
strong coherent state. It prepares the two-mode state

|ψsrc〉 =
∞∑

n=0

λn|n,n〉, (4)

and the photon-number distribution in each mode is thermally
distributed:

psrc(n) = |λn|2 = 1

n̄ + 1

(
n̄

n̄ + 1

)n

. (5)
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Here n̄ is the average photon number, which in present-day
experiments is intentionally kept very low so as to reduce the
probability of multiple-pair creation events.

The commonly measured statistics for SPDC are Poissonian
distributed and this distribution is frequently used in the anal-
ysis of multiplexed sources [4,7,10,12,14,16,20,22,34–36],
often also with the probabilities of generating a single or
multiple photons used as figures of merit. The Poisson
distribution arises when the collected light includes many
spatial and/or frequency modes, since this is the limit of
the convolution of many thermally distributed modes. If
the outputs of the SPDC modes are carefully filtered it is
possible to select a single mode yielding a photon number
distribution with thermal statistics of Eq. (5) [37,38]. As
discussed by Christ and Silberhorn [8], working in this regime
maximizes the achievable fidelity to a heralded single-photon
state.

In this work we are considering a source suitable for
quantum information tasks so the appropriate model is one
where a single photon is prepared in a well-defined mode
so that it is as indistinguishable from other such photons
as possible. This will allow full nonclassical interference in
subsequent photonic circuits. The fidelity of the photon output
with an ideal single-photon state is the appropriate figure
of merit for these tasks. If many modes are collected in the
output state, the result will be a statistical mixture and this will
reduce the overall fidelity against the ideal. As noted in the
introduction, using a single apparatus to generate the photons
also naturally helps in producing indistinguishable photons.

The key observation about Eq. (4) is that the photon
numbers in the two modes are perfectly correlated. Thus in
principle with ideal detectors, if we detect some photon number
in the first mode, we can guarantee the same photon number
in the other mode. It is this correlation in photon number that
makes SPDC sources high quality, reliable heralded sources
when combined with high-efficiency detectors. The main
problem with these sources is that the heralding protocol is
inherently nondeterministic. Thus the success probability of
obtaining m single photons from m sources for use in a larger
protocol drops exponentially with m. This is the motivation
for considering multiplexed schemes, as they can significantly
boost the single-photon component at the output of a single
device.

The photodetection efficiency plays a major role in the
fidelity of the prepared state. This is because detector
inefficiency results in higher-order photon-number events
being recorded as single-photon events, thereby preparing a
state which is a mixture of the desired single-photon term,
plus additional unwanted higher order terms [39]. While the
detrimental effect on fidelity can be reduced by setting n̄ � 1,
and hence |λ1| � 1, this impacts poorly on the efficiency.
Moreover, imperfections such as dark counts and so-called
after pulsing will further degrade the source. However, any
photon loss in the heralding arm can simply be included by an
appropriate reduction in ηd .

Next we consider the problem of combining heralded
single-photon-state preparation with our model for an inef-
ficient detector. If we take a single SPDC source, pulse it
once, and postselect on the desired heralding outcome in
the first mode, the reduced state in the unmeasured mode is

given by

ρ̂resolved = N−1
r

∞∑
n=1

pdet(1|n)psrc(n)|n〉〈n|,

ρ̂bucket = N−1
b

∞∑
n=1

pdet(click|n)psrc(n)|n〉〈n|, (6)

in the cases of number-resolved and bucket detectors respec-
tively. The normalizations are given by

Nr =
∞∑

n=1

pdet(1|n)psrc(n) = n̄ηd

(1 + n̄ηd )2
,

Nb =
∞∑

n=1

pdet(click|n)psrc(n) = n̄ηd

1 + n̄ηd

.

Note that these states are perfect mixtures in the photon-
number degree of freedom, with no coherences between
different photon numbers.

The conditional probabilities of preparing n photons given
that heralding was successful are

pprep(n|1) = 〈n|ρ̂resolved|n〉
= pdet(1|n)psrc(n)/Nr

= n(n̄ − ηdn̄)n−1(1 + ηdn̄)2

(1 + n̄)n+1
,

pprep(n|click) = 〈n|ρ̂bucket|n〉
= pdet(click|n)psrc(n)/Nb

= n̄n−1(1 − [1 − ηd ]n)(1 + ηdn̄)

ηd (1 + n̄)n+1
. (7)

For n = 1, these are equivalent to the fidelities of single-
photon-state preparation, conditional upon a successful herald-
ing event. Note that if we were using Poissonian distributed
output for the SPDC this would not be the case.

The total probabilities of registering a successful heralding
event are given by

Sresolved =
∞∑

n=1

pdet(1|n)psrc(n) = Nr ,

Sbucket =
∞∑

n=1

pdet(click|n)psrc(n) = Nb, (8)

for number-resolved and bucket detectors respectively. Note
that Sbucket � Sresolved, since a bucket detector accepts more
outcomes than a number-resolved detector.

When number-resolved detectors of perfect efficiency are
employed, all of the events in S correspond to perfect single-
photon-state preparation. However, for bucket detectors or
inefficient detectors, some of these events will correspond to
having prepared the wrong photon number.

V. TEMPORAL MULTIPLEXING

To increase the efficiency of a single SPDC source we
imagine pumping it t times in succession, preparing a pulse
train of t time bins but using only a single time bin as output.
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FIG. 2. (Color online) Heralding probability [Eq. (9)] against
number of time bins, for both number-resolved (blue [gray] circles)
and bucket detectors (yellow [light gray] squares), where ηd = 1
and n̄ = 1.

The total probabilities of measuring at least one successful
heralding event are

Sresolved(t) = 1 − (1 − Sresolved)t

= 1 −
[

1 − ηdn̄

(1 + ηdn̄)2

]t

,

Sbucket(t) = 1 − (1 − Sbucket)
t

= 1 −
[

1

1 + ηdn̄

]t

. (9)

The heralding probabilities against the number of time
bins t is shown in Fig. 2 for both number-resolved (blue
[gray]) and bucket detectors (yellow [light gray]), assuming
perfect efficiency. Note that bucket detectors yield a heralding
probability strictly greater than that of number-resolved
detectors. As mentioned earlier this is simply because bucket
detectors interpret any higher-order photon-number term as
being a successful heralding event. Clearly such mistaken
events would degrade the quality of the prepared output state
so we need to consider the fidelity of the output as well as the
probability. We remark that in Eq. (8) the mean photon number
n̄ and detector efficiency ηd only appear as a product. Indeed,
all expressions in the paper can rewritten so that the efficiency
ηd only ever appears in this combination, but for simplicity we
leave them distinct.

When combining the SPDC source with the fiber-loop
architecture as shown in Fig. 1, different time bins in the
heralded output mode may pass through the loop different
numbers of times and thus suffer different amounts of loss. The
net transmission of a time-bin subject to l iterations through
the loop is given by

τl = ηs
l+1ηf

l. (10)

That is, the time bin passes through the switch once and
then through the loop and switch an additional time for every
iteration of the loop.

Clearly there are many strategies that could be employed
when controlling the switching sequence in the architecture.
Most trivially, as soon as an SPDC heralding event succeeds,
we could simply keep the associated heralded photon stored in

the fiber loop until we reach the last time bin, at which point
we switch it out. However, this would be suboptimal in terms
of state fidelity, since this photon, were it to occur at an early
stage, would be subject to many traverses of both the fiber loop
and the switch.

The optimal strategy in terms of minimizing loss (and hence
maximizing fidelity), is to choose our switching sequence so
as to keep the most recent successfully heralded photon as our
final output state.

This is achieved as follows. Whenever an SPDC heralding
event succeeds, we couple the corresponding state completely
into the fiber loop, thereby coupling out what was previously
in memory. We then toggle the switch so as to keep the state
in memory. The state stays in memory unless another SPDC
heralding event succeeds at a later stage, at which point we
couple out the state presently in memory and couple in the
newly prepared state. This is repeated for the duration of the
protocol.

To calculate the fidelities of the state in the last time bin
with a single-photon state, we must sum over all the ways
that only one photon reaches the output time bin. If the most
recent time bin corresponding to a successful heralding event
passes through l loops, and a heralding event corresponds to n

photons in this state before the switch, we find

Fresolved(l) =
∞∑

n=1

pprep(n|1)τl[1 − τl]
n−1n,

= τl(1 + n̄ηd )2[1 + n̄ + n̄(1 − ηd )(1 − τl)]

[1 + n̄ − n̄(1 − ηd )(1 − τl)]3
,

Fbucket(l) =
∞∑

n=1

pprep(n|click)τl[1 − τl]
n−1n,

= τl(1+n̄ηd )[1+2n̄+n̄2ηd+n̄2τl(1−ηd )(2−τl)]

(1+n̄τl)2{1+n̄[(1 − ηd )τl + ηd ]}2
.

(11)

Here we have modeled the loss by mixing the output state with
vacuum on a beam splitter with a transmission τl . Note that the
fidelities take into account accidental single-photon creation
where a higher photon number is created due to heralding
inefficiencies but then the right number of photons are lost to
return the output state to a single-photon state. If one were
interested in calculating the fidelity of the state in the last
time bin with an m-photon state, one would simply replace
τl[1 − τl]n−1 with τm

l [1 − τl]n−m
(

n

m

)
in Eq. (11).

For a given measurement signature, these results allow us
to calculate the exact fidelity associated with that signature.
However, in reality we wish to accept all heralding events that
are successful, and not postselect upon particular heralding
events, which would entirely defeat the purpose of multiplex-
ing. If we accept any heralding event that is successful but only
keep the most recent respective time bin, the average fidelity
of the prepared state is given by an average over all possible
acceptable heralding signatures, weighted according to their
prevalence.

Enumerating the events in decreasing order of desirability
we label as l = 0 the case where a photon is heralded in the
last time bin. This has probability S given by the appropriate
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expression in Eq. (8). Note the photon does not go through the
loop in this case. The next event l = 1 sees a heralded photon
appear in the penultimate time bin and no photon in the last
(or we would have accepted that event) and so has probability
S(1 − S). Labeling the time bins in reverse chronological
order from zero gives a probability of S(1 − S)l that we will
accept a photon heralded in time bin l which passes through the
loop l times. Finally we append the last possible event where
no photon is heralded in the entire train t which occurs with
probability (1 − S)t . This forms a probability distribution for
the resulting events of the switching strategy given by

p(l) =
{
S(1 − S)l 0 � l < t

(1 − S)l l = t
. (12)

Our goal is to determine when the source will yield an
output photon and what the quality of that photon is. So for
calculating the average fidelities we exclude the case where
no heralding event occurred (l = t). This is permissible as we
have a record of when the source was successful through the
heralding signature. Excluding the last event means we need to
normalize the distribution by 1 − p(t) = 1 − (1 − S)t . Thus
the conditional average fidelities are given by

F̃resolved = Sresolved

1 − (1 − Sresolved)t

t−1∑
l=0

Fresolved(l)[1 − Sresolved]l ,

F̃bucket = Sbucket

1 − (1 − Sbucket)t

t−1∑
l=0

Fbucket(l)[1 − Sbucket]
l .

(13)

In the case of perfect efficiency through the system
(ηs = ηf = ηd = 1), these fidelities and heralding probabil-
ities reduce to

F̃resolved = 1,

Sresolved = 1 −
[

1 − n̄

(1 + n̄)2

]t

,

F̃bucket = 1

1 + n̄
,

Sbucket = 1 −
[

1

1 + n̄

]t

. (14)

In that case, the fidelities are independent of t since all time bins
are optimal and the multiplexing sequence is irrelevant. With
number-resolved detectors the fidelity is perfect, irrespective
of n̄. Thus, the optimal strategy is simply to use as many time
bins as possible so as to maximize the heralding efficiency, as
pointed out in Ref. [8]. But for bucket detectors the fidelity is
optimized in the limit of n̄ → 0. Of course, in this limit the
heralding probability vanishes. Thus, with bucket detectors
there is a trade-off between fidelity and heralding probability
(one very familiar to experimentalists developing heralded
photon sources).

In Fig. 3 we show the conditional average fidelity and
heralding probabilities for different efficiencies and the two
detectors where the source n̄ has been optimized for the highest
fidelity. The figure captures the effect of several parameters on
the quality of the source. There is an overall trade-off between
heralding probability and fidelity. As the number of time bins

FIG. 3. (Color online) Fidelity and heralding probabilities for
various sources for which all specific efficiencies are the same: η =
ηs = ηf = ηd . Decreasing curves plot average conditional fidelities
F̃resolved (circles and solid line) and F̃bucket (triangles and dashed
line) for reducing efficiencies from top to bottom of η = 1.0 (blue
[top]), η = 0.99 (green [middle]), and η = 0.95 (red [bottom]).
Increasing curves plot Sresolved(t) (solid) and Sbucket(t) (dashed)
for same efficiencies. The shaded bands indicate the improvement
possible by detector type; the bands themselves indicate improvement
by increasing efficiency. The optimum n̄ for achieving the highest F̃
at t = 50 was chosen for each nonunit efficiency detector. These were
n̄ = 0.90 and n̄ = 0.95 for the resolved detector with efficiencies of
0.99 and 0.95, and n̄ = 0.14 and n̄ = 0.34 for the bucket detector
with the same efficiencies respectively. For the unit-efficiency curves
n̄ was set to 0.05 for the bucket detector (which is actually maximized
for n̄ → 0) and 1.0 for the resolved detector which maximizesSresolved

instead.

increases, the heralding probability asymptotically approaches
unity, but at the same time the average fidelity decreases. The
improvement in the fidelity by using a heralded detector over
a bucket detector is lost as the number of time bins increases,
but the main factor affecting the quality of the output is the
efficiency of the heralding detector. The decrease of the fidelity
as the number of time bins increases can be attributed to
an increased amplitude of the vacuum component. This is
because more time bins translate to more loss and therefore an
increased likelihood of the desired single-photon terms being
transformed into vacuum terms.

The trade-off between heralding probability and fidelity
can be seen even more directly if we plot one against the other
as in Fig. 4, where we use the number of time bins as the
parametrization variable. Generally the closer to the top right
of the plot, the better the source.

In future integrated optical systems, it is plausible that
integrated switches and delay lines might be highly efficient.
In this instance the fidelity of the system will be limited by
detector efficiency. If we assume that fiber loops and switches
have perfect efficiency, the fidelities of the prepared states are
given by

F̃resolved =
[

1 + ηdn̄

1 + n̄

]2

,

F̃bucket = 1 + ηdn̄

(1 + n̄)2
. (15)
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FIG. 4. (Color online) Conditional average fidelity vs heralding
probability, parametrized by the number of time bins (increasing from
left to right), using sources with n̄ set as described in Fig. 3. In each
band the number-resolved detectors are shown by circles and solid
line, and the bucket detectors are shown by triangles and dashed
line. The different bands represent different efficiencies from top
to bottom of η = 1.0 (blue), η = 0.99 (green), and η = 0.95 (red),
where all specific efficiencies are equal (η = ηs = ηf = ηd ). More
deterministic sources lie to the right, and higher quality sources lie
to the top. For comparison, the star in the top right of the plot is
an ideal deterministic single-photon source and the square below it
is a coherent state |α〉 with |α|2 = 1 which is sometimes used as a
substitute.

These are shown in Fig. 5. Note that

Sresolved � Sbucket,

F̃resolved � F̃bucket, (16)

in all regimes. For either detector type we observe perfect
fidelity when n̄ → 0. However, the number-resolved detectors
also yield perfect fidelity for any n̄ if ηd = 1. This is not

FIG. 5. (Color online) Average conditional fidelity F̃ against de-
tector efficiency ηd and SPDC mean photon number n̄, where the fiber
loop and switch are assumed to have perfect efficiency, ηf = ηs = 1
(translucent yellow [light gray] surface). Number-resolved detectors
(solid blue [gray] surface) are bucket detectors. Note that in this
case the fidelities are independent of the number of time bins, since
iterations through the loop do not degrade the stored state.

the case when using bucket detectors, since even a perfectly
efficient bucket detector will record higher order photon-
number terms as containing a single photon.

VI. BLACK BOX OPERATION

So far we have explored using the loop architecture to make
a nondeterministic heralded SPDC source more deterministic.
The source is pumped t times, producing a train of t time bins,
each potentially containing heralded photons, and switching is
used to increase the probability that one of those photons will
be present in the last time bin in the train. We demonstrated
that this protocol has significant benefits in terms of heralding
efficiency at the expense of some loss of fidelity. However, the
resulting source is still nondeterministic in the sense that the
entire train of time bins may fail to have a photon.

The device can also be operated as a so-called black
box, whereby the user waits a set time and simply takes the
output as is, regardless of any heralding signature, and we can
determine the quality of this resulting source. Now the figure
of merit to use is the unconditional average fidelity F̄ over
the probabilities in Eq. (12) that also include the no-photon
outcome:

F̄resolved = Sresolved

t−1∑
j=0

Fresolved(j )[1 − Sresolved]j ,

F̄bucket = Sbucket

t−1∑
j=0

Fbucket(j )[1 − Sbucket]
j . (17)

In the above we have made use of the fact that F = 0 when
no photon is heralded in the entire train. These expressions are
equivalent to the product of Eqs. (9) and (13): F̄ = S(t)F̃ .

In Fig. 6 we plot F̄ as a function of n̄, for fixed efficiencies
(η = ηs = ηf = ηd ) and a representative total number of time
bins t equal to 1, 2, 4, 8, 16, 32, or 64. For the efficiencies
that we consider, it is seen that F̄ increases as t increases, and
that there is an optimal n̄ that decreases as t increases. The
shift to lower average photon number as the number of time
bins increases helps to ensure that, for imperfect efficiencies,
each heralding success corresponds to a large fidelity. For the
relatively high efficiencies we consider, the interplay between
the maximum unconditional fidelity, n̄, and η is more complex
for bucket detectors than for number-resolved detectors, as
heralding events that correspond to more than one photon
can be balanced by losing all but one photon on the way to
the output. Nevertheless, for large n̄ the fidelity reduces to
F̄bucket → η2/n̄ for all t .

In some situations it may be the case that the rate that
photons are required is much lower than the repetition rate
of the protocol. Alternatively we can imagine a bank of such
sources that are left operating for a certain period until a large
number of simultaneous photons are required. Both of these
cases correspond to the large t limit of the source. Since the
heralding probability asymptotes to unity with increasing t ,
in this limit the source behaves as a true push-button source,
releasing a photon on demand. Figure 3 suggests that in this
limit the fidelity of the prepared state does not degrade to zero
but rather asymptotes to a value that is a function of the various
efficiencies.
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FIG. 6. (Color online) Unconditional average fidelity, F̄ , as a function of n̄ for efficiencies η = 1.0 (top), η = 0.99 (middle), and η = 0.95
(bottom), with number-resolved (left) and bucket (right) detectors. In each plot, the curves from bottom to top are for an increasing number of
time bins in the sequence t ∈ {1,2,4,8,16,32,64}. All efficiencies are set equal, η = ηs = ηf = ηd .

Of course, one would never actually leave the device
running in the limit of t → ∞, since this would contradict
the notion of on-demand state preparation, but as is evident
from Fig. 3, more modest run times on the order of t ≈ 30 (in
the case of η > 0.95) are sufficient to bring us very close to the
asymptotic state. An alternative arrangement would be to have
a bank of such sources each primed to release a single photon
on the push of a button. In this arrangement the duration of the
transient is not so important as the simultaneous release and
indistinguishability of all the photons.

Figure 7 shows this large t behavior for t = 100 against
n̄ and η, where all efficiencies are equal (η = ηs = ηf = ηd ).
Thus, Fig. 7 gives us the fidelities of a prepared state when the
device is left running sufficiently long and the state in memory
is coupled out on demand. Observe that for low efficiencies,
the bucket detector fidelity (yellow [light gray]) out-performs
the number-resolved case (blue [gray]). Again, this is because
multipair events in which only one photon survives are able to
contribute to the fidelity in the bucket case.

FIG. 7. (Color online) Long-time-limiting behavior (with t =
100) of the unconditional average fidelities, against n̄ and η = ηf =
ηs = ηd , where all efficiencies are equal. The translucent yellow (light
gray) surface is F̄resolved, and the opaque blue (gray) surface is F̄bucket.
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VII. FURTHER IMPROVEMENTS

Finally, we note some further improvements that could be
made to the source. In Figs. 3 and 4 we optimized n̄ for the
conditional average fidelity at a long-time limit. This strategy
can be extended to optimizing each pulse separately—the first
pulse is optimized for a photon heralded in the (t − 1)th time
bin, through to the last pulse optimized for the 0th time
bin. This could be accomplished by placing an additional
dynamically controlled beam splitter in the pump beam.

As an example, consider ηs = ηf = ηd = 0.95 and t = 3.
For these values, we calculate that F̄bucket reaches a maximum
of 0.441 for the constant n̄ = 0.668, while for three differ-
ent pump pulses with n̄1 = 1.31, n̄2 = 0.693, n̄3 = 0.466,
F̄bucket = 0.458. In Fig. 8 we plot the maximum unconditional
fidelity achievable with constant operation, as well as this
biased operation, as the number of time bins increases for fixed
efficiencies with bucket detectors. This optimization confers
a larger advantage to bucket detectors than number-resolving
detectors.

More significantly, aside from the black box operation the
source carries a classical record of quality for every output time
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FIG. 8. (Color online) Maximum unconditional average fidelity,
max [F̄], as a function of the total number of time bins t , for unbiased
(blue [gray] circles) and biased (yellow [light gray] squares) operation
given bucket detectors (top) η = 0.99 and (bottom) η = 0.95.

bin—we know which time bin in the train gave a successful
heralding event. The later in the time train that the photon
was heralded, the less loss it has suffered. We can then
imagine having a bank of such sources and applying a spatial
multiplexing scheme to pick the freshest photons in each
time bin.

For two parallel sources, where we pick the source that
produces the latest heralded time bin as the output, it is possible
to give the joint probability distribution under this strategy in
analytical form. The probability that a photon was heralded in
time bin j and not later is S(1 − S)j . This event has to occur
in at least one source, so there is one joint event where both
sources produce such photons, and two lots of joint events
where only one source does produce such a photon and the
other source produces an earlier time-bin photon or none at all.
All in all, the probability that the strategy produces a photon
from time bin j is

S(1 − S)j

⎡
⎣S(1 − S)j + 2

t−1∑
k=j+1

S(1 − S)k + 2(1 − S)t

⎤
⎦

= S(1 − S)2j (2 − S). (18)

After including the joint event where both sources fail to
produce photons, the probability distribution of events for the
two sources is

p2(j ) =
{
S(1 − S)2j (2 − S) 0 � j < t

(1 − S)2j j = t
. (19)

The resultant joint probability distribution for m sources
running in parallel, where we take the source with the last
heralded photon across all m sources as the output, can be
written in a form suitable for numerical computation:

pm(u) =
t∑

j1...jm=0

T (u,j1 . . . jm)
∏

j∈{j1...jm}
p(j ), (20)

where

T (u,j1 . . . jm) =
{

1 min(j1,j2, . . . jm) = u

0 otherwise . (21)

The distributions for using up to four parallel sources are
shown in Fig. 9.

Using these probability distributions it is straightforward to
calculate the average unconditional fidelities. As an illustrative
example, consider a loop source that only has five time bins.
The improvement possible by using up to four such sources in
parallel is depicted in Fig. 10.

Of course, these are the maximum fidelities we could
expect, as we have not taken into account the losses inherent in
any spatial switching and routing scheme. Various strategies
for spatial multiplexing have been previously studied [5–7,9].
Such strategies may be readily adapted to improving the quality
of a bank of parallel loop sources.

It is interesting to note that in the bucket detector there are
parameter regimes where combining multiple parallel sources
fares worse than just taking the output of a single source.
Combining sources by picking the latest heralded time bin
reduces the effective average loss. The parameter regimes
where this strategy is a disadvantage are the regimes where loss
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FIG. 9. (Color online) The probability distribution of last her-
alded photons in 10 time bins for using m sources in parallel. The time
bins are enumerated by the number of passes through the loop. The
probability indicated in position 11 is the probability of no heralding
occurring. As more sources are used in parallel the probability of
the no-heralding event is reduced and the probability is increased
that a photon in a low-numbered time bin is emitted. In this example
n̄ = 0.1 and η = 0.95.

is helping improve the fidelity. The bucket heralding detector
cannot distinguish between numbers of photons and so lets
through higher order photon states, and with sufficient loss
some of these states are reduced to single-photon states on
output.

FIG. 10. (Color online) Improvement obtained by running four
loop sources in parallel and selecting the photons from the latest
time bins in each output pulse. Solid blue (gray) surfaces are for a
single loop source, and translucent yellow (light gray) surfaces are
for four parallel sources. The top graph uses resolved detectors while
the bottom graph uses bucket detectors. For all configurations only
five time bins were used (t = 5) in each source.

The above observation suggests that it might be beneficial
to admit a certain fraction of two-photon states when using
the resolved detectors. These states would help mitigate the
effects of loss in the switching and memory. The fraction of
these higher-order terms accepted can be optimized over where
in the pulse train they occur and we envision quite sophisti-
cated switching and parallel-source combination strategies are
possible to dynamically increase the quality of the output.
Although outside the scope of the this document and reserved
for future work, all of this is possible because the loop source
produces a quality parameter for each output in the form of
the heralding signature.

VIII. EXPERIMENTAL VIABILITY

Finally, let us consider the feasibility of our design with
current and near-term technology, in terms of key experimental
parameters including switch and fiber loss, pulse spreading,
and switching rates. We concentrate on the telecommunication
band at 1550 nm, where fiber-based technology is most
favorable.

In general, single-photon multiplexing is only worthwhile if
the individual sources produce heralded single photons of near
perfect purity so that only one spectral mode is present. (This
situation corresponds to the thermal probability distribution
used earlier in the paper.) In current 1550-nm silicon-based
photon pair sources, this typically translates to photons with
coherence time of order 10–20 ps and a spatial extent of a few
mm [19,40,41].

Detector efficiency and counting rate are also critical and
there is typically a trade-off in these parameters. In the
1550-nm band, commercial InGaAs APD-based detectors
operate with around ηd = 0.3 efficiency and detection rates
of 100 MHz or better. Superconducting nanowire detectors
offer much lower dark counts, avoiding an inflated heralding
probability. Recent devices are also showing much enhanced
efficiency with values of ηd � 0.8 [42], and while the
maximum detection rates were previously in the MHz range,
they can now exceed 10 MHz [43].

To avoid pulse overlap, one might then decide (fairly
conservatively) that successive photons should be spaced no
closer than 100 ps. This corresponds to a pump-pulse repetition
rate of 10 GHz, somewhat higher than today’s pair sources,
and a fiber-loop length of only 2 cm, which would be im-
practically short. Instead, we consider a pump-pulse repetition
rate of 1 GHz, consistent with several very recent sources
[44,45]. Assuming mean photon rates of n̄ � 0.1, this is also
consistent with state-of-the-art ceramic waveguide switches
which can operate at a few MHz and have already been
used in spatial photon multiplexing experiments [19]. Such
switches currently exhibit transmission of order ηs ≈ 0.8.
Significant additional improvements in transmission will
probably be gradual at best. In this regime fiber losses are
minimal, and thus ηf ≈ 1. For t = 10 orbits around the loop,
the net transmission is τt ≈ ηt+1

s ≈ 0.1, at which point there
is marginal benefit in utilizing more round trips. With the
required loop delay of 10 ns, the fiber length is only 2.0 m and
loop losses are negligible (below 0.01% for 10 orbits) [46].
Similarly the dispersion length for significant pulse spreading
is of order 20 km and so is irrelevant. For the foreseeable future
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FIG. 11. (Color online) Fidelity vs heralding success probability
tradeoff, parameterized against the number of time bins (increasing
from left to right). Here ηf = 1,ηd = 0.8,ηs = 0.8,n̄ = 0.5, reflec-
tive of the parameters discussed in Sec. VIII. Blue (gray) circles
denote bucket detectors, and purple (gray) squares are number-
resolved detectors.

then, the loop performance is entirely dominated by the switch
transmission. A figure representative of these parameters is
shown in Fig. 11, showing the tradeoff between fidelity and
heralding success probability, parameterized by the number of
time bins.

Another common wavelength band of interest for pair gen-
eration is around 800 nm where silicon avalanche photodiode
detectors (APDs) offer much greater efficiency of ηd > 0.7.
For most parameters discussed above, the conclusions are
largely unchanged. The fiber attenuation is just 3 dB/km, for
which fiber losses are negligible. However, the technology
for high-speed waveguide switches in this wavelength band
is less mature and employing fewer round trips of the loop is
favorable.

As a more generally available scenario using more standard
pump sources, many mode-locked lasers run at an 80-MHz
repetition rate, where successive pulses appear at 12.5 ns. This
is a rate more compatible with the counting rates supported by

contemporary detectors, as we discuss in a moment. This pulse
spacing corresponds to a fiber length of 2.6 m. Even then, the
attenuation of t = 10 loops is of order 0.1% at 1550 nm and
only 3% at 800 nm, with pulse spreading still irrelevant.

Number-resolving detectors based on transition edge sen-
sors (TES) have also now been demonstrated with efficiencies
of ηd > 0.8 at 1550 nm, but the count rates are limited
to around 100 kHz [47]. Using such detectors would then
necessitate a matching drop in the pump pulse rate to 100 kHz.
The corresponding fiber loop length of 2.1 km then gives a
transmission of ηf = 0.91 and the fiber and switch efficiencies
begin to be comparable.

IX. CONCLUSION

We have analyzed a scheme for multiplexing SPDC sources
using temporal encoding, to allow the construction of a
source with higher heralding efficiency. The scheme requires
a single SPDC source, a dynamic switch, a fiber loop, and
a time-resolved photodetector. Unlike spatial multiplexing
schemes, the complexity of the scheme presented here does
not increase with the level of multiplexing, making it very
favorable in terms of experimental resource requirements. The
heralding efficiency of the system may be made asymptotically
close to unity when enough time bins are used. However,
doing so comes at the expense of fidelity, which degrades
as the number of time bins increases. The technologies
required for elementary demonstrations of this protocol are
largely available today and could substantially improve the
heralding efficiency of an SPDC-based source using present-
day technology.
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