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Visualizing revivals and fractional revivals in a Kerr medium using an optical tomogram

M. Rohith and C. Sudheesh
Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695 547, India

(Received 14 July 2015; published 11 November 2015)

We study theoretically optical tomograms of the time-evolved states generated by the evolution of different
kinds of initial wave packets in a Kerr medium. An exact analytical expression for the optical tomogram of the
quantum state at any instant during the evolution of a generic initial wave packet is derived in terms of Hermite
polynomials. The time evolution of the optical tomogram is discussed for three kinds of initial states: a coherent
state, an m-photon-added coherent state, and even and odd coherent states. We show the manifestation of revival
and fractional revivals in the optical tomograms of the time-evolved states. We find that the optical tomogram of
the time-evolved state at the instants of fractional revivals shows structures with sinusoidal strands. The number
of sinusoidal strands in the optical tomogram of the time-evolved state at l-subpacket fractional revivals is l times
the number of sinusoidal strands present in the optical tomogram of the initial state. We also investigate the effect
of decoherence on the optical tomograms of the states at the instants of fractional revivals for the initial states
considered above. We consider amplitude decay and phase damping models of decoherence and show the direct
manifestations of decoherence in the optical tomogram.
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I. INTRODUCTION

The time evolution of an initial wave packet in a non-
linear medium can exhibit revival and fractional revivals
at specific instants of time. The revival phenomenon has
been investigated both theoretically and experimentally in
a wide class of systems [1]. A revival of a well-localized
initial wave packet occurs when it evolves in time to a wave
packet that reproduces the initial waveform. The characteristic
time scale over which this phenomenon happens is called
the revival time Trev. Within this characteristic time scale
Trev, the wave packet may split into a number of scaled
copies of the initial state at specific instants during the
evolution. This is known as the fractional revival of the initial
wave packets [2]. An l-subpacket fractional revival occurs
when the initial wave packet splits into a superposition of l

wave packets of the initial form. The revivals and fractional
revival have been observed experimentally in a variety of
quantum systems such as Rydberg atomic wave packets,
molecular vibrational states, Bose-Einstein condensates, and
so forth [3–9]. Fractional revivals occurring in a nonlinear
medium can be used to generate various kinds of macroscopic
superposition states of light. Such superposed states of light
have potential applications in quantum optics and quantum
information. The generation of a discrete superposition of
coherent states at fractional revival times in the process of
wave-packet propagation in a nonlinear medium was discussed
in [10–13]. It has been shown that the superposed wave packets
generated at fractional revival times, using an initial coherent
state in a nonlinear medium, have application in quantum
cloning [14]. Two and four superposition states generated
at fractional revival instances are useful for implementing
the one- and two-bit logic gates [15]. Recent experimental
observation of multicomponent Schrödinger cat states using
the single-photon Kerr effect opens up new directions for
continuous-variable quantum computation [16].

The signatures of fractional revivals in the time evolu-
tion of various physical quantities have been investigated
theoretically [17–23]. The experimental characterization of

time-evolved states in a nonlinear medium is an important
aspect in the study of revival and fractional revivals and it can
be done by optical tomography, which is an efficient technique
to measure and reconstruct the quantum state of optical
fields [24]. Optical tomography is based on the one-to-one
correspondence between the quasiprobability distribution and
the probability distribution of rotated quadrature phases of the
field [25]. The optical tomogram contains all the information
about the system and can serve as an alternative representation
of the quantum system, apart from the conventional state
vector or its density-matrix representation in the appropriate
Hilbert space. The optical tomogram of a quantum state can be
calculated theoretically using a suitable transformation in the
symplectic tomogram [26–32] of the quantum state. In fact,
an alternative formulation of quantum mechanics in which
the quantum states are described by tomographic probability
distributions was suggested in [33]. In experiments, a series of
homodyne measurements of the rotated quadrature operator
of the field is done on an ensemble of identically prepared
systems. The quadrature histogram obtained by this method is
called an optical tomogram. The first experimental observation
of the squeezed state of light, by measuring the quadrature
amplitude distribution using the balanced homodyne detection
arrangement, was made in [34]. Thereafter, many nonclassical
states of light have been characterized by optical homodyne
tomography. A review of continuous-variable optical quantum
state tomography, including a list of the optical quantum states
characterized by the same, is given in [35].

It is a usual practice in experiments to reconstruct the
density matrix or the quasiprobability distributions of the
system from the optical tomogram and study its nonclassical
properties. The reconstructed quasiprobability distributions,
such as the Wigner function and Husimi Q function, provide
a convenient way to visualize the fractional revivals in
phase space. Recently, the quantum state collapse and revival
due to the single-photon Kerr effect have been observed
using a three-dimensional circuit quantum electrodynamic
architecture and the multicomponent Schrödinger cat states
generated at fractional revival times are visualized in phase
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space using the quasiprobability distributions reconstructed
from the optical tomogram [16]. It should be emphasized
that no reconstruction process is perfect and the original
errors of the experimental data can grow during the process
of reconstruction. The physical properties of quantum states
can be studied directly using an optical tomogram and the
tomographic approach can be used to estimate the errors in the
histograms of experimentally obtained quadrature values [36].
The macroscopic superposition states generated at the instants
of fractional revivals are sensitive to interaction with their
environment in an actual experimental setting; this interaction
can even destroy the states generated. The aim of this
paper is twofold: first, to find the signatures of revivals and
fractional revivals directly in the optical tomogram, which
in turn can help experimentalists avoid the errors that can
accumulate during the reconstruction process, and second,
to study the effects of amplitude decay and phase damping
models of decoherence on the optical tomogram of the states
at the instants of fractional revivals. For this purpose, we
consider a nonlinear medium, which models the wave-packet
propagation in a Kerr-like medium [37,38] and the dynamics
of Bose-Einstein condensates [8]. This paper is organized as
follows. In Sec. II we give a brief review of the tomographic
representation of a quantum system. In Sec. III we calculate
theoretically the optical tomogram of the time-evolved states
in the nonlinear medium. Here we discuss the evolution of
the optical tomogram for three specific initial states, which
are a coherent state, an m-photon-added coherent state, and
even and odd coherent states. Section IV describes the effect
of amplitude loss and phase noise on the optical tomograms
of the states at the instants of fractional revivals. In Sec. V we
summarize the main results of this paper.

II. TOMOGRAPHIC REPRESENTATION OF THE
QUANTUM STATE

Optical tomograms of several nonclassical states of light
have been investigated theoretically in the literature [39–42]. A
brief discussion about the calculation of the optical tomogram
of a quantum state and the general properties of the optical
tomogram is given below. Consider the homodyne quadrature
operator

X̂θ = 1√
2

(ae−iθ + a†eiθ ), (1)

where θ is the phase of the local oscillator in the homodyne
detection setup and a and a† are the photon annihilation and
creation operators of the single-mode electromagnetic field,
respectively. The phase of the local oscillator varies in the
domain 0 � θ � 2π . The optical tomogram ω(Xθ,θ ) of a
quantum state with density matrix ρ can be calculated by the
following expression [25,35]:

ω(Xθ,θ ) = 〈Xθ,θ |ρ|Xθ,θ〉, (2)

where

|Xθ,θ〉 = 1

π1/4
exp

[
− Xθ

2

2
− 1

2
ei2θa†2 +

√
2eiθXθa

†
]
|0〉

is the eigenvector of the Hermitian operator X̂θ with eigenvalue
Xθ [43]. For a pure quantum state with wave vector |ψ〉, the

expression (2) can be rewritten as

ω(Xθ,θ ) = |〈Xθ,θ |ψ〉|2. (3)

The normalization condition of the optical tomogram ω(Xθ,θ )
is given by ∫

dXθω(Xθ,θ ) = 1. (4)

The optical tomogram ω(Xθ,θ ) of a quantum state is non-
negative and has the following symmetry property:

ω(Xθ,θ + π ) = ω(−Xθ,θ ). (5)

In the following sections we use Eq. (2) to evaluate the
optical tomogram of the quantum states generated by the Kerr
medium.

III. OPTICAL TOMOGRAMS OF STATES GENERATED IN
A NONLINEAR MEDIUM

Consider the dynamics of a single-mode field governed by
a nonlinear Hamiltonian

H = �χa†2
a2 = �χN (N − 1), (6)

where a and a† are the photon annihilation and creation
operators, respectively. The eigenstates of the operator N =
a†a are the Fock states |n〉, where n = 0,1,2, . . . ,∞. The
positive constant χ merely sets the time scale in the problem.
We choose the numerical value of χ to be 5 throughout this
paper. Consider a general initial wave packet |ψ(0)〉, with its
Fock state expansion

|ψ(0)〉 =
∞∑

n=0

Cn|n〉, (7)

where Cn are the Fock state expansion coefficients. The time
evolution of the state is governed by the Schrödinger equation

|ψ(t)〉 = U (t)|ψ(0)〉, (8)

where U (t) = exp[−iH t/�] is the unitary time-evolution
operator. The time-evolved state at time t can be written as

|ψ(t)〉 =
∞∑

n=0

Cne
−iχtn(n−1)|n〉. (9)

We calculate theoretically the optical tomogram of the time-
evolved state |ψ(t)〉 and look for the signatures of revival and
fractional revival in the optical tomogram. Inserting Eq. (9) in
Eq. (3), we get the optical tomogram of the time-evolved state
|ψ(t)〉 as

ω(Xθ,θ,t) = e−X2
θ√

π

∣∣∣∣∣
∞∑

n=0

Cne
−iχtn(n−1)

√
n!2n/2

e−inθHn(Xθ )

∣∣∣∣∣
2

, (10)

where Hn(·) denotes the Hermite polynomial of order n.
Equation (10) gives the time evolution of the optical tomogram
for an initial wave packet |ψ(0)〉 in a nonlinear medium
modeled by the Hamiltonian H . In the following sections we
discuss the temporal evolution of the optical tomogram for
three different kinds of initial states, namely, a coherent state,
an m-photon-added coherent state, and even and odd coherent
states.
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FIG. 1. (Color online) Time-evolved optical tomogram ωα(Xθ,θ,t) for an initial coherent state |α〉 at (a) t = 0, (b) t = Trev/2, (c) t = Trev/3,
(d) t = Trev/4, (e) t = Trev/

√
2, and (f) Trev, with field strength |α|2 = 20. At an l-subpacket fractional revival time t = π/lχ , the optical

tomogram of the state shows structures with l sinusoidal strands. The structures with sinusoidal strands are completely absent in the optical
tomogram for the collapsed state at time t = Trev/

√
2.

A. Evolution of the coherent state

Consider the evolution of an initial coherent state |α〉 in the
nonlinear medium governed by the Hamiltonian in Eq. (6). The
Fock state expansion coefficient Cn in Eq. (7) for the coherent
state is

Cn = e−|α|2 αn

√
n!

. (11)

Let α =
√

|α|2 exp(iδ), where |α|2 is the mean number of
photons in the coherent state |α〉 and δ is a real number. Without
loss of generality, we set δ = π/4. Figure 1(a) displays the
optical tomogram of the coherent state |α〉 (at time t = 0), for
which the optical tomogram is given by

ωα(Xθ,θ,t = 0) = 1√
π

exp{−[Xθ −
√

2|α| cos(δ − θ )]2}.

(12)

The maximum intensity of this optical tomogram ωα(Xθ,θ,t =
0) is 1/

√
π , which occurs along the sinusoidal path, defined

by Xθ =
√

2|α|2 cos(θ − δ), in the Xθ -θ plane. Hence, the
projection of the optical tomogram on the Xθ -θ plane is
a structure with a single sinusoidal strand. Along the Xθ

axis (θ = 0), the maximum intensity of the optical tomogram
occurs at Xθ =

√
2|α|2 cos δ.

The optical tomogram of the state at any instant during
the evolution of a coherent state |α〉 is calculated using

Eq. (10):

ωα(Xθ,θ,t) = e−|α|2e−X2
θ√

π

∣∣∣∣∣
∞∑

n=0

αne−iχtn(n−1)

n!2n/2
e−inθHn(Xθ )

∣∣∣∣∣
2

.

(13)

Now we analyze the optical tomogram ωα(Xθ,θ,t) at the
instants of fractional revivals. Between t = 0 and t = Trev,
for an initial coherent state, l-subpacket fractional revivals
occur at time t = πj/lχ , where j = 1,2, . . . ,l − 1 for a given
value of l (>1) with the condition that j and l are mutually
prime integers. Without loss of generality, we take j = 1. The
analysis shown below is true for any possible value of j . The
interesting periodicity properties of the unitary time evolution
operator U in Eq. (8) at the instants of l-subpacket fractional
revivals, that is, at times t = π/lχ , enable us to write the
time-evolved state |ψ(t)〉 at these instants as

|ψl〉 = |ψ(π/lχ )〉

=
{∑l−1

r=0 f (o)
r |αe−i2πr/l〉 if l is odd∑l−1

r=0 f (e)
r |αe−iπ(2r−1)/l〉 if l is even,

(14)

where

f (o)
r = 1

l

l−1∑
k=0

exp

[
2πir

l
k

]
exp

[
− iπ

l
k(k − 1)

]
, (15)

f (e)
r = 1

l

l−1∑
k=0

exp

[
2πir

l
k

]
exp

[
− iπ

l
k2

]
(16)
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are the Fourier coefficients [13]. Note that each of the ket
vectors in Eq. (14) is a coherent state and hence the state
|ψl〉 is a superposition of l coherent states. At an l-subpacket
fractional revival time t = π/lχ , Eq. (13) can be simplified to
get the optical tomogram of the state |ψl〉 as

ωα(Xθ,θ,t = π/lχ )

= 1√
π

∣∣∣∣
l−1∑
r=0

fr,l exp

[
− X2

θ

2
− |α|2

2
− α2

r,le
−i2θ

2

+
√

2αr,lXθe
−iθ

]∣∣∣∣
2

, (17)

where

fr,l =
{

f (o)
r if l is odd

f (e)
r if l is even,

(18)

αr,l =
{

αe−i2πr/l if l is odd

αe−iπ(2r−1)/l if l is even.

Figures 1(b)–1(d), show the optical tomograms of the state
|ψl〉 for l = 2, 3, and 4, corresponding to the two-, three-,
and four-subpacket fractional revivals of the initial coherent
state, respectively. The value of the field strength |α|2 used to
plot the tomograms in the figures is 20. Figure 1(b) shows the
optical tomogram of the state |ψ2〉, which is the superposition
of the coherent states |iα〉 and |−iα〉 with weights (1 − i)/2
and (1 + i)/2 [the Fourier expansion coefficients in Eq. (14)],
respectively. This optical tomogram of the state |ψ2〉 is a
structure with two sinusoidal strands. Thus, a structure with
two sinusoidal strands in the optical tomogram of the time-
evolved state for an initial coherent state at Trev/2 is a signature
of two-subpacket fractional revival. The quantum interference
regions between the states |iα〉 and |−iα〉 are reflected in the
optical tomogram of the state |ψ2〉 at locations in the Xθ -θ
plane, where the two sinusoidal strands intersect, showing a
large oscillation in the optical tomogram.

The optical tomogram of the state |ψ3〉, which is a state
at the three-subpacket fractional revival, displays a structure
with three sinusoidal strands [Fig. 1(c)]. Similarly, the optical
tomogram of the state |ψ4〉, which is a state at the four-
subpacket fractional revival, plotted shows a structure with
four sinusoidal strands [Fig. 1(d)]. We repeated the analysis for
higher-order fractional revivals (l > 4) and found the general
result that the optical tomogram of the time-evolved state at
the l-subpacket fractional revival time shows a structure with
l sinusoidal strands.

During the evolution of the coherent state |α〉, the
wave packet may also show the collapse phenomenon at
specific instants of time t = Trev/s, where s is any irrational
number [1]. The collapse phenomenon corresponds to the
destruction of a wave packet during its evolution in a
nonlinear medium due to the destructive interference of states
comprising the wave packet [1,3,4,6,8,16]. The state at the
instant of collapse is known as the collapsed state. At the
instant of collapse the state |ψ(t)〉 is not a finite superposition
of coherent states. It has been shown that such collapsed
states of the fields are of great importance because of their
high nonclassical nature and can give a large amount of

entanglement when these states are split on a beam splitter
with vacuum in the second input port [44]. To study the nature
of the optical tomogram during the collapse of the wave packet,
we plot the optical tomogram in Eq. (13) at collapse time
t = Trev/

√
2. The optical tomogram at this instant is shown in

Fig. 1(e). The sinusoidal strands are not visible in the optical
tomogram for the collapsed state, which implies that the
optical tomogram of a collapsed state is qualitatively different
from that of the state at the instants of fractional revivals.
Figure 1(f) shows the revival of the initial state at t = Trev. We
can conclude that signatures of revivals and fractional revivals
are captured in the optical tomogram of the time-evolved
states. The optical tomogram at the instants of l-subpacket
fractional revivals shows l sinusoidal strands for an initial
coherent state, which has one strand in its optical tomogram.

B. Evolution of the m-photon-added coherent state

Here we consider the evolution of a nonclassical initial
state, namely, an m-photon-added coherent state [45]

|α,m〉 = Nα,ma†m|α〉, (19)

where Nα,m is the normalization constant and m is the number
of photons added to the coherent field |α〉. One of the
states of this family, namely, the one-photon-added coherent
state, has been experimentally produced by the parametric
down-conversion process in a nonlinear crystal and the Wigner
distribution of the state is reconstructed from the optical
tomogram [46]. The Fock state expansion coefficient Cn in
Eq. (7) for the m-photon-added coherent state is

Cn =
{

0 if n < m

e−|α|2/2αn−m
√

n!√
m!Lm(−|α|2)(n−m)!

if n � m,
(20)

where Lm is the Laguerre polynomial of order m. The
optical tomogram for the m-photon-added coherent state was
investigated theoretically in [40]. The optical tomogram of the
one-photon-added coherent state given in Fig. 2(a) displays a
structure with a single sinusoidal strand. It shows a significant
deviation of the intensity along the sinusoidal strand when
compared with the optical tomogram of the coherent state
given in Fig. 1(a). It is shown that the variation of the intensity
becomes more pronounced as the value of m increases. This is
due to the increase in nonclassicality of the m-photon-added
coherent state with the increase in photon excitation number
m [47,48]. The maximum intensity of the optical tomogram of
the m-photon-added coherent state along the Xθ axis occurs at
Xθ = √

2〈N〉m cos δ, where 〈N〉m is the mean photon number
in the m-photon-added coherent state |α,m〉.

The time evolution of the initial m-photon-added coherent
state under the Kerr Hamiltonian shows revival and fractional
revival at the same instants as in the case of the initial
coherent state [49]. Substituting Cn in Eq. (10), we get
the time evolution of the optical tomogram for the initial
m-photon-added coherent state

ωα,m(Xθ,θ,t) = e−|α|2

m!Lm(−|α|2)

e−X2
θ√

π

×
∣∣∣∣∣

∞∑
n=m

αn−me−iχtn(n−1)

(n − m)!2n/2
e−inθHn(Xθ )

∣∣∣∣∣
2

. (21)
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FIG. 2. (Color online) Time-evolved optical tomogram ωα,1(Xθ,θ,t) of the initial one-photon-added coherent state at (a) t = 0, (b) t =
Trev/2, (c) t = Trev/3, (d) t = Trev/

√
2, and (e) t = Trev, with field strength |α|2 = 5. At an l-subpacket fractional revival time t = π/lχ , the

optical tomogram of the state shows a structure with l sinusoidal strands. The structures with sinusoidal strands are completely absent in the
optical tomogram for the collapsed state at time t = Trev/

√
2.

In Figs. 2(b)–2(e) we plot the optical tomograms ωα,1(Xθ,θ,t)
for the evolution of the initial one-photon-added coherent state
at different instants. Since the effect of photon addition to the
coherent state |α〉 is significant only for smaller field strengths,
we choose |α|2 = 5 for the plots. Fourier expansion of the time-
evolved state |ψ(t)〉 for an initial m-photon-added coherent
state at the l-subpacket fractional revival time t = π/lχ can
be written as∣∣ψ (m)

l

〉
=

{∑l−1
r=0 f (o)

r e−i2πrm/l |αe−i2πr/l,m〉 if l is odd∑l−1
r=0 f (e)

r e−iπm(2r−1)/l |αe−iπ(2r−1)/l,m〉 if l is even.

(22)

Each of the ket vectors appearing on the right-hand side
of Eq. (22) is an m-photon-added coherent state and the
state |ψ (m)

l 〉 is a superposition of l m-photon-added coherent
states. The optical tomograms of the state |ψ (m)

l 〉 for an
initial one-photon-added coherent state at two- and three-
subpacket fractional revivals are shown in Figs. 2(b) and 2(c),
respectively. The optical tomogram displays a structure with
two sinusoidal strands at the two-subpacket fractional revival
and is a structure with three sinusoidal strands at the three-
subpacket fractional revival. The two sinusoidal strands in
the optical tomogram of the state |ψ (1)

2 〉 correspond to the
superposition of the states |iα,1〉 and |−iα,1〉. Similarly, the
three sinusoidal strands in the optical tomogram of the state
|ψ (1)

3 〉 correspond to the superposition of the states |α,1〉,
|αe−i2π/3,1〉, and |αei2π/3,1〉. We repeated the analysis for
higher values of photon excitation m and for higher-order
fractional revivals (l > 3) and found that at the instants of
l-subpacket fractional revivals, the optical tomogram of the
time-evolved state for an initial m-photon-added coherent state
displays a structure with l sinusoidal strands. Figure 2(d) shows
the optical tomogram of the time-evolved state for an initial
one-photon-added coherent state at collapse time t = Trev/

√
2.

In this case, the optical tomogram does not show any sinusoidal
strand. Again, like in the case of an initial coherent state, the
optical tomogram of the time-evolved state at time t = Trev

shows the revival of the initial one-photon-added coherent
state. So far we have considered two types of initial states:
coherent states and m-photon-added coherent states. These
states are similar in the sense that both are single wave packets

with a structure with a single sinusoidal strand in their optical
tomograms. This is the reason for showing the same number
of sinusoidal strands at the instants of fractional revivals for
these two kinds of initial states. However, they are a completely
different class of states because coherent states are classical
states and the m-photon-added coherent state is a nonclassical
state. This difference shows up in the intensity of sinusoidal
strands in the optical tomogram. In the next section we consider
superposed wave packets, which are different from the initial
states considered so far.

C. Evolution of even and odd coherent states

Consider the evolution of even and odd coherent states [50],
defined by

|ψ(0)〉h = Nh[|α〉 + (−1)h|−α〉], (23)

where h = 0 and 1, respectively, and Nh is an appropriate
normalization constant. The Fock state representation of the
even (odd) coherent state contains only the even (odd) photon
excitations. The revival and fractional revivals during the
evolution of initial even and odd coherent states in a Kerr media
have been discussed in detail [23]. It has been shown that [23]
the time-evolved state at t = kTrev/4, where k = 1, 2, and 3, is
a rotated initial wave packet. Also, the l-subpacket fractional
revival occurs at t = jTrev/4l, where j = 1,2, . . . ,4l − 1 for
a given value of l (>1). Here j and 4l are mutually prime
integers. The Fock state expansion coefficient Cn in Eq. (7)
for the even and odd coherent states is given by

Cn = 2Nhe
−|α|2/2 αn

√
n!

δ[(n−h)/2],(n−h)/2, (24)

where δ is Kronecker delta function and [x] is integer part of
x. The symplectic tomography of even and odd coherent states
was discussed in [29]. Inserting the value of the coefficient Cn

in Eq. (10), we obtain the time-evolved optical tomogram for
initial even and odd coherent states

ωh(Xθ,θ,t) = 4N2
he−|α|2e−X2

θ√
π

∣∣∣∣
∞∑

n=0

αne−iχtn(n−1)

n!2n/2

×e−inθHn(Xθ )δ[(n−h)/2],(n−h)/2

∣∣∣∣
2

. (25)
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FIG. 3. (Color online) Time-evolved optical tomogram ω0(Xθ,θ ) of the initial even coherent state with field strength |α|2 = 20 at (a) t = 0,
(b) t = Trev/8, (c) t = Trev/4, (d) t = Trev/2, (e) t = Trev/

√
2, and (f) Trev, respectively. At the instants of l-subpacket fractional revivals, the

optical tomogram of the time-evolved state of the initial even coherent state displays a structure with 2l sinusoidal strands.

We focus on the evolution of an initial even coherent state
|ψ(0)〉0, but our analysis can be done for an initial odd coherent
state as well. Figure 3(a) shows the optical tomogram of the
even coherent state with |α|2 = 20, which displays a structure
with two sinusoidal strands. In Figs. 3(b)–3(f) we plot the
optical tomogram given in Eq. (25) at different instants during
the evolution of the initial even coherent state (h = 0) in the
medium. At the instants of rotated wave packets, the state is
again a superposition of two coherent states. For example, at
t = Trev/4 and Trev/2, Figs. 3(c) and 3(d) show the optical
tomogram of rotated wave packets. The optical tomogram
shows a structure with two sinusoidal strands, as expected.
These tomograms are qualitatively different from the optical
tomogram shown in Fig. 3(a). The locations of the sinusoidal
strands, where the maximum intensity of the optical tomogram
along the Xθ axis occurs, in these optical tomograms are
shifted due to the phase-space rotation of the quantum states
during the evolution of the initial even coherent state in the
medium.

Figure 3(b) shows the optical tomogram of the time-evolved
state at Trev/8, which corresponds to two-subpacket fractional
revival. It displays a structure with four sinusoidal strands,
which is a signature of two-subpacket fractional revival for the
initial even coherent state. (Note that the optical tomogram
of the initial even coherent state itself is a structure with
two sinusoidal strands.) The time-evolved optical tomogram
for initial even and odd coherent states is also analyzed at
higher-order fractional revival times and we found that, at
the instants of l-subpacket fractional revivals, the optical
tomogram of the time-evolved state for the initial even and
odd coherent state displays a structure with 2l sinusoidal

strands. Figure 3(e) shows the optical tomogram of a collapsed
state at time t = Trev/

√
2, which again confirms our result that

sinusoidal strands are absent in the optical tomogram of the
collapsed state. The optical tomogram of the time-evolved state
at the revival time is shown in Fig. 3(f).

IV. EFFECT OF DECOHERENCE ON THE OPTICAL
TOMOGRAM

So far we have analyzed the optical tomograms of pure
quantum states undergoing unitary evolution in the Kerr
medium. However, real optical nonlinearities are noisy and
suffer various kinds of losses. This leads to decoherence
of the quantum states prepared in an experiment. The ef-
fect of decoherence on the time-evolved states in a Kerr
medium has been studied theoretically using quasiprobability
distributions [51,52]. In this section we study the effect of
environment-induced decoherence on the optical tomogram of
the time-evolved state |ψ(t)〉 given in Eq. (9) at the instants
of fractional revivals for the different initial states |ψ(0)〉
considered in the preceding section. Here we assume that the
external environment consists of a collection of an infinite
number of harmonic oscillators. Depending on the type of
interaction between the single-mode field and the environment,
the decoherence of the quantum state can occur at least in two
ways: The first one is due to the photon absorption by the
environment, also known as amplitude decay, and the second
one is due to the phase damping. These two models are well
described by master equations. Consider that the decoherence
of the state |ψ(t)〉 starts at τ = 0 and the density matrix of the
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state at τ = 0 is given by

ρt (τ = 0) = |ψ(t)〉〈ψ(t)|. (26)

The evolution of this state under decoherence can be repre-
sented in the Fock basis as

ρt (τ ) =
∞∑

n,n′=0

ρt n,n′ (τ )|n〉〈n′|, (27)

where the density-matrix elements ρt n,n′ (τ ) can be calculated
using the appropriate master equations that describe the
amplitude decay and phase damping of the state [53]. The
interaction with the external environment leaves the system in
a mixed state, that is, the state given in Eq. (27) is a mixed
state for τ > 0.

The optical tomogram of the state ρt (τ ), using Eq. (2), takes
the form

ω(Xθ,θ,t ; τ ) =
∞∑

n,n′=0

ρt n,n′ (τ )〈Xθ,θ |n〉〈n′|Xθ,θ〉. (28)

The expression (28) for the optical tomogram has been
simplified to

ω(Xθ,θ,t ; τ ) = e−Xθ
2

√
π

∞∑
n,n′=0

ρt n,n′ (τ )

×Hn(Xθ )Hn′(Xθ )

2(n+n′)/2
√

n!n′!
e−i(n−n′)θ , (29)

where we have used the quadrature representation 〈Xθ,θ |n〉 of
the Fock state |n〉,

〈Xθ,θ |n〉 = 1

π1/42n/2

e−Xθ
2/2

√
n!

Hn(Xθ )e−inθ .

Evaluation of the optical tomogram ω(Xθ,θ,t ; τ ) given in
Eq. (29) involves the calculation of ρt n,n′ (τ ), which depends
on the decoherence model. Next we calculate ρt n,n′ (τ ) for the
amplitude decay model and the phase damping model.

A. Amplitude decay model

In this model the interaction of the single-mode field (mode
a) with the environment modes ej under the rotating-wave
approximation can be described by the Hamiltonian

Hamp =
∑

j

�γ (aej
† + a†ej ), (30)

where γ is the coupling strength of the mode a with the
environment. In the Born-Markov approximation, the density
matrix ρt in the interaction picture obeys the zero-temperature
master equation

dρt

dτ
= γ (2aρta

† − a†aρt − ρta
†a). (31)

The matrix elements of ρt for an arbitrary initial state ρt (τ = 0)
are calculated in the Fock basis using [54]

ρt n,n′ (τ ) = e−γ τ (n+n′)
∞∑

r=0

(
n + r

r

)1/2(
n′ + r

r

)1/2

×(1 − e−2γ τ )
r
ρt n,n′ (τ = 0). (32)

It should be noted that all the density-matrix elements ρt n,n′ (τ )
except those corresponding to n = n′ = 0 decay exponentially
to zero. In the long-time limit (i.e., τ → ∞) only the vacuum
state will survive under amplitude decoherence, that is,

ρt (τ → ∞) = |0〉〈0|. (33)

Using Eq. (32), we calculate the matrix elements ρt n,n′ (τ ) for
the different initial states |ψ(0)〉 considered earlier as follows:
(a) For the initial coherent state and the m-photon-added
coherent state

ρt n,n′ (τ ) = e−|α|2−γ τ (n+n′)

m!Lm(−|α|2)

∞∑
r=0

(
n + r

r

)1/2(
n′ + r

r

)1/2

×(1−e−2γ τ )
r αn+r−mα∗n′+r−m

√
(n + r)!(n′ + r)!

(n + r − m)!(n′ + r − m)!

×e−iχt[(n+r)(n+r−1)−(n′+r)(n′+r−1)] (34)

(m = 0 corresponds to the initial coherent state) and (b) for
the initial even and odd coherent states

ρt n,n′ (τ ) = 4N2
he−|α|2e−γ τ (n+n′)

∞∑
r=0

(
n + r

r

)1/2(
n′ + r

r

)1/2

×(1 − e−2γ τ )
r αn+rα∗n′+r

√
(n + r)!(n′ + r)!

×e−iχt[(n+r)(n+r−1)−(n′+r)(n′+r−1)]

×δ[(n+r−h)/2],((n+r−h)/2)

×δ[(n′+r−h)/2],[(n′+r−h)/2]. (35)

The optical tomograms of the initial m-photon-added coherent
states and even and odd coherent states can be obtained
using Eqs. (34) and (35), respectively, in Eq. (29). In the
following, we analyze the amplitude damping of the state at
the two-subpacket fractional revival time for different initial
states. Figure 4 shows the optical tomograms of the state
in the presence of amplitude damping at different times γ τ

(scaled time) for the initial (a) coherent state (m = 0), (b)
one-photon-added coherent state, and (c) even coherent state.
The structures with sinusoidal strands are not lost when
the interaction of the state with the environment is for a
short duration of time (for example, when γ τ = 0.1). The
sinusoidal strands get close together and get distorted with an
increase in time γ τ and they merge for large γ τ . Figures 4(a)
and 4(b) show the merging of two sinusoidal strands for the
initial coherent state and the one-photon-added coherent state,
respectively. Plots in Fig. 4(c) shows the merging of four
sinusoidal strands for the initial even coherent state.

The merging of the sinusoidal strands with the increase in
time γ τ is due to the decay of amplitude of the quantum state
due to photon absorption by the environment. All the initial
states considered above decay to the vacuum state in the
long-time limit, i.e., when γ τ → ∞, and the corresponding
optical tomogram is given by

ω(Xθ,θ,t ; τ → ∞) = 1√
π

e−X2
θ . (36)

The above optical tomogram ω(Xθ,θ,t ; τ → ∞) is a structure
with a single straight strand in the Xθ -θ plane, which the last
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FIG. 4. (Color online) Optical tomograms of the states at two-subpacket fractional revival time in the presence of amplitude damping for
an initial (a) coherent state with |α|2 = 20, (b) one-photon-added coherent state with |α|2 = 5, and (c) even coherent state with |α|2 = 20 at (i)
γ τ = 0.01, (ii) γ τ = 0.1, (iii) γ τ = 1.0, and (iv) γ τ → ∞.

column of Fig. 4 confirms. Another important fact is that the
oscillations in the optical tomogram in the interference regions
of the sinusoidal strands decrease with the increase in decoher-
ence time γ τ , which can be observed in Fig. 4. We repeated
the analysis described above for the states at the instants of
higher-order fractional revivals and found similar results.

B. Phase damping model

In the phase damping model, the interaction between the
system (represented by the mode a) and the environment
modes ej can be modeled by the Hamiltonian [53]

Hph =
∑

j

�κ(Aej
† + A†ej ), (37)

where A = a†a and κ is the coupling constant. In this case,
the interaction with the environment causes no loss of energy
of the system but the information about the relative phase of
the energy eigenstates is lost. The Markovian dynamics of the
state ρt is described by the zero-temperature master equation

dρt

dτ
= κ(2AρtA

† − A†Aρt − ρtA
†A). (38)

The matrix elements of ρt for an arbitrary initial state ρt (τ = 0)
are given by [53]

ρtn,n′ = exp[−κ(n − n′)2τ ]ρtn,n′ (τ = 0). (39)

Here the diagonal matrix elements do not decay due to phase
damping. Using Eq. (39) we calculate the matrix elements of
ρt (τ ) in the presence of phase damping for different initial
states as follows: (a) For the initial coherent state and m-
photon-added coherent states

ρtn,n′ (τ ) = e−(n−n′)2κτ e−|α|2αn−mα∗n′−m
√

n!n′!
m!Lm(−|α|2)(n − m)!(n′ − m)!

×e−iχt[n(n−1)−n′(n′−1)] (40)

(m = 0 corresponds to the initial coherent state) and (b) for
the initial even and odd coherent states

ρt n,n′ (τ ) = 4N2
he−(n−n′)2κτ−|α|2αnα∗n′

√
n!n′!

e−iχt[n(n−1)−n′(n′−1)]

×δ[(n−h)/2],(n−h)/2δ[(n′−h)/2],(n′−h)/2. (41)

Substituting Eqs. (40) and (41) in Eq. (29) gives the optical
tomogram of the time-evolved state |ψ(t)〉 under phase
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FIG. 5. (Color online) Optical tomograms of the states at a two-subpacket fractional revival time in the presence of phase damping for an
initial (a) coherent state with |α|2 = 20, (b) one-photon-added coherent state with |α|2 = 5, and (c) even coherent state with |α|2 = 20 at (i)
κτ = 0.01, (ii) κτ = 0.1, (iii) κτ = 0.3, and (ii) κτ → ∞.

damping for the initial m-photon-added coherent state and
for the even and odd coherent states, respectively. In the
following we consider the phase damping of the state at the
two-subpacket fractional revival time for different initial states.
Figure 5 shows the optical tomograms of the state in the
presence of phase damping at different times κτ (scaled time)
for the initial (a) coherent state (m = 0), (b) one-photon-added
coherent state, and (c) even coherent state. In contrast to the
amplitude damping, the phase damping shows a faster decay
of the sinusoidal strands in the optical tomogram of the states.
The sinusoidal strands in the optical tomogram of the state
retain their structure only for a short time κτ . The faster decay
of the state is very noticeable in the case of an initial even
coherent state; this aspect is displayed in Fig. 5(c).

In the long-time limit ρt (τ → ∞), the optical tomograms
ω(Xθ,θ,t ; τ → ∞) of different initial states are as follows:
(a) For the initial coherent state and m-photon-added coherent
states

ω(Xθ,θ,t ; τ → ∞) = e−Xθ
2−|α|2

√
πm!Lm(−|α|2)

×
∞∑

n=m

|α|2(n−m)H 2
n (Xθ )

2n[(n − m)!]2
(42)

(m = 0 corresponds to the initial coherent state) and (b) for
even and odd coherent states

ω(Xθ,θ,t ; τ → ∞) = 4N2
he−Xθ

2−|α|2
√

π

∞∑
n=0

|α|2nH 2
n (Xθ )

2n(n!)2

×δ[(n−h)/2],(n−h)/2. (43)

Both of the above tomograms are independent of the phase
θ ; this is displayed in the last column of Fig. 5. We
have repeated the above analysis for higher-order fractional
revivals and found similar results. The optical tomogram
of the states, in the long-time scales, shows a completely
different structure for amplitude damping and phase damping
models of the decoherence. This can be used to under-
stand the type of interaction the system is having with its
environment.

V. CONCLUSION

We have studied the optical tomograms of different kinds of
wave packets evolving in a Kerr medium. The exact analytical
expression for the optical tomogram of the quantum states
at any instant during the evolution of a generic initial wave
packet is derived in terms of Hermite polynomials. The time
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evolution of the optical tomogram is analyzed for three specific
initial states: a coherent state, an m-photon-added coherent
state, and even and odd coherent states. We have shown that
the signatures of revival and fractional revivals are captured
in the optical tomograms of the quantum states. The optical
tomogram of the time-evolved state at the instants of fractional
revivals shows structures with sinusoidal strands. In general,
the number of sinusoidal strands in the optical tomogram
of the time-evolved state at l-subpacket fractional revivals
is l times the number of sinusoidal strands present in the
optical tomogram of the initial state considered. There are
no sinusoidal strands present when the initial state collapses
during the evolution. Interactions of the system with its
environment are inevitable in a real experimental setting and
we found the manifestations of decoherence directly in the

optical tomogram. The results obtained in this paper may be
very useful for the experimental characterization of revivals
and fractional revivals for the following reasons. (i) We have
shown the signatures of fractional revivals directly in the
optical tomogram of the states. There is no need to reconstruct
the density matrix or the quasiprobability distribution from the
experimentally obtained optical tomogram to study fractional
revivals, so there is no need to be concerned about the error
that can accumulate during the reconstruction process. (ii) The
analytical results obtained can be used to verify and compare
the optical tomograms generated in a homodyne measurement.
(iii) The theoretical results on decoherence can be used to
find out how much the decoherence models really capture the
effects of environmental interactions in an actual experimental
setting.

[1] R. W. Robinett, Phys. Rep. 392, 1 (2004).
[2] I. S. Averbukh and N. F. Perelman, Phys. Lett. A 139, 449

(1989).
[3] G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett. 58, 353

(1987).
[4] J. A. Yeazell, M. Mallalieu, and C. R. Stroud, Jr., Phys. Rev.

Lett. 64, 2007 (1990).
[5] J. A. Yeazell and C. R. Stroud, Jr., Phys. Rev. A 43, 5153

(1991).
[6] D. R. Meacher, P. E. Meyler, I. G. Hughes, and P. Ewart, J. Phys.

B 24, L63 (1991).
[7] M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys. Rev.

A 54, R37 (1996).
[8] M. Greiner, O. Mandel, T. W. Hansch, and I. Bloch, Nature

(London) 419, 51 (2002).
[9] D. N. Matsukevich, T. Chaneliére, S. D. Jenkins, S.-Y. Lan, T.
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