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Absolute optical instruments without spherical symmetry
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Until now, the known set of absolute optical instruments has been limited to those containing high levels of
symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in
asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and
classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method
can be used to construct the index profiles of most previously known absolute optical instruments, as well as
infinitely many different ones.
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I. INTRODUCTION

An absolute instrument (AI) is an optical device that
images a region of space stigmatically, i.e., without any
aberrations [1,2]. The first nontrivial AI known as Maxwell’s
fish eye was discovered by Maxwell in 1854 [3]. However,
for a very long time the set of known AIs remained extremely
limited, the other known example of an AI then being a plane
mirror. This changed in 2006 when Miñano pointed out that
several previously known devices such as Eaton or Luneburg
lenses are in fact AIs, and discovered several new ones [4].
Later, in 2011, Tyc et al. presented a very general method
of designing refractive index profiles of AIs that can easily
generate uncountably many AIs [2].

All of these AIs, however, have spherically [in case of
a three-dimensional (3D) AI] or rotationally [in the two-
dimensional (2D) case] symmetric refractive index profiles.
It was not clear until very recently whether AIs without this
symmetry exist at all. The answer to this question turned out
to be positive in the work of Danner et al., who discovered
a new class of AIs called Lissajous lenses in which rays
form Lissajous curves [5]. However, whether or not other
AIs without spherical or rotational symmetry exist (other than
conformal maps of lenses with such symmetry) was still not
clear.

In this paper, we show that the answer to this question
is also positive, and we present a different class of AIs
that are generalizations of the previously found Lissajous
lenses. The class of these lenses is very rich and their main
feature is that the Lagrangian for the corresponding mechanical
problem separates in Cartesian coordinates. We demonstrate
their imaging properties both for light rays and waves and
present a number of examples.

II. CONSTRUCTION OF THE LENS

Similarly as in Ref. [5], we take advantage of the analogy
between classical mechanics and geometrical optics [6] for
constructing the lens. This analogy comes from the similarity
between Fermat’s principle in optics [1] and the Maupertuis
principle in mechanics [7], and its consequence is that the
trajectories of a particle with the Lagrangian L = v2/2 − U (�r)
(we set the mass to unity) and energy E have the same
geometrical shapes as light rays in a medium with refractive

index

n(�r) =
√

2[E − U (�r)]. (1)

We will first design the potential U (�r) that gives closed
trajectories for the mechanical problem and then proceed
to the optical case. To do this, we will consider first just a
2D problem and assume that the potential U (�r) separates in
Cartesian coordinates, U (�r) = Ux(x) + Uy(y). We will also
assume without loss of generality that both potentials Ux,Uy

have a global minimum Ux(0) = Uy(0) = 0. The Lagrangian

L = ẋ2 + ẏ2

2
− Ux(x) − Uy(y) (2)

then completely separates and yields two conservation laws for
the energies corresponding to motions in the x and y directions
that sum to the total energy E:

ẋ2

2
+ Ux(x) = Ex,

ẏ2

2
+ Uy(y) = Ey, Ex + Ey = E.

(3)

For each energy Ex , the motion in the x direction is limited
to the interval between turning points x1(Ex) and x2(Ex),
x1(Ex) � 0 � x2(Ex), at which Ux = Ex . Using Eq. (3), we
can easily calculate the period of oscillation in the x direction
corresponding to motion from x1(Ex) to x2(Ex) and back:

Tx(Ex) = 2
∫ x2(Ex )

x1(Ex )

dx√
2[Ex − Ux(x)]

. (4)

In a similar way we can express the period of oscillation
Ty(Ey) in the y direction in terms of Uy(y) and Ey = E − Ex .
Obviously, if the ratio of the periods Tx(Ex) and Ty(E − Ex)
is rational for some energy Ex , the motion of the particle will
be periodic and the trajectory will be closed.

Suppose now that we vary the energies Ex and Ey , keeping
their sum E fixed. This in general changes both the periods
Tx and Ty . However, if the potentials Ux and Uy are designed
such that the ratio Tx/Ty remains rational for all Ex ∈ [0,E],
then the motion will be periodic and we still obtain closed
trajectories. This way, all the trajectories of the particle with
the total energy E will be closed. For the same reason all light
rays in the corresponding refractive index profile (1) will be
closed and we arrive at an absolute optical instrument. The
simplest way to achieve this is to keep the ratio constant and
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equal to k ∈ Q:

Ty(Ey) = Ty(E − Ex) = kTx(Ex) = kTx(E − Ey),

0 � Ex � E. (5)

To proceed with designing the potentials Ux and Uy , we
employ the procedure that enables us to invert Eq. (4) and
find the potential Ux if the period is known as a function of
energy, Tx(Ex). This procedure is described in Ref. [7] and it
is closely related to deriving the inverse Abel transformation.
The result is

�x(Ux) ≡ x2(Ux) − x1(Ux) = 1

π
√

2

∫ Ux

0

Tx(Ex)dEx√
Ux − Ex

. (6)

Here, we write the turning points as x1,2(Ux) instead of
x1,2(Ex). This expresses the fact that x1,2(Ux) can be
understood as functions that are inverse to the two branches
of the potential Ux(x) for x � 0 and x � 0, respectively.
Equation (6) does not determine the potential uniquely, but
there is still a lot of freedom; one can, e.g., choose the
function x1(Ux) and use Eq. (6) to get x2(Ux). The only
restrictions are that x1(Ux) and x2(Ux) must be nonincreasing
and nondecreasing, respectively, such that Ux(x) can be
reconstructed by inverting them. One possible choice
corresponds to the requirement that the potential should be
symmetric; in that case, x2(Ux) = −x1(Ux) = �x(Ux)/2. As
we will see, this freedom can be employed for greatly enlarging
the set of possible absolute instruments. Formulas analogous
to Eqs. (4) and (6) hold also for the motion in the y direction.

Equations (6) and (5) can be used for designing 2D absolute
instruments. Moreover, this can be done in two different ways
that we discuss separately below.

A. Choosing Tx(Ex) and k, and calculating Ux(x) and Uy( y)

One way of finding the potentials Ux and Uy is to choose
k and the function Tx(Ex). The potential Ux can then be
found with the help of Eq. (6) (including the above-mentioned
freedom), and the potential Uy can be found with the y version
of Eq. (6) using Ty(Ey) = kTx(E − Ey). The only thing one
has to bear in mind is that the function Tx(Ex) cannot be chosen
completely arbitrarily, but it must be such that the resulting
�x(Ux) and �y(Uy) are nondecreasing functions, otherwise
the potentials Ux and/or Uy could not be defined.

B. Choosing Ux(x) and k, and calculating Uy( y)

Another way of designing AIs is to choose the constant k

and the potential Ux(x). We can then calculate Tx(Ex) using
Eq. (4) and find Uy using Eq. (5) together with the y version of
Eq. (6). When we put everything together, we get, for �y(Uy),

�y(Uy) = 1

π
√

2

∫ Uy

0

Ty(Ey)dEy√
Uy − Ey

= 1

π
√

2

∫ Uy

0

kTx(E − Ey)dEy√
Uy − Ey

(7)

= 1

π

∫ Uy

0

∫ x2(E−Ey )

x1(E−Ey )

× k dx√
Uy − Ey

√
E − Ey − Ux(x)

dEy. (8)

To proceed with the calculation, we have to change the
integration variable in the inner integral from x to Ux . This
has to be done separately for the two branches x1(Ux) and
x2(Ux). For this purpose, we write in general the integral∫ x2(E−Ey )

x1(E−Ey )
dx =

∫ 0

x1(E−Ey )
dx +

∫ x2(E−Ey )

0
dx (9)

=
∫ 0

E−Ey

dx1

dUx

dUx +
∫ E−Ey

0

dx2

dUx

dUx

=
∫ E−Ey

0

d�x

dUx

dUx. (10)

Using this in Eq. (8), we get

�y(Uy) = k

π

∫ Uy

0
dEy

×
∫ E−Ey

0

d�x

dUx

dUx√
E − Ey − Ux

√
Uy − Ey

.

(11)

The calculation of the above double integral is shown in the
Appendix. The result is

�y(Uy) = 2k

π

∫ E

0

d�x(Ux)

dUx

ln

(√
Uy + √

E − Ux√|E − Ux − Uy |

)
dUx

= 2k

π

∫ x2(E)

x1(E)
ln

(√
Uy + √

E − Ux(x)√|E − Ux(x) − Uy |

)
dx. (12)

Here, we have written the result in two equivalent forms
expressed as an integral over Ux or x, respectively.

From the �y(Uy) calculated with the help of Eq. (12) we
can then find an infinite number of potentials Uy(y) employing
the freedom discussed below Eq. (6). If we require that Uy is
symmetric, then the solution is unique.

Summing up, our method works by generating pairs of
potentials Ux(x),Uy(y) which yield independent motion of
the particle in the x and y directions. No matter how the
energy is distributed between the two degrees of freedom, the
ratio of time periods corresponding to motion in these two
directions is rational. This yields periodic motion and hence
closed trajectories. We can then design the refractive index
[Eq. (1)] that will yield closed ray trajectories. In this way we
obtain a plethora of 2D absolute instruments without rotational
symmetry.

III. EXAMPLES

We will illustrate our method on several examples.

A. Lissajous lens

If we choose Tx(Ex) = T = const and require both poten-
tials Ux,Uy to be symmetric, we get from Eq. (6) �x(Ux) =
T

√
2Ux/π , �y(Uy) = kT

√
2Uy/π , and consequently

Ux(x) = 1

2

(
2π

T

)2

x2, Uy(y) = 1

2

(
2π

kT

)2

y2. (13)
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FIG. 1. (Color online) (a) Potential Uy(y) and (b) ray trajectories
in the refractive index profile for a multifocal Lissajous lens. The
rays corresponding to k = 1 are shown in red (confined between
the dashed lines) while those corresponding to k = 2 are shown
in blue (extending beyond the dashed lines). The boundaries y =
±T

√
E/2π are shown by the dashed lines.

This way the potentials in both directions are harmonic as
expected, and we get the 2D Lissajous lens [5].

B. Multifocal Lissajous lens

We again choose Tx(Ex) = T = const and require both
potentials Ux,Uy to be symmetric. However, now we no longer
set k to be constant throughout the full range of Ex , but we
instead put

k =
{

2 for Ex � E/2,

1 for Ex > E/2.
(14)

The potential Ux is again given by Eq. (13). For |y| �
T

√
E/(2π ), the potential Uy is given by Eq. (13) with

k = 1; for |y| > T
√

E/(2π ), it can be found by inverting
the relation �y(Uy) = T (

√
Uy + √

Uy − E/2)/(π
√

2). The
resulting potential Uy and the trajectories are shown in Fig. 1.
As we see, there are two classes of trajectories. For the first

class in which Ex � E/2, the particle motion is confined to
the region |y| � T

√
E/(2π ) with the 2D Hooke potential; the

trajectories are therefore concentric ellipses. For the second
class with Ex > E/2, the particle gets outside this region, the
trajectories are still closed, but now it takes two oscillations
in the x direction per one oscillation in the y direction. In the
optical case, we obtain a multifocal lens in a similar way as in
Refs. [8].

C. Infinite well in the x direction

Let us choose Ux(x) as a potential of an infinite square well
of width a:

Ux(x) =
{

0 if |x| � a/2,

→ ∞ otherwise. (15)

This in the optical case corresponds to a pair of mirrors placed
along the straight lines x = ±a/2. Substituting Ux(x) above

k 0.5

a b

k 1

c d

FIG. 2. (Color online) Ray trajectories in the infinite potential x

well corresponding to the refractive index profile in (18) for two
values of k.

into Eq. (12) gives

�y(Uy) = 2k

π

∫ a/2

−a/2
ln

[√
Uy + √

E√
E − Uy

]
dx

= 2ka

π
ln

[√
Uy + √

E√
E − Uy

]
. (16)

If we require a symmetric Uy and invert Eq. (16), we get

Uy = E

[
1 − 1

cosh2 πy

ka

]
. (17)

The corresponding refractive index profile is

n =
√

2E

cosh πy

ka

(18)

in the region −a/2 < x < a/2, combined with the mirrors at
x = ±a/2. This is the well-known profile of the Mikaelian’s
self-focusing lens [9]. The ray trajectories in this index profile
are plotted in Fig. 2 for two values of k.

D. Optical conformal mapping leading to radially symmetric
absolute instruments

It is obvious from the construction of the lens in the previous
example as well as from Fig. 2 that if the vertical mirrors were
absent and the potential Ux(x) = 0 were extended periodically
on either side, that rays would form curves that would be
periodic in x. The coordinate system and motion would then be
infinite and open, respectively. We can, however, identify the
lines x = −a/2 and x = a/2 with one another, to effectively
wrap the xy plane into a cylinder. We will further assume that
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a = 2π and employ optical conformal mapping [10,11] using
the exponential function ey+ix = reiϕ from the original plane
(cylinder) xy (now to be called virtual space) to a new plane
with polar coordinates r,ϕ (to be called physical space). This
transforms the refractive index profile (18) of virtual space into
a new profile in physical space

n =
√

2E

r(r1/2k + r−1/2k)
(19)

that depends only on the radial coordinate. Equation (19)
describes the generalized Maxwell fish-eye lens [2,12] and in
the particular case of k = 1/2 it corresponds to the Maxwell
fish-eye profile [3].

Moreover, if in Sec. III C we relax the requirement of
symmetry of the potential Uy , the above-described optical
conformal mapping method would generate a much broader
class of AIs. In particular, one can show that the freedom
discussed below Eq. (6) would give the 2D versions of
all the absolute instruments obtained by the very general
method described in Ref. [2]. This way, by adjusting k and
y1(Uy) in a suitable way, one can obtain the Luneburg lens,
Eaton lens, Miñano lens, and all other lenses with radial
symmetry.

E. Lens with an angular dependence of refractive index

In the last example we will extend the ideas from the
previous section. To do so, we will again identify the lines
x = −a/2 and x = a/2, transforming the plane xy into a
cylinder, but this time we will no longer assume that the
potential Ux is constant, but instead we take it as the harmonic
potential

Ux(x) = 1

2

(
2π

T

)2

x2. (20)

Now there will be two types of trajectories. Particles with
energies Ex less than the maximum Ux(a/2) will be confined
by a local potential well and will follow Lissajous-like
trajectories with the choice of an appropriate accompanying
Uy . Particles with energies Ex greater than the maximum
Ux(a/2) will not be confined by the potential well in the x

direction; they will reach the point x = ±a/2 and go around
the cylinder. We see that, owing to the cylindrical topology of
the configuration space, the motion even of these particles is
periodic. We can then calculate Uy with the help of Eq. (12)
to get

�y(Uy) = 4

πk

∫ a/2

0
ln

⎛
⎝√

Uy +
√

E − 1
2

(
2π
T

)2
x2√

E − Uy − 1
2

(
2π
T

)2
x2

⎞
⎠dx. (21)

Then, again by conformally mapping the corresponding
Cartesian refractive index profile into polar coordinates of
physical space, ey+ix = reiϕ , we obtain an absolute optical
instrument lens with two classes of closed rays: The rays in
one class orbit the origin, and the rays in the second class do
not. Ray trajectories corresponding to the symmetric choice of
Uy(y) are shown in Fig. 3 for k = 1 and E = π2.

x

y

a b

FIG. 3. (Color online) (a) Ray trajectories in the refractive index
profile corresponding to the potential described in Sec. III E with
periodicity in the y direction between the horizontal lines, and (b)
a lens formed by a conformal map where y is mapped to the polar
coordinate. The dashed lines in both figures are spatially equivalent
in the conformal map, and the two classes of rays described in the
text are indicated by different colors (shades of gray).

IV. 3D ABSOLUTE INSTRUMENTS

Let us now extend our method to three dimensions.
Consider a Lagrangian that separates in Cartesian coordinates
x,y,z. Similarly as in 2D, each spatial direction will have
its energy conserved and all of these energies sum to the
total energy E = Ex + Ey + Ez. Now to get an absolute
instrument, we have to keep the ratios of the three periods
of motion Tx , Ty , and Tz rational for any allowed combination
of Ex , Ey , and Ez. Imagine for a moment that we keep Ez fixed
and vary Ex and Ey only. As a consequence, Tz remains fixed,
and therefore also Tx and Ty must be fixed to keep the ratios
Tx/Tz and Ty/Tz rational. Therefore, the potentials Ux and Uy

must be such that their oscillation periods do not depend on the
energy, and by the same argument this holds also for Uz(z). An
obvious case when this is satisfied is that the potentials Ux , Uy ,
and Uz are harmonic, so the total potential U = Ux + Uy + Uz

corresponds to a (generally anisotropic) harmonic oscillator in
three dimensions. In the optical case, this corresponds to the
Lissajous lens [5]. However, there is still the freedom discussed
below Eq. (6), so for each potential Ux , Uy , and Uz there are
infinitely many options.

For example, we can choose Tx(Ex) = T = const,
Ty(Ey) = k1T , and Tz(Ez) = k2T , and then require that poten-
tials Ux and Uz be symmetric, but allow Uy to be asymmetric
in a way that preserves the required properties of the potential.
We get, from Eq. (6), �x(Ux) = 2T

√
Ux/(π

√
2), �y(Uy) =

2k1T
√

Uy/(π
√

2), and �z(Uz) = 2k2T
√

Uz/(π
√

2), and
with the freedom discussed we can choose the following
potential where α is a real number (0 < α < 2):

Ux(x) = 1

2

(
2π

T

)2

x2, Uz(z) = 1

2

(
2π

k2T

)2

z2,

(22)

Uy(y) =
{

1
2

(
2π

αk1T

)2
y2 if y � 0,

1
2

(
2π

(α−2)k1T

)2
y2 otherwise.

This particular function Uy(y) was chosen so that the
inversion of �y(Uy) would be analytic and compact, but
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FIG. 4. (Color online) Ray trajectories in the three-dimensional
potential in Eq. (22) for two values of α. The solid and dotted red
curves respectively show where the indices of refraction are unity and
zero, on the xy plane in each figure. When α = 1, the ray trajectories
are Lissajous curves.

an infinite number of other functions would also work. Ray
trajectories for two choices of α are shown in Fig. 4, with
k1 = 2, k2 = 1, T = 2π , and E = 1.

Making use of the asymmetry thus gives a plethora of
different 3D absolute instruments. We have to say, however,
that compared to the 2D case, in 3D we do not have the freedom
of choosing the periods as functions of energy that has been
employed in Sec. II A, and the periods for the motion in each
direction must be constant. Therefore, the set of asymmetric
absolute instruments in 3D is much less rich compared to the
2D case.

V. CONCLUSION

In conclusion, we have presented a method for constructing
the refractive indices for absolute optical instruments without
spherical symmetry. This method allows construction of
lenses where the Lagrangian of the corresponding mechanical
problem is separable in the Cartesian coordinate system. For
2D lenses, the method allows a huge design space and greatly
encompasses the known number of AIs. In 3D, our method
still gives an uncountable number of absolute instruments;
however, their set is much more limited than in the 2D case.

In this paper we have examined only cases where the
Lagrangian is separable in the Cartesian coordinate system.
We have not examined the cases of separation in other coor-
dinate systems. This could give other, still unknown, absolute
instruments, which is a subject of further investigation.

ACKNOWLEDGMENTS

T.T. acknowledges support of the Grant No. P201/12/G028
of the Czech Science Foundation, and of the QUEST program

E
U

EyE

E-Uy

yU

Region 1

Region 2

x

FIG. 5. (Color online) Integration regions for the transformation
of integrals in Eq. (A1).

grant of the Engineering and Physical Sciences Research
Council. H.L.D. acknowledges Grant No. NRF-CRP 4-2008-
06 from the National Research Foundation–Prime Minister’s
Office, Singapore.

APPENDIX

The double integral in Eq. (11) corresponds to the inte-
gration region in the plane (Ey,Ux) consisting of two parts,
regions 1 and 2, shown in Fig. 5. To evaluate it, we interchange
the order of integration in each region, changing the limits
appropriately:∫ Uy

0
dEy

∫ E−Ey

0
dUx =

∫ E−Uy

0
dUx

∫ Uy

0
dEy

+
∫ E

E−Uy

dUx

∫ E−Ux

0
dEy. (A1)

Then Eq. (11) becomes

�y(Uy) = k

π

∫ E−Uy

0

d�x

dUx

I1(Ux,Uy) dUx

+ k

π

∫ E

E−Uy

d�x

dUx

I2(Ux,Uy) dUx, (A2)

where we have denoted the integrals

I1(Ux,Uy) =
∫ Uy

0

dEy√
E − Ey − Ux

√
Uy − Ey

, (A3)

I2(Ux,Uy) =
∫ E−Ux

0

dEy√
E − Ey − Ux

√
Uy − Ey

. (A4)

These integrals can be readily evaluated using the indefinite
integral ∫

dEy√
E − Ey − Ux

√
Uy − Ey

(A5)

= −2 ln[
√

E − Ey − Ux + √
Uy − Ey], (A6)

which yields

I1 = 2 ln

√
Uy + √

E − Ux√
E − Ux − Uy

, (A7)

I2 = 2 ln

√
Uy + √

E − Ux√
Ux + Uy − E

. (A8)
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Taking into account that in each respective region (region 1
for I1 and region 2 for I2) the expression in the square root in
the denominator is non-negative, we can replace these terms

in both expressions simply by |E − Ux − Uy |. Substituting
then Eqs. (A7) and (A8) into Eq. (A2), we finally get
Eq. (12).
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