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Origin of quantum noise and decoherence in distributed amplifiers
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The use of distributed amplifiers may have some potential advantages for the transmission of quantum
information through optical fibers. In addition to the quantum noise introduced by the amplifiers, entanglement
between atoms in the amplifying media and the optical field corresponds to which-path information that can
further reduce the coherence. Here we analyze the effects of decoherence in a phase-insensitive distributed
amplifier by using perturbation theory to calculate the state of the entire system including the atomic media.
For an initial coherent state, tracing over the atomic states allows the reduced density matrix of the field to
be expressed as a mixture of squeezed states with a reduced spread in photon number and an increased phase
uncertainty. The amplifier noise and decoherence can be interpreted as being due to entanglement with the
environment rather than the amplification of vacuum fluctuation noise.
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I. INTRODUCTION

The transmission of quantum information over large dis-
tances in optical fibers is limited by the effects of loss and
decoherence. It has previously been suggested that the use
of distributed amplifiers may have some potential benefits in
reducing the rate of decoherence [1–5]. Roughly speaking,
noise that is introduced by amplification in one part of the fiber
will be attenuated by loss in subsequent parts of the fiber. In
addition, the total power dissipated in the amplifiers is less than
it would be for a single amplifier placed at the beginning of the
system, for example, which reduces the amount of which-path
information left in the environment. Here we analyze the noise
and decoherence produced by a distributed amplifier system
including the effects of entanglement with the environment.

The quantum noise produced by an optical amplifier has
been investigated since the earliest days of quantum optics
[6–11]. Most of those calculations were based on the intro-
duction of a noise operator as required by unitarity [4,6,8] or
on the master equation and related techniques [2,10,11]. For a
linear amplifier, this results in a quantum noise that is added
to the signal, and calculations of that kind characterize the
statistical properties of the added noise.

In addition to the quantum noise in the signal, decoherence
can also occur as a result of entanglement between the
amplifying medium and the optical field. This can be viewed
as which-path information that can partially or completely
distinguish between the two components of a Schrödinger cat
state, for example. Thus it is necessary to explicitly include the
entanglement with the environment, and the results in general
are not equivalent to an additive noise. Earlier papers on the
effects of amplification on Schrödinger cat states [12–17] did
not consider the important case of a distributed amplifier.

We consider a distributed phase-insensitive amplifier sys-
tem in the limit in which the average intensity of the signal is
never allowed to increase or decrease by a significant amount.
Instead, a small amount of amplification is assumed to alternate
with a small amount of loss in order to maintain a nearly
constant intensity throughout the length of the optical fiber or
other transmission channel. This allows the use of perturbation
theory to calculate the quantum state of the entire system,
including the environment (atoms in the loss and amplifying
media) as well as the electromagnetic field.

We initially consider the propagation of a coherent state
|α〉 through such a system and later generalize the approach
to superposition states as well. By tracing over the state of the
atoms, the reduced density matrix of the field is shown to be
equivalent to a mixture of squeezed coherent states |α̃〉, each of
which has a reduced spread in photon number and an increased
phase uncertainty. The nature of the mixed state also increases
the overall uncertainty in the photon number, so that the system
is no longer in a minimum uncertainty state. These results
suggest that amplifier noise and decoherence can both be
interpreted as being due to entanglement with the environment
rather than the amplification of vacuum fluctuations.

The remainder of the paper begins in Sec. II with a simple
model for a phase-insensitive amplifier based on a series
of interactions with individual atoms. Perturbation theory is
used in Sec. III to calculate the state of the total system
and to determine the probability distributions for the photon
number and the number of atoms that have made a transition
to a different state. The reduced density matrix of the field
is calculated in Sec. IV by tracing over all of the atomic
states. Section V shows that the reduced density matrix
can be written in an equivalent but more useful form as
a mixture of squeezed coherent states |α̃〉. Section VI uses
the coordinate representation of the field to calculate the
probability distribution of the phase of the field as measured
using homodyne techniques. Section VII applies these results
to a superposition of coherent states (Schrödinger cat) while a
Summary and Conclusions are presented in Sec. VIII.

II. SIMPLE MODEL OF A PHASE-INSENSITIVE
DISTRIBUTED AMPLIFIER

In a distributed amplifier, the loss in an optical fiber or other
transmission line is compensated by inserting amplifiers into
the optical path at frequent intervals as illustrated in Fig. 1(a).
We will consider the limiting case in which the number
NS of amplifier sections is sufficiently large that the loss is
compensated nearly continuously. This prevents the intensity
of the signal from varying significantly from its initial value.

In the limit as NS → ∞, the mean number of photons lost
in a short section of fiber and the mean number of photons
regenerated by a single amplifier are both much less than 1. In
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FIG. 1. (a) A phase-insensitive distributed amplifier system with
alternating sections of loss and amplification. This becomes a
quasicontinuous process in the limit of a large number NS of sections
with small loss and amplification. (b) As NS goes to infinity, this is
equivalent to a weak interaction with a single atom in its ground state
that produces a small amount of loss, followed by an interaction
with a single atom in its excited state (inverted population) to
give the corresponding amplification or gain. Repeating this process
many times gives a simple model for a continuous phase-insensitive
distributed amplifier system.

that case the system is equivalent to an interaction with a single
two-level atom in each successive section of the amplifier or
fiber as illustrated in Fig. 1(b). The atoms associated with the
loss mechanism are assumed to be in their ground state initially
while the atoms in the amplifiers are assumed to initially be
in their excited level (a population inversion). The loss could
also be modeled by a series of beam splitters, but it is more
convenient here to represent both the amplifiers and the loss
mechanism in a similar way.

This model of a distributed phase-insensitive amplifier is
equivalent to having a continuous distribution of amplifier
atoms throughout the loss medium provided that the atoms
have a negligible coherence time. The assumption that the
optical signal only interacts once with any given atom avoids
any coherent atomic effects in which entanglement (which-
path information) is subsequently reduced by Rabi oscillations,
for example. As a result, the model considered here provides
a conservative estimate of the amount of coherence left in the
optical signal.

We will first consider the effects of a continuously dis-
tributed amplifier of this kind on an quasimonochromatic
incident coherent state |α〉, which is defined by [18]

|α〉 = e−α∗α/2
∞∑

n=0

αn

√
n!

|n〉, (1)

where |n〉 is a state containing n photons. In the limit of large
|α|, Stirling’s approximation can be used to rewrite Eq. (1) in
the form [19]

|α〉 = 1

(2πn0)1/4

∞∑
n=0

einφe−(n−n0)2/2σn
2 |n〉 ≡

∞∑
n=0

cn|n〉. (2)

Here the phase φ is defined by α = |α|eiφ , n0 = α∗α is
the mean number of photons, and σn = √

2n0 is the width
of the photon-number probability amplitude distribution.
(The standard deviation of the photon-number probability
distribution is a factor of

√
2 smaller.) This corresponds to

a Gaussian distribution for the photon number as illustrated in
Fig. 2, where the constant cn is defined by Eq. (2).

We will denote the total number of loss atoms in Fig. 1
by NT , which is also equal to the total number of amplifier

FIG. 2. Probability distribution P (n) for the number n of photons
in a coherent state |α〉. The mean photon number is n0 = |α|2, while n1

and n2 are two other typical values whose effects on the environment
are different, as illustrated in Fig. 3. (Arbitrary units.)

atoms. The state |ψ0〉 of the system before any interaction is
then given by

|ψ0〉 = |α〉
NT∏

i,j=1

|GLi〉|EAj 〉 =
∞∑

n=0

cn|n〉
NT∏

i,j=1

|GLi〉|EAj 〉. (3)

Here |GLi〉 represents the ground state of loss atom i while
|EAj 〉 represents the excited state of amplifier atom j .

The interaction Hamiltonian Ĥ ′ of the system can be chosen
as usual to have the form

Ĥ ′ = iε
∑

i

gi(t)(σ̂
+
i â + σ̂−

i â†)

+ iε
∑

j

gj (t)(σ̂+
j â + σ̂−

j â†). (4)

Here ε 	 1 is a constant related to the atomic matrix elements,
the operators σ̂+

i and σ̂−
i raise or lower the state of atom

i, while â† and â create and annihilate a photon. The time-
dependent factors of gi(t) and gj (t) represent the fact that
the various atoms are sequentially coupled to the field. The
arbitrary phases of the atomic eigenstates have been chosen in
such a way that ε is a real number.

III. PERTURBATION THEORY

Because the individual interactions are weak, perturbation
theory can be used to calculate the state of the system |ψ1〉
after the coherent state has passed through the first absorbing
atom. If we assume that all of the atoms are on resonance with
the optical field and that the interaction occurs [gi=1(t) = 1]
over a time interval of �t , then

|ψ1〉 =
∞∑

n=0

(
1 − ε2n�t2

�2

)
cn|n〉

NT∏
i,j

|GLi〉|EAj 〉

+
∞∑

n=1

(
εn1/2�t

�

)
cn|n − 1〉|EL1〉

NT∏
i>1,j

|GLi〉|EAj 〉.

(5)
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FIG. 3. Effects of the random-walk process produced by the
absorption and emission of photons. (a) Probability distribution
Pp(n′; n) for the final number of photons, where the solid line is the
distribution resulting from n = n1 initial photons while the dashed
line is the distribution resulting from n = n2 initial photons. (b) The
probability distribution Pl(NL; n) for the final number NL of loss
atoms that were transferred to their excited state, where the solid line
corresponds once again to n = n1 initial photons while the dashed
line corresponds to n = n2 initial photons. (c) The corresponding
probability distribution Pa(NA; n) for the final number NA of amplifier
atoms that were transferred to their ground state. The point is that
different initial photon-number states can lead to nearly orthogonal
states of the environment. (Arbitrary units.)

It can be seen that there is a probability Pn = ε2n�t2/�
2 that

the number state component |n〉 will be reduced to |n − 1〉 by
the absorption of a photon.

The state of the system after the subsequent interaction
with the first amplifier atom can be determined in the same
way. This gives a probability P ′

n = ε2(n + 1)�t2/�
2 that the

number state component |n〉 will be increased to |n + 1〉 by
the emission of a photon, with P ′

n

.= Pn in the limit of large n0

since
√

n + 1
.= √

n in the relevant matrix elements.
Since there is a probability Pn of increasing or decreasing

the photon number at each step in the process, the photon-
number distribution will undergo an unbiased random walk
as illustrated in Fig. 3(a). A term in the initial coherent state
that initially had exactly n photons will now have a probability
distribution Pp(n′; n) that it will contain n′ photons at the end of
the process. From the central limit theorem [20],Pp(n′; n) will
approach a Gaussian distribution in the limit of a large number
of absorption and emission events as illustrated schematically
in Fig. 3(a).

The probability distributions for the number of atoms that
have made a transition to a different state at the end of the
process will also be of interest. The total number of loss atoms
that have made a transition to their excited state at the end
of the transmission process will be denoted by NL, while
the total number of amplifier atoms that made a transition
to their ground state will be denoted by NA. The probability
distribution for NL will be denoted by Pl(NL; n), which is
a function of the initial number n of photons in the field.
Similarly, Pa(NA; n) will denote the probability distribution
for NA given n photons initially in the field. These distributions
will also become Gaussian distributions in the limit of a large
number of emission and absorption events as illustrated in
Figs. 3(b) and 3(c).

NL is described by a random process in which there is a
small probability Pn that NL will increase by 1 at each step.
This produces a Poisson probability distribution for Pl(NL; n)
that is given by [20]

Pl(NL; n) = e−μ(n)μNL

NL!
. (6)

Here the mean value of NL is μ(n) = NT Pn and the standard
deviation is σL = √

μ(n). From the central limit theorem [20]
or Stirling’s approximation [19], Eq. (6) reduces in the limit
of large NL to a normal distribution given by

Pl(NL; n) → f (NL; n) = cLe−(NL−μ(n))2/2σ 2
L, (7)

where cL = 1/(
√

2πσL) is a normalizing constant. For large
values of the initial mean photon number n0, σL and cL are
approximately independent of the value of n.

The probability distribution Pa(NA; n) for NA also reduces
to f (NA; n) as given by Eq. (7) in the limit of large n0 where√

n + 1
.= √

n. From conservation of energy, the total change
�n in the number of photons is given by

�n = NA − NL. (8)

The atomic distributions f (NL; n) and f (NA; n) can be
combined with Eq. (6) to show that the probability distribution
fp(�n) for �n is given by

fp(�n) = 1√
2πσ�n

e−�n2/2σ�n
2
, (9)

where σ�n = √
2σL.

It can be seen from Eqs. (4) and (5) that all of the possible
terms in the final quantum state of the system will be generated
with the same phase. Their probability amplitudes are given by
the square root of the corresponding probabilities. As a result,
the final state |ψ ′〉 of the system after the interaction with NT

loss and amplifier atoms can be written in the form
∣∣ψ ′〉 = ∑

n cn

∑
NA

∑
NL

f 1/2(NL; n)f 1/2(NA; n)
×|n + �n〉|NL〉|NA〉. (10)

Here �n = NA − NL from Eq. (8) while |NL〉 and |NA〉 denote
states of the environment in which NL loss atoms are left in
their excited states and NL amplifier atoms are left in their
ground state.
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IV. DENSITY MATRIX

The width σL of the distributions f (NL; n) and f (NA; n) only increases as
√

μ(n), which means that their relative width
σL/μ(n) will decrease in the limit of a large number of interactions. As a result, the distributions associated with two different
photon-number components |n1〉 and |n2〉 in the initial coherent state will have negligible overlap if n1 and n2 differ by a
sufficiently large amount, as illustrated in Figs. 3(b) and 3(c). This effect will eliminate any coherence between terms with
sufficiently large differences in initial photon number, which produces a mixed state with an increased phase uncertainty as we
will now show.

Equation (10) is a pure state with a density operator ρ̂ given by

ρ̂ =
∑
n,n′

cncn′ ∗
∑

NA,NA
′

∑
NL,NL

′
f 1/2(NL; n)f 1/2(NA; n)f 1/2(NL′ ; n′)f 1/2(NA′ ; n′)|n + �n〉|NL〉|NA〉〈NA

′|〈NL
′|〈n′ + �n′|. (11)

This can be rewritten as a sum over �n and �n′ using the fact that NA = NL + �n and NA′ = NL′ + �n′ to obtain

ρ̂ =
∑
n,n′

cncn′ ∗
∑

NL,NL
′

∑
�n,�n′

f 1/2(NL; n)f 1/2(NL + �n; n)f 1/2(NL′ ; n′)f 1/2(NL′ + �n′; n′)|n + �n〉|NL〉|NL + �n〉

× 〈NL′ + �n′|〈NL′ |〈n′ + �n′|. (12)

The reduced density operator ρ̂R for the field alone can be found by taking the partial trace of Eq. (12) over the state of the
environment, which gives

ρ̂R =
∑
n,n′

∑
�n

∑
NL

cncn′ ∗f 1/2(NL; n)f 1/2(NL; n′)f 1/2(NL + �n; n)f 1/2(NL + �n; n′)|n + �n〉〈n′ + �n|. (13)

Here we have made use of the fact that two states of the environment will be orthogonal unless NL
′ = NL and NA

′ = NA. This
is equivalent to requiring that NL

′ = NL and �n′ = �n.
It will be convenient to define the environmental overlap I (n,n′; �n) as

I (n,n′; �n) =
∑
NL

f 1/2(NL,n)f 1/2(NL,n′)f 1/2(NL + �n,n)f 1/2(NL + �n,n′). (14)

The reduced density operator can then be rewritten as

ρ̂R =
∑
n,n′

cncn′ ∗
∑
�n

I (n,n′; �n)|n + �n〉〈n′ + �n|. (15)

The value of I (n,n′; �n) represents the effects of the limited overlap of the atomic probability distributions from two different
initial photon numbers, as illustrated in Figs. 3(b) and 3(c) for n = n1 and n′ = n2. This limits the coherence between photon-
number states |n〉 and |n′〉 to relatively close values of n and n′, as mentioned above.

Inserting the value of f (NL; n) from Eq. (7) into Eq. (15) and converting the sum to an integral gives

I (n,n′; �n) = c2
L

∫ ∞

−∞
dNLe−[NL−μ(n)]2/4σ 2

Le−[NL−μ(n′)]2
/4σ 2

Le−[NL+�n−μ(n)]2/4σ 2
Le−[NL+�n−μ(n′)]2

/4σL
2
. (16)

From Eq. (5), μ(n) is given by

μ(n) = NT Pn = NT ε2n�t2/�
2. (17)

This can be rewritten as

μ(n) = ηn, (18)

where we have defined the constant η = NT ε2�t2/�
2.

It will be assumed that the intensity in the absence of any amplification decreases as I (z) = I0 exp(−γ z), where γ is the
absorption coefficient and z is the distance traveled. Over a short length of fiber, the average number of absorbing atoms that
make a transition to the excited state is then equal to N̄L = nγ�L. With the intensity held constant instead by the distributed
amplifiers over an arbitrary length L, we will have N̄L = nγL = μ(n) = ηn from the definition in Eq. (18). It follows that
η = γL and η is the total number of photons absorbed divided by the number of photons present initially. Equivalently, η is the
number of absorption lengths in the transmission line.

Equatoin (16) can now be rewritten as

I (n,n′; �n) = cL
2
∫ ∞

−∞
dNLe−(NL−ηn)2/4σ 2

Le−(NL−ηn′)2
/4σ 2

Le−(NL+�n−ηn)2/4σ 2
Le−(NL+�n−ηn′)2

/4σ 2
L . (19)

This integral can be evaluated to give

I (n,n′; �n) = √
πσLc2

Le−(n−n′)2
η2/4σ 2

Le−�n2/4σ 2
L . (20)
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Substituting this expression into Eq. (15) for the reduced density operator gives

ρ̂R = √
πσLc2

L

∑
�n

e−�n2/4σ 2
L

∑
n,n′

cncn′ ∗e−(n−n′)2
η2/4σ 2

L |n + �n〉〈n′ + �n|, (21)

where the coefficients cn are defined in Eq. (2) as

cn=
1

(2πn0)1/4 einφe−(n−n0)2/2σn
2
. (22)

Here n0 is the mean photon number in the original coherent state and σn = √
2n0.

V. SQUEEZED COHERENT STATES

The reduced density operator of Eq. (21) could be used
directly to calculate measurable parameters such as 〈x〉 or 〈x2〉
where x is one of the field quadratures. More physical insight
can be obtained, however, by introducing a state |α̃(n̄,σ̃n)〉
defined by

|α̃(n̄,σ̃n)〉 = 1

π1/4σ̃
1/2
n

∞∑
n=0

einφe−(n−n̄)2/2σ̃ 2
n |n〉. (23)

Equation (23) differs from the corresponding expression for a
coherent state in Eq. (2) by the replacement of σn = √

2n0 by
a different standard deviation σ̃n � σn. Since photon number
and phase are conjugate variables, these states have a larger
phase uncertainty than that of a conventional coherent state.
The |α̃(n̄,σ̃n)〉 correspond to number-squeezed coherent states
[21] as will be discussed in more detail in the next section.

We will now show that the reduced density operator of
Eq. (21) can be rewritten in the equivalent form

ρ̂R = 1

2
√

πσ̃L

∑
�n

e−�n2/4σ̃ 2
L |α̃(n0 + �n,σ̃n)〉

× 〈α̃(n0 + �n,σ̃n)|. (24)

Here the constants σ̃n and σ̃L must be chosen in such a way
that they satisfy the conditions

4σ̃ 2
L + σ̃ 2

n = 4σ 2
L + σ 2

n ,
σ̃ 2

L

σ̃ 2
n

= 4σ 4
L + 4η2σ 2

Lσ 2
n + η2σ 4

n

4σ 2
Lσ 2

n

.

(25)
The reduced density operator of Eq. (24) corresponds to
a mixture of squeezed coherent states. Each term in the
mixture has a decreased uncertainty in photon number, but the
incoherent sum over �n increases the overall photon-number
uncertainty. Thus the uncertainties in both the phase and
photon number are increased and the field is no longer in a
minimum uncertainty state.

Equations (21) and (24) can be shown to be equivalent by
inserting the definition of |α̃(n̄,σ̃ )〉 into Eq. (24) to obtain

ρ̂R = 1

2πσ̃Lσ̃n

∑
�n

e−�n2/4σ̃ 2
L

∞∑
n,n′

ei(n−n′)φ

× e−(n−n0)2/2σ̃ 2
n e−(n′−n0)2

/2σ̃ 2
n |n + �n〉〈n′ + �n|. (26)

By converting the sum over �n to an integral in Eqs. (21)
and (26) and comparing their matrix elements in the photon-
number basis, it can be shown that these two forms of ρ̂R are
equivalent provided that Eq. (25) is satisfied.

We will primarily be interested in the limit of large distances
where η � 1. In that limit the solution to Eq. (25) reduces to

σ̃n = 1√
η
σ ′

n, σ̃L = σL = √
ησ ′

n. (27)

Here we have defined σ ′
n = √

n0, which is the width of
the original photon-number probability distribution. In the
opposite limit of no loss (η → 0), σ̃L = 0 and σ̃n = σn so
that ρ̂R in Eq. (24) corresponds to a pure coherent state.

It can be seen from Eqs. (24) and (27) that the reduced
density matrix is a mixture of squeezed states, each of which
has a photon-number uncertainty that is reduced by a factor of
1/

√
2η compared to that of a true coherent state. As a result,

the properties of the system do not depend exponentially on
the transmission length as is often the case with other kinds
of systems.

Caves et al. [22] recently used a different approach to show
that all phase-preserving linear amplifiers are equivalent to a
parametric amplifier in which the primary mode undergoes a
two-mode squeezing operation. They did not, however, write
the density operator as a mixture of squeezed states as was
done here in Eq. (24) and their approach was focused on
characterizing the statistical distribution of the added noise
rather than the effects of entanglement.

VI. PHASE UNCERTAINTY AND THE
COORDINATE REPRESENTATION

Photon number and phase are conjugate variables that
satisfy the uncertainty relation �n�φ � π/2. As a result, one
would expect from Eq. (27) that the squeezed coherent states
described above would have a phase uncertainty that is a factor
of

√
2η larger than that of a true coherent state in the limit of

large loss. This will now be shown to be the case using the
coordinate representation for a single-mode field.

A single mode of the second-quantized field is mathemat-
ically equivalent to a harmonic oscillator. As a result, we can
consider a coordinate representation where the wave function
ψ(q) is defined [23] by

ψ(q) ≡ 〈q | α̃〉. (28)

Here q is a generalized coordinate that is proportional to one
of the quadratures of the field. For a true coherent state, the
generating functions of the Hermite polynomials can be used
[24,25] to show that

ψα(x) =
(

1

π

)1/4

exp

{
−x2

2
+ 2xα√

2
− 1

2
|α|2 − 1

2
α2

}
,

(29)
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FIG. 4. Real part (a), imaginary part (b), and squared modulus (c)
of the wave function ψ(x) for a true coherent state in the coordinate
representation. These results correspond to α0 = 10 and φ = 0.05.
(Arbitrary units.)

where the coordinate q has been replaced with the dimension-
less parameter x = √

ω/�q.
For a true coherent state, the amplitude α can be written in

the form

α = iα0e
iφ, (30)

where α0 and the phase φ0 are real numbers. For the case in
which φ 	 1, the argument of the exponential in Eq. (29) can
be expanded to first order in φ to obtain

ψ(x) = 1

π1/4
ei

√
2α0xeiα2

0φe−(x−x̄)2/2, (31)

where x̄ = −√
2α0φ. A plot of the real and imaginary parts

of ψ(x), along with its absolute value ψ∗(x)ψ(x), is shown in
Fig. 4 for the case in which α0 = 10 and φ = 0.05.

The fact that |α̃(n̄,σ̃ )〉 has the same form as a true
coherent state except for the value of σ̃n < σn suggests that the
coordinate-representation wave function ψ̃(x) for a squeezed

FIG. 5. Real part (a), imaginary part (b), and squared modulus
(c) of the wave function ψ(x) for a squeezed coherent state |α̃〉 in the
coordinate representation as calculated exactly using the definition in
Eq. (23) and the properties of the Hermite polynomials. These results
correspond to α0 = 10 and φ = 0.05 as in Fig. 4, while σ̃n = σn/2.
(Arbitrary units.)

coherent state must be given approximately by

ψ̃(x) = 1

π1/4σ̃
1/2
x

ei
√

2α0xeiα2
0φe−(x−x̄)2/2σ̃ 2

x (32)

in analogy with Eq. (31). Here α0 = √
n̄, x̄ = −√

2α0φ,
and the variance σ̃x = σn/σ̃n reflects the increased phase
uncertainty due to the reduced photon-number uncertainty.
Figure 5 shows a plot of the exact value of ψ̃(x) as calculated
using the definition in Eq. (23) combined with the Hermite
polynomial wave functions for the number states. These results
correspond to a value of σ̃n = σn/2, with the same values of α0

and φ as in Fig. 4. For comparison, the corresponding values of
ψ̃(x) calculated using the Gaussian approximation of Eq. (32)
are shown in Fig. 6. It can be seen that Eq. (32) is an excellent
approximation even for relatively small values of α0.
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FIG. 6. Real part (a), imaginary part (b), and squared modulus
(c) of the wave function ψ(x) for a squeezed coherent state |α̃〉
in the coordinate representation as calculated using the Gaussian
approximation of Eq. (32). These results correspond to the same
parameter values as in Fig. 5. (Arbitrary units.)

We will primarily be interested in homodyne phase mea-
surements of the field quadrature x under conditions in which
n0 � 1. We will assume that η has a moderate value (η ∼ 10,
for example), so that there is a large amount of loss but
σ̃L = √

ηn0 	 n0. In that case �n 	 n0 in the density matrix
of Eq. (24) and �α0 	 α0, where �α0 is the typical variation
in α0 = √

n0 + �n in the mixed state. We will restrict our
attention to sufficiently small values of the quadrature x that
�α0x 	 1. In that case all of the phase factors of exp(i

√
2α0x)

in Eq. (32) will be nearly independent of the value of �n

and all of the states |α̃(n0 + �n,σ̃n)〉 in the mixed state will
have approximately the same coordinate-representation wave
function ψ̃(x).

The probability amplitude to obtain a value of x as a result
of a homodyne measurement is just ψ̃(x). Under the conditions
described above, all of the |α̃(n0 + �n,σ̃n)〉 in the mixed state
correspond to approximately the same value of ψ̃(x) and will
give the same results for a homodyne measurement. Thus the

system can be approximately described for these purposes by
a single final state |ψF 〉 given by

|ψF 〉 = |α̃(n0,σ̃n)〉. (33)

The state |α̃(n0,σ̃n)〉 in Eq. (33) provides an approximate de-
scription of the effects of a phase-insensitive linear distributed
amplifier when x is sufficiently small as described above. It
is also useful in calculating the effects of decoherence on a
Schrödinger cat state as described in the next section. Equation
(33) clearly neglects the effects of �n that would be observed
if we made a measurement of photon number instead.

VII. SCHRÖDINGER CAT STATES

The decoherence of Schrödinger cat states has been ana-
lyzed previously using more formal methods such as the master
equation [12–17,26]. Here we will use Eq. (33) to provide an
approximate description of the results of decoherence that is
very simple and may provide some additional physical insight
into the nature of the decoherence process.

For simplicity, consider a Schrödinger cat state that is
initially given by

|ψi〉 = (|α0〉 + |eiφα0〉), (34)

where the constants φ and α0 are real and the relevant
normalizing constant has been omitted. In the coordinate
representation, the wave function of this superposition state
can be written as

ψ(x) = ψ1(x) + ψ2(x). (35)

Here ψ1(x) and ψ1(x) are given by Eq. (31) with the
appropriate choice of parameters. As illustrated in Fig. 7(a), the
probability P (0) = ψ∗(0)ψ(0) that a homodyne measurement
will give the value x = 0 will contain an interference cross
term TI (x) given by

TI (0) = 2|ψ1(0)||ψ2(0)| cos(n0φ). (36)

The cross term in Eq. (36) can produce 100% visibility
in the interference between the two superposed states in a
Schrödinger cat in the absence of any decoherence.

From Eq. (33), one might suppose that the final state |ψf 〉
of the field after it passes through the distributed amplifier
could be described approximately by

|ψf 〉 = |α̃0(n0,σ̃n)〉 + |eiφα̃0(n0,σ̃n)〉. (37)

If this were correct, it would produce an interference cross-
term given by

T̃I (0) = 2|ψ̃1(0)||ψ̃2(0)| cos(n0φ), (38)

as illustrated in Fig. 7(b).
But Eq. (37) neglects the fact that the two terms in the

Schrödinger cat state become entangled with different states
of the environment, which requires that Eq. (37) be replaced
with ∣∣ψf

〉 = |α̃0(n0,σ̃n)〉|E1〉 + ∣∣eiφα̃0(n0,σ̃n)
〉|E2〉. (39)

Here |E1〉 and |E2〉 correspond to different states of the envi-
ronment created by the passage of coherent state amplitudes
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FIG. 7. Interference between the two components in a
Schrödinger cat state. (a) In the absence of any loss or amplification,
the initial state is a superposition of two coherent states with
coordinate-representation wave functions ψ1(x) and ψ2(x), where
x is one of the field quadratures (proportional to the phase).
The probability amplitude for a specific value of x is equal to
ψ1(x) + ψ2(x), giving the possibility of 100% interference visibility.
For simplicity, the rapidly varying phase has not been shown here.
(b) After the field has passed through a distributed amplifier, the
two components in the Schrödinger cat state become entangled with
different states of the environment from Eq. (39), and the probability
amplitude for obtaining a specific value of x is no longer simply
equal to ψ1(x) + ψ2(x). This reduces the visibility of the interference
pattern in addition to what would be expected from the phase noise.
(Arbitary units.)

differing by a phase shift φ. In that case the interference cross
term becomes

T̃I (0) = 2|ψ̃1(0)||ψ̃2(0)||〈E1 | E2〉| cos(n0φ). (40)

It can be seen from Eq. (40) that the lack of overlap of the
two environmental states will reduce the interference visibility
beyond that due to the added noise.

We explicitly calculated |E1〉 and |E2〉 for a purely lossy
channel in Ref. [25] and showed that 〈E1|E2〉 was in agreement
with the requirements of unitarity. Here we can evaluate their
overlap using the fact that the inner product of any two states
must remain a constant as the system evolves. This requires that

〈α0 |eiφα0〉 = 〈α̃0(n0,σ̃n) |eiφα̃0(n0,σ̃n)〉〈E1 | E2〉. (41)

The inner products of these states can be evaluated using their
wave functions in the coordinate representation and that can
be used to solve for 〈E1 |E2〉, with the result that

〈E1 | E2〉 =
∫ ∞
−∞ ψ1

∗(x)ψ2(x)dx∫ ∞
−∞ ψ̃∗

1 (x)ψ̃2(x)dx
. (42)

Equation (42) compensates for the fact that there is an
increased overlap of the wave functions in Fig. 7 as required
by unitarity.

Equation (42) can be inserted into Eq. (40) to determine
the additional loss of interference visibility due to the “which
path” information left in the environment by the two terms
in the original superposition state. Specific examples and the
application of these results to nonlocal interferometry [25,27]
using macroscopic states will be discussed in a subsequent
paper. It may be worth noting that some of the earliest papers on
quantum noise in optical amplifiers also made use of unitarity
to justify the introduction of quantum noise operators [4,6,8].

The simple form of Eq. (37) provides a straightforward way
to analyze various nonlocal interference effects [25,27] when
using superpositions of macroscopic coherent states.

VIII. SUMMARY AND CONCLUSIONS

We have considered a simple model of a phase-insensitive
distributed amplifier in which the electromagnetic field in-
teracts with a series of atoms that can produce loss or
gain. The state of the system including the environment
(atoms) was calculated using perturbation theory. The reduced
density matrix of the field was then calculated by taking
the partial trace over the state of the environment. It was
found that the reduced density matrix was equivalent to a
mixture of number-squeezed coherent states with increased
phase uncertainty. This gives a reduced density matrix with
an increased uncertainty in photon number in addition to an
increased phase uncertainty.

These results can be interpreted as being due to entan-
glement between the field and the environment as illustrated
in Fig. 3. Two different photon-number components |n1〉
and |n2〉 in the initial coherent state will be coupled to the
atoms with different strengths because of the dependence
of the matrix elements on the number of photons. As a
result, the probability distribution Pl(NL; n) for the number
NL of atoms making a transition to their excited state will
be different for n = n1 than it is for n = n2. As the number
of absorption and emission events increases, the overlap
between these two probability distributions decreases and
the corresponding states of the environment become nearly
orthogonal for sufficiently large differences between n1 and
n2. Although the overall uncertainty in the photon number
increases due to the random-walk nature of this process, the
orthogonality of the atomic states limits any coherence to
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relatively small differences in photon number. This results
in a mixture of squeezed states |α̃(n̄,σ̃n)〉, each of which
has a reduced standard deviation in photon number given by
σ̃n = σn/

√
2η.

The quantum noise in a phase-insensitive amplifier is
often interpreted as being due to spontaneous emission noise
associated with the amplification of vacuum fluctuations.
It is interesting to note that vacuum fluctuations play no
role in the analysis presented here. That may not be too
surprising, given the fact that the probability of the field
being in the vacuum state is exponentially small for |α| �
1. In addition, we have used the fact that

√
n + 1

.= √
n

for |α| � 1, which is equivalent to neglecting spontaneous
emission compared to stimulated emission. Our analysis
suggests that the quantum noise and decoherence produced
by a phase-insensitive distributed amplifier can be interpreted
as being due to entanglement between the field and the atoms
in the environment rather than vacuum fluctuations. Although√

n + 1
.= √

n for large n, this is still a quantum process that
would not occur for a classical field since a classical field
cannot become entangled with the environment.

The entanglement with the environment and the associated
decoherence can be avoided in a phase-sensitive amplifier.
This has been discussed previously [2,3,5,8,12–14,16,28–
31] and an analysis of phase-sensitive amplifiers is beyond
the intended scope of this paper. Roughly speaking, the
entanglement with the environment could be avoided in this
model if the amplifying atoms were in a coherent superposition
of their ground and excited states with a definite relative
phase. With the correct phase of the field, the inner product

between the atomic states before and after the passage of the
field approaches unity and the amount of entanglement and
decoherence can be minimized. Similar results can be obtained
using an optical parametric amplifier.

Many previous analyses of amplifier noise were based on
the introduction of a noise operator as required by unitarity or
on the master equation and related techniques. For a linear am-
plifier, this results in a quantum noise that is added to the signal.
But in addition to the added noise, decoherence can also occur
as a result of entanglement between the amplifying medium
and the optical field. This can be viewed as which-path infor-
mation that can partially distinguish between the two compo-
nents of a Schrödinger cat state, for example [25–27]. As a
result, an analysis of the additive quantum noise alone is not
sufficient to determine the degree of decoherence of a signal.

The approach described here includes the entanglement
between the signal and the environment in a transparent way
that can be readily applied to the case of Schrödinger cat states.
Prior studies of decoherence of Schrödinger cat states [1–5] did
not include the important case of a distributed amplifier. The
results presented here can be used to analyze many systems
of potential practical importance, including the effects of a
distributed amplifier on long-range nonlocal interferometry
using superpositions of macroscopic states [25,27].
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