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Ground-state phase diagram of the quantum Rabi model
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The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-
Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance
and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require
understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy
spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders
physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a
quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes,
respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling
behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter
is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction
for all regimes of the coupling strengths.
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I. INTRODUCTION

In the past decade, it has been witnessed that the exploration
of fundamental quantum physics in light-matter coupling
systems has significantly evolved toward the (ultra)strong-
coupling regime [1–8]. For example, in 2004, the strong
coupling of a single microwave photon to a superconducting
qubit was realized experimentally by using circuit quantum
electrodynamics [1]. In 2010, this coupling rate was enhanced
to reach a considerable fraction of up to 12% of the cavity
transition frequency [3]. Even with such small fractions the
system has already entered into the so-called ultrastrong-
coupling limit [9,10]. In this situation, the well-known Jaynes-
Cummings (JC) model [11] is no longer applicable because
the JC model is valid only in the cases of near resonance
and weak coupling [12]. Indeed, the experimentally observed
anticrossing in the cavity transmission spectra [3] was due
to counterrotating terms, which are dropped in the JC model
as a rotating-wave approximation. In addition, experimental
observation of the Bloch-Siegert shift [5] also requires taking
into account the counterrotating terms in the description of the
JC model. Thus the importance of the counterrotating terms
raises the requirement to comprehend the behavior of a full
quantum Rabi model [13–15] (QRM) for all regimes of the
coupling strengths [16–19].

Remarkably, important progress in the study of the QRM
in past years is the proof of its integrability [20,21]. As a
result, its energy spectra have been exactly obtained [20,22].
However, to calculate the dynamics of the system, correlation
functions, and even other simpler physical observables, it is
not enough to know only the exact eigenvalues; the wave
functions (e.g., the exact eigenstates) are also desirable. Based
on series expansions of the eigenstates in terms of known
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basis sets, it was realized that a standard calculation with
double precision, sufficient to compute the spectrum, fails for
the eigenstates [23]. Therefore, the challenge to formulate an
exact wave function in a general case still hampers access to a
full understanding of the QRM.

In this work, by deforming the polaron and antipolaron
[24,25] we propose a variational wave-function ansatz to
extract the ground-state physics of the QRM. It is found that
this ansatz is valid with high accuracy in all regimes of the
coupling strengths. Thus a ground-state phase diagram of the
QRM is constructed. The nature of the system variation, by
increasing the coupling strength from weak to strong, becomes
transparent in the ground-state phase diagram with a quantum
state changeover from quadpolaron to bipolaron, around a
critical-like coupling scale analytically extracted. In particular,
an unexpected overweighted antipolaron is revealed in the
quadpolaron state, and a hidden scaling behavior is found in
the bipolaron state. Moreover, we propose an experimentally
accessible parameter to test these states. For perspective, we
also extend this ansatz to the multiple-mode case, which is
expected to be useful for understanding the physics of the
spin-boson model [26].

II. THE MODEL AND EFFECTIVE POTENTIAL

The QRM [13,14] describes a quantum two-level system
coupled to a single bosonic mode or quantized harmonic
oscillator, which is a paradigm for interacting quantum systems
ranging from quantum optics [27] to quantum information [28]
to condensed matter [29]. The model Hamiltonian reads

H = ωa†a + �

2
σx + gσz(a

† + a), (1)

where a† (a) is the bosonic creation (annihilation) operator
with frequency ω and σx,z is the Pauli matrix with level splitting
�. The last term describes the interaction with coupling
strength g.
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In terms of the quantum harmonic oscillator with dimen-
sionless formalism [30] a† = (x̂ − ip̂)/

√
2, a = (x̂ + ip̂)/√

2, where x̂ = x and p̂ = −i ∂
∂x

are the position and mo-
mentum operators, respectively, the model can be rewritten as

H =
∑
σz=±

(
hσz |σz〉〈σz| + �

2
|σz〉〈σ z|

)
+ E0, (2)

where σ z = −σz and + (−) labels the up ↑ (down ↓) spin
in the z direction. h± = 1

2ω(p̂2 + v±), with v± = (x̂ ± g′)2

and g′ = √
2g/ω, while E0 = − 1

2ω(g′2 + 1) is a constant
energy. Apparently, h± define two bare polarons [24,25] in
the sense that the harmonic oscillator is bound by σz due to
the coupling g′, as shown in Fig. 1(a). These two polarons
form two bare potential wells, but the existence of the level
splitting � (resulting in the tunneling between these two wells
[19]) makes the model difficult to solve analytically.

Let us begin with the wave function � satisfying the
Schrödinger equation H� = E� with the eigenenergy E.
Due to the fact that the model possesses parity symmetry,
namely, [P,H ] = 0, with P = σx(−1)a

†a , � should take the
form of � = 1√

2
(ψ+|↑〉 + ηψ−|↓〉), where ψ± = ψ(±x) will

be given below and η = 1 (−1) for positive (negative) parity.

(a) (b) (c)

(d) (e) (f)

FIG. 1. (Color) Schematic diagram for effective potentials in-
duced by the tunneling between two levels. (a) In the absence of tun-
neling, i.e., � = 0, the original harmonic oscillator v0 is coupled with
two levels denoted by ↑ and ↓ to form two polarons (associated with
v±) with the left (+, ↑) and right (−, ↓) displacement g′ = √

2g/ω.
(b) When the tunneling � is switched on, the left and right polarons
provide an effective potential for each other δv± = η �

ω

ψ∓
ψ± (η = ±

represents the parity; here we focus on the ground state with − parity),
which induces an antipolaron, as shown in (c). (c) The potential of
the left polaron deforms from v+ to v+ + δv+. The size of ↑ indicates
the weight of the polaron (blue) and antipolaron (orange) in the same
and opposite directions of the potential displacement. The situation is
symmetric for the right polaron. (d)–(f) Typical deformed potentials
in the weak-coupling (g < gc), intermediate-coupling (g ∼ gc), and
strong-coupling (g > gc) cases. There exist four tunneling channels
between ↑ and ↓ states, as shown in (e), forming a quadpolaron state.
In the strong-coupling case, the tunneling between left and right states
decays until it is vanishingly small due to the large potential barriers
between them, yielding a bipolaron state in (f).

Without loss of generality, here we consider the ground state
with negative parity. The Schrödinger equation becomes

1
2ω(p̂2 + v± + δv±)ψ± = Eψ±, (3)

where δv± = −�
ω

ψ∓
ψ±

is an additional effective potential orig-
inating from the tunneling, as shown in the bottom graph
in Fig. 1(b). The additional potential will deform the bare
potential and as a result will create a subwell in the opposite
direction of the bare potential v±, as illustrated in Fig. 1(c).
The subwell induces an antipolaron as a quantum effect. The
above analysis of the potential subwell verifies the existence of
the antipolaron from wave-function expansion [24,25]. Thus
the polaron and antipolaron constitute the basic ingredients of
the ground-state wave function.

III. DEFORMED POLARON AND ANTIPOLARON

With the concept of the polaron and antipolaron in hand,
the competition between different energy scales ω,�, and g′
involved in the QRM will inevitably lead to deformations
of the polaron and antipolaron. Physically, they can deform
predominantly in two possible ways: the position is shifted,
and the frequency is renormalized, which will introduce four
independent variational parameters, which are given below.
Explicit deformation depends on the coupling strength once
the tunneling is fixed, as shown in Figs. 1(d)–1(f) from
weak to strong couplings according to a critical-like coupling
strength gc. Thus a trial variational wave function for ψ(x)
takes the superposition of the deformed polaron ϕα and
antipolaron ϕβ ,

ψ(x) = αϕα(x) + βϕβ (x), (4)

where ϕα(x) = φ0(ξαω,x + ζαg′) and ϕβ(x) =
φ0(ξβω,x − ζβg′), with φ0(ω,x) being the ground state
of the standard harmonic oscillator with frequency ω. Here
ξi (ζi), with i = α and β, describes the renormalization for
frequency (displacement) independently for the polaron and
the antipolaron, while the coefficients of α and β denote their
weights, subject to the normalization condition 〈ψ |ψ〉 = 1.
We stress that in contrast to the direct expansion on the
basis of series without frequency renormalization [24,25], we
design our trial wave function based on the dominant physics
of deformation.

It turns out that our variational wave function is capable of
providing a reliable analysis of the QRM in the whole param-
eter regime, ranging from weak to strong couplings, as shown
for several physical quantities for the ground state, including
the energy, the mean photon number, the coupling correlation,
and the tunneling strength, in Appendix A. Obviously the
remarkable agreement between our results and the exact ones
stems from the fact that our trial wave function correctly
captures the basic physics, as illustrated by the accurate wave-
function profiles compared to the exact numerical ones for
various couplings in Fig. 2(a). The variational wave function,
with its concise physical ingredients and its accuracy, in turn
facilitates unveiling more underlying physics.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color) Mechanism for an overweighted antipolaron in
the quadpolaron state. (a) The calculated (solid lines) spin-up
ground-state wave functions, ψ+(x) = αϕα(x) + βϕβ (x), at g/gc =
0.5,1,1.25 for weak (green), intermediate (navy), and strong (red)
couplings, with ω/� = 0.1. The symbols denote the numerical exact
results. The spin-down wave function is given by −ψ+(−x) (not
shown). (b) and (c) The α and β components of ψ+(x), which cor-
respond to the polaron (blue) and antipolaron (orange), respectively,
for the intermediate g ∼ gc and weak g = 0.5gc coupling cases. (d)
The overlaps between different polarons and/or antipolarons without
the weights, Sij̄ = 〈ϕi(x)|ϕj (−x)〉 with i,j = α,β. It is clear that Sββ̄

(yellow) is greater than Sαᾱ (light magenta). (e) Schematic illustration
of the physics for the overweighted antipolaron. When decreasing
the coupling strength g′, the potential provided by the left-displaced
oscillator for the antipolaron gets reduced, so the tunneling energy
gain from large Sββ̄ in (d) overwhelms the potential cost, which favors
a larger weight of the antipolaron. (f) The overweighted antipolaron
with a larger weight than the polaron.

IV. QUADPOLARON-BIPOLARON QUANTUM
STATE CHANGEOVER

From Figs. 2(a)–2(c) one sees that when increasing the
coupling, the wave packet splits into a visible polaron and an
antipolaron (see animated plots in the Supplemental Material
[31] for more vivid evolutions of potentials and wave packets).
Before the full splitting, there are significant tunnelings in
all four channels between the polarons and antipolarons, as
schematically shown in Fig. 1(e). Thus in this sense we call
this state a quadpolaron. After the splitting, only two same-side
channels of tunneling survive, while the left-right channels are
blocked gradually by the increasing barrier, as sketched in
Fig. 1(f). This state is termed here a bipolaron. Despite the
evolution from a transition-like feature in the low-frequency
limit to a crossover behavior in finite frequencies for the
changeover between quadpolaron and bipolaron states, the
nature of the aforementioned splitting is essentially the same.
This enables us to obtain an analytic coupling scale (see

Appendix B), gc =
√

ω2 +
√
ω4 + g4

c0, which generalizes the

low-frequency-limit result [32] gc0 =√
ω�/2 and correctly

captures the quantum state changeover between the quadpo-
laron and bipolaron for the whole range of frequencies.

V. QUADPOLARON ASYMMETRY AND OVERWEIGHTED
ANTIPOLARON IN THE REGIME OF g � gc

We find that the polaron and antipolaron in the quadpolaron
state have asymmetric displacements, which leads to a subtle

(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color) Renormalization factor and weight as a function
of the coupling strength g. ζi (i = α,β) is the displacement renor-
malization, and ξi is the frequency renormalization. α and β denote
the weights of the polaron and the antipolaron, respectively, in the
variational ground-state wave function. (a) and (d) ω/� = 0.5. (b)
and (e) ω/� = 0.15. (c) and (f) ω/� = 0.005.

competition depending on the frequency ω/�. Figure 3 shows
three types of distinct behaviors of the variational parameters
in three different frequency regimes: high frequency (ω/� �
0.47), intermediate frequency(ω/� ∈ [0.07,0.47]), and low
frequency (ω/� � 0.07). The result is understandable due
to the fact that the antipolaron always has a higher potential
energy owing to its opposite direction to the displacement
of v±. Roughly speaking, at high frequency, the antipolaron
should have a lower weight than the polaron (β < α) since
the antipolaron is suppressed by the high potential. At low
frequency, the polaron benefits from both potential and
tunneling energies. However, competition becomes subtle at
intermediate frequency as each of these different energy scales
may favor only the polaron or the antipolaron, respectively,
which may lead to an overweighted antipolaron, as shown
in Fig. 3(e).

Below we give a more explicit analysis. Actually, the four
channel tunneling energies in the quadpolaron are proportional
to the overlaps of the polarons and antipolarons, Sαᾱ , Sββ̄ , Sαβ̄ ,
and Sβᾱ , as shown in Fig. 2(d). The mixture terms Sαβ̄ and Sβᾱ

do not affect the weight competition between the polaron and
antipolaron, while Sαᾱ and Sββ̄ yield imbalances. Indeed, the
antipolarons have larger overlap than the polarons, i.e., Sββ̄ >

Sαᾱ [see Fig. 2(d)]. This is because the antipolarons in up and
down spins are closer to each other than the polarons in order to
reduce their higher potential energy, as indicated in Fig. 2(e)
and quantitatively shown by ζβ < ζα in Figs. 3(a) and 3(b).
Therefore, as far as the tunneling is concerned, it would need
to have more weight from antipolarons to gain a maximum
tunneling. When the intermediate frequency reduces the cost
of the potential energy for such a tendency, a larger antipolaron
weight might finally occur, as in Fig. 2(f), leading to an
unexpected overweighted antipolaron. We find that this really
occurs, as demonstrated in Fig. 3(e), where a weight reversion
appears at the crossing of α and β for a weaker coupling.

At low frequency, the harmonic potential becomes very
flat, and the polarons may get closer than antipolarons, as
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(a) (b)

FIG. 4. (Color) Scaling quantity γ as a function of the coupling
strength g. (a) Our results compared with exact numerics at ω/� =
0.01 as an example. (b) γ for different values of the ratios ω/�. The
scaling relation ζi

.= ξi is tested by γ = 1 beyond gc.

indicated by ζα < ζβ in Fig. 3(c) in the weak-coupling regime.
In this case, Sαᾱ is greater than Sββ̄ , so polarons have favorable
energies in both potential and tunneling. Thus the polaron
regains its priority in weight.

VI. BIPOLARON AND HIDDEN SCALING BEHAVIOR
IN THE REGIME OF g � gc

In the bipolaron regime, the remaining tunneling in chan-
nels Sαβ̄ and Sβᾱ leads to intriguing physics, showing a deeper
nature of the interaction in the symmetry-breaking aspect.
Indeed, Figs. 3(a)–3(c) show that in this regime the frequency
factor ξi and the displacement factor ζi collapse into the same
value, i.e., ζi

.= ξi . In fact, due to the vanishing photon number
below gc at the low-frequency limit, the parity P can be
decomposed into separate spin and spatial reversal subsymme-
tries which are broken beyond gc. However, further seeking
the symmetry-breaking character from these subsymmetries
would fail at finite frequencies due to the emergence of a
finite number of photons below gc. Nevertheless, the ζi − ξi

symmetric aspect revealed here provides a compensation from
the beyond-gc side that is valid also for finite frequencies.
To test this scaling behavior, we propose an experimentally

accessible quantity, γ ≡ ω
gt

√
〈a+a〉 − 1

4 (t + t−1) + 1
2 , where

t = −〈(a+ − a)2〉, which becomes the scaling ratio γ → ζ/ξ

(see Appendix C) for their average ξ = (ξα + ξβ)/2 and
ζ = (ζα + ζβ)/2 and thus equals 1 above gc, as shown in Fig. 4
for various frequencies. The experimental measurement of γ

thus provides a possible way to distinguish the states of the
bipolaron and quadpolaron as well as their changeover.

VII. GROUND-STATE PHASE DIAGRAM

The above discussions on polaron-antipolaron competition
can be summarized into a ground-state phase diagram, as
shown in Fig. 5. The ground state with different channels
of tunneling is identified as a quadpolaron when g � gc and
as a bipolaron when g � gc. An overweighted antipolaron is
hidden in the quadpolaron regime, while a scaling relation
between the displacement and frequency renormalizations is
revealed in the bipolaron regime. Note that the polaron and
antipolaron structures might be detected by optomechanics
[33,34] and γ is experimentally measurable. The diagram

FIG. 5. (Color) An overview of the ground-state phase diagram
for the QRM. The quadpolaron (g � gc) and bipolaron (g � gc) as
well as their crossover near the minimum of ξi (red solid line) or
the maximum of γ around analytic gc. The quadpolaron regime is
further divided into the normal (α > β) and overweighted antipolaron
(α < β) regimes. The dashed and dot-dashed lines have been obtained
numerically from the cross points, as shown in Figs. 3(e) and 3(f).
The color density for γ further distinguishes the characters of the
different regimes and their changeovers.

may provide a renewed panorama for deeper theoretical
investigations and may raise more challenges for experiments.

VIII. PERSPECTIVE IN MULTIPLE MODES

The basic physics in the QRM has a profound implication
for the spin-boson model [26], which is a multiple-mode ver-
sion of the QRM. The essential variational ingredients remain
similar. The trial wave function can be written as ψ[{xk}] =
α

∏M
k=1 ϕk

α + β
∏M

k=1 ϕk
β with the extension {ω,g,x,ξi,ζi} →

{ωk,gk,xk,ξ
k
i ,ζ k

i } for the kth mode. We illustrate the same
accuracy by a two-mode case in Appendix D.
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APPENDIX A: VARIATIONAL METHOD
AND PHYSICAL PROPERTIES

Here we calculate the ground-state physical properties from
the variational method, including the energy E, the mean
photon number 〈a†a〉, the coupling correlation 〈σz(a† + a)〉,
and the spin-flipping (tunneling) strength 〈σx〉.

1. The energy

As introduced in the main part of the paper, the wave func-
tion for the reformulated Hamiltonian (2) has the following
form:

� = 1√
2

[ψ+(x) |↑〉 + ηψ−(x) |↓〉], (A1)
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where η = ± is the parity. We adopt the variational trial wave
function as a superposition of the polaron and the antipolaron,

ψ+(x) = ψ−(−x) = αϕα(x) + βϕβ (x), (A2)

where

ϕα(x) = φn(ξαω,x + ζαg′), (A3)

ϕβ(x) = φn(ξβω,x − ζβg′), (A4)

with φn(ω,x) being the nth eigenstate of the standard quantum
harmonic oscillator with frequency ω. In this work we focus
on the ground state so that n = 0 and η = −. The displacement
of the bare potential v± = (x̂ ± g′)2 in the single-well energy
h±,

g′ =
√

2g/ω, (A5)

is driven by the interaction g, and for simplicity we have as-
sumed the unit � = m = 1. Note that the polaron (antipolaron)
has a displacement in the same (opposite) direction as that of
the bare potential v±. The interplay of the interaction and
the tunneling leads to the deformation of the wave packet:
the frequency of the polaron (antipolaron) is renormalized
by ξα (ξβ), and the displacement is renormalized by ζα (ζβ).
The weights of the polaron and the antipolaron are subject
to the normalization condition 〈�|�〉 = 〈ψ+|ψ+〉 = 1. These
deformation parameters, independently {ξα,ξβ,ζα,ζβ,α}, are
optimized by minimization of the total energy formulated in
the following.

The energy can be directly obtained as

E ≡ 〈�|H |�〉 = h+
++ + η

��

2
n+− + E0, (A6)

where

h+
++ = 〈ψ+|h+|ψ+〉

= α2h+
αα + β2h+

ββ + 2αβh+
αβ, (A7)

n+− = 〈ψ+|ψ−〉
= α2Sαᾱ + β2Sββ̄ + 2αβSαβ̄ (A8)

contribute to the single-well energy and the tunneling energy,
respectively. Here we have defined

h+
ij = 〈ϕi(x)|h+|ϕj (x)〉,

Sij = 〈ϕi(x) | ϕj (x)〉, (A9)

Si j̄ = 〈ϕi(x) | ϕj (−x)〉
for i = α,β, while E0 = − 1

2ω(1 + g′2) is a constant energy.
Explicit formulas for these quantities are readily available. In
this appendix we give the result for the ground state,

h+
αα = 1

2ω
[

1
2

(
ξα + ξ−1

α

) + (1 − ζα)2g′2], (A10)

h+
ββ = 1

2ω
[

1
2

(
ξβ + ξ−1

β

) + (1 − ζβ)2g′2], (A11)

h+
αβ = 1

2ω
[(

1 − ξ 2
α

)〈
x̂2

α

〉
αβ

+ (1 − ζα)〈x̂α〉αβ2g′

+ ξαSαβ + (1 − ζα)2g′2Sαβ

]
, (A12)

where

〈x̂α〉αβ = Sαβ

(ζα + ζβ)ξβ(
ξα + ξβ

) g′, (A13)

〈
x̂2

α

〉
αβ

= Sαβ

(ξα + ξβ)

[
1 + (ζα + ζβ)2ξ 2

β

(ξα + ξβ)
g′2

]
, (A14)

and

Sαβ = S(ζα,ζβ,ξα,ξβ),

Sαβ̄ = S(ζα, − ζβ,ξα,ξβ),

Sαᾱ = S(ζα,ζα,ξα,ξα),

Sββ̄ = S(ζβ,ζβ,ξβ,ξβ) (A15)

are given by the function

S(ζ1,ζ2,ξ1,ξ2) = exp

(
− (ζ1 + ζ2)2g′2ξ1ξ2

2(ξ1 + ξ2)

)

×
√

2

[
ξ1ξ2

(ξ1 + ξ2)2

]1/4

. (A16)

2. The mean photon number

From the relation

a†a = h0

ω
− 1

2
, h0 ≡ 1

2
ω(p̂2 + x̂2), (A17)

and the symmetric relation ψ−(x) = ψ+(−x), the mean photon
number simply reads

〈a†a〉 ≡ 〈�|a†a|�〉 = h0
++
ω

− 1

2
, (A18)

where

h0
++ = 〈ψ+|h0|ψ+〉 = α2h0

αα + β2h0
ββ + 2αβh0

αβ. (A19)

For the ground state

h0
αα = 1

2ω
[

1
2

(
ξ−1
α + ξα

) + 2ζ 2
αg′2], (A20)

h0
ββ = 1

2ω
[

1
2

(
ξ−1
β + ξβ

) + 2ζ 2
βg′2], (A21)

h0
αβ = 1

2ω
[(

1 − ξ 2
α

)〈
x̂2

α

〉
αβ

−ζα〈x̂α〉αβ2g′+ξαSαβ+ζ 2
αg′2Sαβ

]
,

(A22)

and 〈x̂2
α〉αβ , 〈x̂α〉αβ are given by (A13) and (A14).

3. The coupling correlation 〈σz(a† + a)〉 and the spin-flipping
(tunneling) strength 〈σx〉

Now we calculate the coupling correlation 〈σz(a† + a)〉.
Since (a† + a) = √

2x̂, we have

〈σz(a
† + a)〉 ≡ 〈�|σz(a

† + a)|�〉 =
√

2〈x̂〉++, (A23)

where

〈x̂〉++ = 〈ψ+(x)|x̂|ψ+(x)〉 = α2xαα + β2xββ + 2αβxαβ

(A24)

and

xαα = −ζαg′, xββ = ζβg′, xαβ = 〈xα〉αβ − ζαSαβg′.

(A25)
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(a) (b)

(c) (d)

FIG. 6. (Color online) Ground-state physical quantities as func-
tions of the coupling strength g/gc. ω/� = 0.1 is taken as an
example. (a) The ground-state energy. (b) The mean photon number.
(c) The correlation function 〈σz(a† + a)〉. (d) The tunneling strength
〈σx〉. The orange circles denote the numerically exact results as a
benchmark, the red dashed lines are calculated using the adiabatic
approximation (AA) [35] or generalized rotating-wave approximation
(GRWA) [36], and the blue solid lines are our results obtained using
the present variational method.

The strength of spin flipping or tunneling, σx = σ+ + σ−,
is simply

〈σx〉 ≡ 〈�|σx |�〉 = ηn+−, (A26)

which has been formulated in (A8).

4. Accuracy of our variational method

The most widely used approximations in the literature
are the rotating-wave approximation (RWA) [11], adiabatic
approximation (AA) [35], generalized rotating-wave approx-
imation (GRWA) [36], and generalized variational method
(GVM) [37,38], each working in some specific parameter
regime. The RWA neglects the counterrotating terms in the
interaction, valid in the regime g 
 ω,� under the near-
resonance (ω ∼ �) condition. The AA and the GRWA have the
same ground state, working for g � ω or the negative detuning
(ω > �) regime. The GVM works for g 
 ω. Recently,
a mean-photon-number-dependent variational method was
proposed to cover validity regimes of both the GVM and
the GRWA [39]. However, all the approximations collapse
when the ratio of ω/� gets small, e.g., below around 0.5
(see Ref. [39]). An improved variational method that includes
the antipolaron [19] also finds breakdowns at ω/� ∼ 0.3. It
would be favorable to have a variational method that always
preserves high accuracy in varying all parameters which might
facilitate and even deepen the physical analysis.

Indeed, our variational wave function yields such accuracy
requirements. As an illustration, in Fig. 6 we compare the exact
numerics for the ground-state energy, mean photon number,
coupling correlation, and tunneling strength for the example
ω/� = 0.1 (one can find other examples for comparison at
ω/� = 0.01, 0.05, 0.15, 0.5 for the physical quantity γ in
Figs. 4 and 9). As a comparison, the results obtained with

(a) (b)

FIG. 7. (Color online) Quantitative deviations and qualitative er-
rors emerge when reducing variational parameters. Physical prop-
erties may deviate not only quantitatively but also qualitatively
when the parameters are reduced; for example, when imposing
ξα = 1, ξβ = 1 (black line) or ξα = ξβ, ζα = ζβ [red (light gray)
line], an incorrect cusp behavior appears in the energy E, and the
spin flipping (tunneling) strength 〈σx〉 has a spurious jump around
gc at ω/� = 0.01, in contrast to the smooth crossover in the exact
numerics (orange circles). The blue (dark gray) lines are our results in
full minimal parameters which reproduce accurately the exact ones.

the AA and the GRWA are also shown. Clearly, our results
are completely consistent with the exact ones in the whole
parameter regime.

5. Physical necessity of the variational parameters

It may be worthwhile to have further discussion of the phys-
ical necessity of the variational parameters. An unnecessary
reduction of our parameters, on the one hand, will not lead to
much of a reduction in the computational cost as the calculation
of full parameters is actually quite easy to carry out; on the
other hand, the price of physical loss would be too high. As
discussed in the main part of the paper, our variational param-
eters physically correspond to the deformations of the polaron
and the antipolaron with displacement and frequency renor-
malizations, which is justified by the behavior of the effective
potential. In the subtle energy competitions of the potential
of the harmonic oscillator, the interaction, and the tunneling,
both the polaron and the antipolaron can adapt themselves via
the variations of their displacements, frequencies, and weights.
Thus, corresponding to the key physical degree of freedom of
the polaron and the antipolaron, the five variational parameters
ξα, ξβ, ζα, ζβ,α are the minimal necessary parameters to
capture the true physics of the behavior of the polaron and the
antipolaron, subject to the normalization of the wave function.
Therefore reducing the parameters would lead to a mismatch
of the physical degree of freedom and thus give rise to
unreliable results; the physical properties may deviate not only
quantitatively but also qualitatively. For an example, assuming
ξα = ξβ = 1 or imposing ξα = ξβ, ζα = ζβ can reduce the
parameter number by 2. However, as shown in Fig. 7, without
mentioning the quantitative deviations, an incorrect cusp be-
havior appears in the energy E at low frequencies, as illustrated
at ω/� = 0.01, and even worse, a spurious jump emerges in
the tunneling (spin-flipping) strength 〈σx〉 around gc. The other
physical quantities, such as the mean photon number 〈a†a〉
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and the coupling correlation 〈σz(a† + a)〉, also have a false
discontinuity similar to that of 〈σx〉. Both the cusp and the
discontinuity are qualitatively in contradiction to the smooth
crossover in the exact numerics (orange circles). Nevertheless,
our results using the full minimal variational parameters [blue
(dark gray) line] reproduce accurately the exact results in the
entire regime of the coupling strengths at different frequencies.
Moreover, in the cases of reduced parameters, some important
underlying physics would also be missing, such as the scaling
relation of the displacement and frequency renormalizations,
as we revealed in the main text (see also Appendix C).

6. Method extension to the excited states

Our method can also be useful for the excited states. As
a first simple extension the variational energy of the excited
state can be obtained by replacing expressions (A10)–(A12)

with

h+
αα = ω

2

[(
n + 1

2

)(
ξα + ξ−1

α

) + (1 − ζα)2g′2
]
, (A27)

h+
ββ = ω

2

[(
n + 1

2

)(
ξβ + ξ−1

β

) + (1 − ζβ)2g′2
]
, (A28)

h+
αβ = ω

2

[(
1 − ξ 2

α

)〈
x̂2

α

〉
αβ

+ (1 − ζα)〈x̂α〉αβ2g′

+ (2n + 1)ξαSαβ + (1 − ζα)2g′2Sαβ

]
, (A29)

where both 〈x̂j
α〉αβ and Sαβ can be included by a unified

function 〈
x̂j

α

〉
αβ

= X(n,j ), Sαβ = X(n,0). (A30)

Here the function X(n,j ) is defined by

X(n,j ) = n!j !

[
(ζα + ζβ)g′

2c

]j min[n,j ]∑
p=0

min[n,j−p]∑
q=0

(−i)j−p−qapbq

p!q!(j − p − q)!

√
2p+q

(n − p)!(n − q)!
Hj−p−q

(
1

2
ab2c

)
S̃n−p,n−q, (A31)

S̃k,k′ =
min[k,k′]∑

r=0

Ckk′rHk−r

(
ab2c

2
√

1 − a2

)
Hk′−r

(
− a2bc

2
√

1 − b2

)
, (A32)

Ckk′r =
√

ab

2k+k′
k!k′!

e−(abc)2/4 k!k′!(2ab)r (1 − a2)(k−r)/2(1 − b2)(k′−r)/2

(k − r)!(k′ − r)!r!
, (A33)

and the factors a,b,c depend on the variational parameters

a =
√

2ξα

ξα + ξβ

, b =
√

2ξβ

ξα + ξβ

,

c = (ζα + ζβ)g′
√

(ξα + ξβ)

2
. (A34)

For the other group of overlap in the tunneling term
n+− (A8), one can also formulate using Sμμ̄′ = (−1)nX(n,0)
with the corresponding replacement α,β → μ,μ′, but there
is sign variation ζβ → −ζμ′ . Here n is the level number
of the standard quantum harmonic oscillator, and Hm(x) is
the standard Hermite polynomials. It is worthwhile to see
that this simple extension for the excited states has already
yielded some considerable improvements in strong couplings,
as illustrated in Fig. 8 for a number of the lowest energy levels.
With the above expressions, one may further analytically
construct an improved extension of the variational energy for
the overall coupling range by imposing the deformed polaron
and antipolaron in the GRWA form of the wave function.
On the other hand, the dynamics of the system also can be
calculated in terms of S̃k,k′ , which provides the intraoverlap
and interoverlap of the deformed polarons and antipolarons
with different oscillator quantum numbers k,k′. Since here
the focus is on the ground state, which, as we show in the
present work, has a rich underlying physics that has already
been uncovered, we shall present a more detailed method
description and systematical discussion for the excited-state
properties in our future work.

APPENDIX B: QUADPOLARON-BIPOLARON
CHANGEOVER AND SCALES OF COUPLING STRENGTH

1. Analytic approximation for gc

In the variation of the coupling strength, the system
undergoes a phase-transition-like changeover around g ∼ gc.
In the superstrong tunneling or low-frequency limit, i.e.,
ω/� → 0, this changeover is very sharp; it behaves more
like a phase transition, as discussed by Ashhab [40]. In the
other cases it behaves like a crossover.

FIG. 8. (Color online) An energy comparison of the excited
states for the lowest ten levels at ω/� = 0.1 and g/� = 0.5. The
orange dots, blue diamonds, and red squares represent the results of
the exact numerics, our method, and the GRWA, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. (Color online) Quadpolaron-bipolaron changeover and
the behavior of variational parameters and related physical quantities.
(a)–(c) Weighted ground-state tunneling of different channels, α2Sαᾱ ,
β2Sββ̄ , αβSαβ̄ , and αβSβᾱ (Sβᾱ = Sαβ̄ ) as functions of the coupling
strength g/gc. The dashed lines roughly separate the quadpolaron
(g � gc) regime and the bipolaron regime (g � gc); the former has
four channels of tunnelings, while the latter has two channels. (d)–(f)
The frequency renormalization factors ξα and ξβ . (g)–(i) The scaling
quantity γ . The results from our variational method (solid lines)
almost reproduce the ones from exact numerics (orange circles) for
all values of coupling at different frequencies. The boundary of the
quadpolaron and bipolaron regimes is associated with the minimum
of ξi and the maximum of γ . The black triangles mark the positions
for gc0/gc which move farther away from 1 as ω increases. (a) and
(d) ω/� = 0.5. (b) and (e) ω/� = 0.15. (c) and (f) ω/� = 0.05.

We can get more insights into this transition-like behavior
from the profile deformation of the wave packet. The increase
of the coupling strength is splitting the wave packet into the
polaron and the antipolaron, while the tunneling is trying to
keep them as close as possible in the ground state. Before a
full splitting the system remains in a quadpolaron state with
four channels of tunneling, Sαᾱ , Sββ̄ , Sαβ̄ , and Sβᾱ , while after
the splitting the system enters a bipolaron state with only two
tunneling channels, Sαβ̄ and Sβᾱ , surviving. Here we have
labeled the tunneling channels by the overlaps Sij̄ , defined
in (A9), to which the corresponding tunneling energies are
proportional. We show the tunneling channel difference for
these two regimes in Figs. 9(a)–9(c) at various frequencies.
One can also see that the change in the tunneling channel
number is universal for different frequencies. Thus the two
regimes distinguished by wave-packet splitting are essentially
different in the quantum states. Therefore the coupling strength
at which the splitting really starts can be used to formulate gc.

We adopt the value of gc at the point where the distance
between the polaron and the antipolaron is equal to their total
radii,

(ζα + ζβ)g′
c = rα + rβ, (B1)

where we take the radii by

rα = 2

√
1

ξα

, rβ = 2

√
1

ξα

, (B2)

at which the value of the corresponding wave packet is
becoming small

ϕi

ϕmax
i

= 1

e2
(B3)

for both i = α,β.
Note that both sides of Eq. (B1) are essentially averag-

ing over the polaron and the antipolaron, thus assuming a
symmetric polaron and antipolaron, i.e., ζα = ζβ and ξα = ξβ ,
would be a reasonable approximation as far as gc is concerned.
Under this constraint the explicit results for the deformation
parameters are available for the well-separated polaron and
antipolaron from the energy minimization formulated in
Appendix A, reading

ζα = ζβ =
√

1 − g4
c0

g4
, ξα = ξβ = 1, (B4)

where the critical point gc0 = √
ω�/2 is obtained in the

semiclassical approximation at ω/� → 0 [32,41]. We stress
that we limit the application of this approximation to the
estimation of gc, while for other properties one should fall
back upon the asymmetric polaron and antipolaron for higher
accuracy. Actually, as mentioned in Appendix A, imposing
symmetric polarons and antipolarons would lead to a spurious
discontinuous behavior of the physical properties, such as the
tunneling strength, around gc at low frequencies, while in real-
ity it should be smooth, as predicted by the asymmetric polaron
and antipolaron, in agreement with exact numerics. Also, in
the strong-coupling regime the displacement asymmetry of the
polaron and the antipolaron actually plays an important role
in inducing the amplitude-squeezing effect (ξα < 1), which
causes the wave packets of the polaron and the antipolaron to
increase their overlap, thus enhancing the tunneling. Without
the asymmetry there would be no squeezing beyond gc, as
indicated by (B4), since the symmetric polaron and antipolaron
in up and down spins would completely coincide, with an
already maximum overlap. In fact, as uncovered in the main
text, there is a hidden relation between the squeezing and the
displacement, which is also discussed in detail in Appendix C.

Substitution of (B4) into (B1) leads us to a simple analytic
expression,

gc =
√

ω2 +
√

ω4 + g4
c0. (B5)

It is easy to check gc → gc0 in the slow-oscillator limit
ω/� → 0. Besides the transition-like changeover in this low-
frequency limit, our gc also provides a valid coupling scale for
the quadpolaron-bipolaron changeover at finite frequencies,
which can be seen from Fig. 9, where the quadpolaron regime
and bipolaron regime adjoin each other around gc. A more
quantitative way to identify the transition-like point is, as
shown by Figs. 9(d)–9(i), the minimum point of the frequency
renormalization factor or the maximum point of the scaling
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quantity introduced in Appendix C. Still, one sees that it is
well approximated by gc in (B5).

2. Novel scale for the coupling strength

At this point, it is worthwhile to further discuss the scale
of the coupling strength, the criterion for which is actually a
bit controversial in the literature [19]. Although the terms for
the coupling strengths were given in relation to the validity of
the RWA as well as the progress of experimental accessibility,
essentially, the frequency ω has been conventionally taken
as the evaluation scale: g/ω � 0.01 for the weak-coupling
regime, g/ω � 0.01 for the strong-coupling regime, g/ω �
0.1 for the ultrastrong-coupling regime [3], and g/ω � 1
for deep strong-coupling regime [18]. On the other hand, it
should be noticed that, recently, it has been proposed [19] that
the strength scale should be modified to be the semiclassical
critical point gc0. Still, as mentioned before, gc0 is obtained
in the low-frequency semiclassical limit, and the situations at
finite frequencies will be different. The controversy essentially
comes from the fact that a consensus on the nature of the
interaction-induced variation in different frequencies is still
lacking. Here our expression of gc in (B5) is obtained by the
observation that the wave-packet splitting makes the essential
change in increasing the coupling strength, which controls
the final effective coupling tunneling strength and leads to
transition (in the low-frequency limit) or crossover (at finite
frequencies) of the quadpolaron-bipolaron states. We believe
that gc is a more universal scale valid for all frequencies, as
indicated by Fig. 9. Under these considerations, we simply
divide the coupling strength into weak, intermediate, and
strong regimes under the conditions that g is smaller than,
comparable to, and larger than gc, respectively. As a reference,
we compare the different scales for the coupling strength used
in the literature in Fig. 10.

APPENDIX C: HIDDEN SCALING RELATION AND
SYMMETRY-BREAKING-LIKE ASPECT

1. Scaling relation extracted from energy minimization

When the coupling strength grows beyond gc, we find that
the squeezing factor ξi and the displacement factor ζi begin to
collapse into the same values and scale with each other in the
further evolution, i.e.,

ξα
.= ζα, ξβ

.= ζβ. (C1)

This hidden scaling relation can be more explicitly formulated
at low frequencies. Note that the parameters can be extracted
from the energy minimization

δE

δα
= 0,

δE

δξi

= 0,
δE

δζi

= 0. (C2)

In the bipolaron regime, only the polaron-antipolaron tunnel-
ing remains, so the overlaps Sαᾱ and Sββ̄ are vanishing, but Sβᾱ

is finite. In such a situation, controlling the polaron-antipolaron
center of mass, ζ = (ζα + ζβ)/2, can be decoupled from the
relative motion in tunneling and squeezing, which enables us

FIG. 10. (Color online) The conventional coupling regimes used
in the literature. The conventional ultrastrong coupling regime (the
green hatched area) is enclosed by g = 0.1ω and g = ω, which
have been reached by experiments in rapid progress [3]. The
conventional deep strong-coupling regime (the light cyan area) is
surrounded by g = ω and g = 10ω (gray dash-dotted lines), into
which investigations have been moving [18]. The black dotted line
denotes the semiclassical critical-like point in the low-frequency limit
gc0 [32,41], proposed as a different scale of coupling strength [19],
while the blue solid line schematically represents the quadpolaron-
bipolaron boundary gc as a novel scale generalized for the whole
range of frequencies. Thus, the coupling strength is divided into
weak, intermediate, and strong regimes which correspond to g being
smaller than, comparable to, and larger than gc, respectively. The
orange hatched window edged by the dashed lines opens for the
overweighted antipolaron discussed in our paper.

to extract the weight of the polaron,

α =
√

1 + ζβ

2 − (ζα − ζβ)
. (C3)

To obtain analytical results we assume a low frequency, which
enables a small-ω expansion and leads us to

ξα,β = ξ

(
1 ± ω2

4g2

)
,

ζα,β = ζ

(
1 ± ω2

4g2
(
1 − g4

c0

/
g4

)
)

, (C4)

where ξα (ξβ) takes the sign + (−). In the small-ω limit, ξi

and ζi collapse into their average ξ = (ξα + ξβ)/2 and ζ =
(ζα + ζβ)/2, which are equal:

ξ = ζ =
√

1 − g4
c0

g4
, (C5)

up to ω2 order. We can see the scaling relation from the
approximate analytic results: (i) in the low-frequency limit, one
sees that ξi

.= ζi holds, up to an ω2 order correction which is
negligible for small ω. (ii) For higher frequencies, the ω2 terms
in ξα,β and ζα,β become almost the same due to g4

c0/g
4 
 1

since in the bipolaron regime we have g > gc > gc0 (e.g., for
ω = 0.5�, g4

c0/g
4
c = 0.056, while g4

c0/g
4 is negligible beyond

the crossover range). These analytic considerations account
for the scaling relation, as we showed in the main text for
different frequencies.
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To test the scaling relation, we shall propose a physical
quantity that may be either measured experimentally or
verified by exact numerics. On the one hand, applying the
above expansion to the photon number (A18) and neglecting
the difference of ξα,ζα and ξβ,ζβ lead us to an expression of ζ

as a function of 〈a+a〉 and ξ ,

ζ
.= ω

g

√
〈a+a〉 − 1

4
(ξ + ξ−1) + 1

2
. (C6)

On the other hand, the same approximation yields

ξ
.= −〈(a+ − a)2〉. (C7)

Thus, considering the ratio ζ/ξ , we introduce the following
physical quantity:

γ ≡ ω

gt

√
〈a+a〉 − 1

4
(t + t−1) + 1

2
, (C8)

where we have defined t = −〈(a+ − a)2〉. In the bipolaron
regime with strong couplings, this quantity becomes the
scaling ratio, γ → ζ/ξ . In this regime, if the scaling relation
(C1) holds, the value of γ will be equal to 1. Indeed, this
scaling relation is confirmed by the exact numerics, as shown
in the main text.

In the quadpolaron regime with intermediate or weak
couplings, not only is the scaling relation (C1) violated,
but also the relation between γ and ζ/ξ is breaking down,
γ �= ζ/ξ . Nevertheless, we find that, besides the bipolaron
regime having the value γ = 1, the quadpolaron with four
strong channels of tunneling is located in the range γ < 1,
and the state with decaying left-right tunnelings (Sαᾱ , Sββ̄)
falls in the range γ > 1, as one can see in Figs. 9(a)–9(c) and
9(g)–9(i). In this sense, according to the values and behavior
of γ , one can distinguish the quantum states of the bipolaron
and quadpolaron and their changeover, respectively.

2. Scaling relation alternatively obtained from the lowest-order
expansion of the effective potential

Apart from the variational method of energy minimization
introduced in Appendix A, an alternative way to see the
scaling relation is to investigate the effective potential. As
we discussed in the main text, the eigenequation actually can
be written in a single-particle form,

1
2ω(p̂2 + vtot

± )ψ± = Eψ±, (C9)

where we have assumed that the particle mass m = 1 and the
total potential is composed of the bare potential v± and an
additional effective potential δv± induced by the tunneling,

vtot
± = v± + δv±, (C10)

with

v± = (x ± g′)2, δv± = η
�

ω

ψ∓
ψ±

, (C11)

and we have considered the ground state with η = −1. In the
strong-coupling regime, the total potential exhibits an obvious
two-well structure, with a larger barrier separating the wells,
as shown in Fig. 11.

FIG. 11. (Color online) Spin-up single-particle effective poten-
tial, vtot

+ = v+ + δv+, in the strong-coupling regime. Because in this
regime within the same spin component there is no overlap between
the polaron [α, labeled by the blue (dark gray) arrow] and antipolaron
[β, labeled by the orange (light gray) arrow] in the two wells, to have
both finite weights for the polaron and the antipolaron, the two subwell
energies have to be degenerate, i.e., vtot

+ (xmin
α ) + εα = vtot

+ (xmin
β ) + εβ .

Here xmin
i is the position of the local minimum potential and εi = ξi

(scaled by ω/2), i = α,β.

In the lowest order, the two wells can be considered a local
harmonic potential. Actually, an expansion around the local
minimum point xmin

i of the potential leads to

vtot
+ ∼= vtot

+
(
xmin

i

) + f
(1)
i

(
x − xmin

i

) + f
(2)
i

(
x − xmin

i

)2
, (C12)

where xmin
i = ηiζig

′, with i = α,β, and ηα = −1, ηβ = 1, re-
spectively, for the polaron and the antipolaron. The coefficients
are defined by

f
(1)
i = ∂vtot

+
∂x

∣∣∣∣
x=xmin

i

, f
(2)
i = 1

2

∂2vtot
+

∂x2

∣∣∣∣
x=xmin

i

. (C13)

First, the approximation of local harmonic potential requires

Condition 1: f
(1)
i = 0, (C14)

Condition 2: f
(2)
i = ξ 2

i . (C15)

Condition 1 ensures the potential minimum point at xmin
i , while

condition 2 indicates the same renormalized frequency ξiω of
the local harmonic potential as that of the wave function of the
harmonic oscillator. Furthermore, since effectively there is no
single-particle intersite hopping (if regarding the wells as two
sites) in the presence of the large barrier in the strong-coupling
regime, to have finite weights for both the polaron and the
antipolaron in the single-particle effective potential the local
energies of the two wells need to be degenerate:

Condition 3: vtot
+

(
xmin

α

) + εα = vtot
+

(
xmin

β

) + εβ, (C16)

where

εi = ξi (C17)

is the energy of the local harmonic oscillator scaled by ω/2
and

vtot
+

(
xmin

i

) = v+
(
xmin

i

) + δv+
(
xmin

i

)
(C18)
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FIG. 12. (Color online) Scaling relation alternatively obtained
from the expansion of vtot

+ . ω/� = 0.001 is taken. ξi and ζi almost
take the same values in the strong-coupling regime above gc. The
inset shows their tiny differences using a zoom-in plot.

corresponds to the reference energy. Taking the variational
wave function (A2), in the strong-coupling regime we have

δv+
(
xmin

α

) .= −�

ω

βϕβ

(−xmin
α

)
αϕα(xmin

α )
,

δv+
(
xmin

β

) .= −�

ω

αϕα

(−xmin
β

)
βϕβ

(
xmin

β

) , (C19)

while β = √
1 − α2 in the strong-coupling regime.

Now one can (i) control the displacement renormalization ζi

to satisfy condition 1 so that the linear term f
(1)
i is eliminated

and the minimum is located at xmin
i , (ii) tune the frequency

renormalization ξi to fulfill condition 2 so that both the local
potential and the wave function self-consistently share the
same frequency ξiω, and (iii) balance the weight ratio of α/β

to meet condition 3 so that the two wells have degenerate
local energies to self-consistently guarantee the finiteness of
the weights α and β. At this point, we see that the degree of
the basic deformation factors introduced for our variational
wave function is consistent with the minimum requirements
of self-consistence conditions.

From conditions 1, 2, and 3 we also refind the scaling
relation, as illustrated by Fig. 12, which might provide some
alternative insights for the scaling relation that we obtained
from the energy minimization in the last section. Still, we
should mention there is a small difference between the two
ways since the above consideration from the effective potential
is based on the lowest-order expansion, which guarantees only
the local potential itself to be harmonic without taking care
of the energy, while the energy minimization ensures only the
most favorable energy but the effective potential δv± = η�

ω

ψ∓
ψ±

includes higher-order terms beyond the harmonic potential
approximation. Despite the small difference, both approaches
lead to the scaling relation.

3. Symmetry-breaking-like aspect for the
bipolaron-quadpolaron quantum state changeover

With the scaling relation at hand, it might provide some
more insight to discuss the quantum state changeover from

the symmetry point of view. Generally, for all eigenstates,
the Hamiltonian has the parity symmetry, P = σx(−1)a

+a ,
which involves simultaneous reversion of the spin and the
space. Specifically, for the ground state that we are focusing
on in this work, one could find extra symmetries. In fact,
in the low-frequency limit the photon number vanishes for
the ground state below gc, as indicated by Fig. 6(b) (this is
more obvious for lower frequencies), so that, additionally, the
total parity symmetry can be decomposed into separate spin-
reversal symmetry σx and oscillator spatial-reversal symmetry
(−1)a

+a . These additional symmetries are broken beyond
gc due to the emergence of a number of photons, so that
there is a subsymmetry transition when the system goes
across gc. Still, these spin and spatial subsymmetries are
considered from the weak-coupling side and become less valid
at finite frequencies due to a nonvanishing photon number.
Nevertheless, our finding of the scaling relation provides
compensation but from the strong-coupling side. Actually,
as shown in Fig. 4, the physical quantity we proposed,
γ , demonstrates an invariant behavior beyond gc, which
confirms the scaling relation and thus the symmetric aspect
between the displacement and frequency renormalizations
in this regime. Note that, as shown in previous section, in
this bipolaron regime the remaining left-left and right-right
tunnelings (i.e., polaron-antipolaron intertunnelings) cause
both the polaron and the antipolaron to have finite weights,
while to preserve finite weights as a quantum effect in the
absence of left-right tunneling channels (i.e., intrapolaron and
intra-antipolaron tunnelings) the polaron and the antipolaron
have to maintain the displacement-frequency scaling relation.
In other words, this displacement-frequency symmetry arises
only in the absence of the left-right channels, and conversely,
there will be no left-right channels if the symmetry is preserved
there. Going from the bipolaron regime to the quadpolaron
regime, this symmetry will be broken in the presence of
the left-right tunneling channels. In this sense, besides the
aforementioned parity subsymmetry breaking originating from
the weak-coupling side in the low-frequency limit, for both
the low-frequency limit and finite frequencies there is another
hidden symmetry-breaking-like behavior in the changeover of
the two quantum states stemming from the strong-coupling
side. Thus it is interesting to see a deeper nature of the
interaction that not only induces the bipolaron-quadpolaron
quantum state changeover but also brings about the symmetry
breaking.

APPENDIX D: PHYSICAL IMPLICATIONS AND METHOD
EXTENSION TO THE MULTIPLE-MODE CASE

1. Physical implications for the spin-boson model

Our ground-state phase diagram obtained for the Rabi
model might also provide some insights or implications for
the spin-boson model [26], which is a multiple-mode version
of the Rabi model and has wide relevance to other fields,
including the Kondo model [42] and the Ising spin chain [43]
in condensed matter.

On the one hand, the bipolaron-quadpolaron changeover in
the Rabi model can provide insights for localized-delocalized
transition in the spin-boson model. In fact, the spin-boson
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model exhibits different behaviors in the Ohmic, super-Ohmic,
and sub-Ohmic spectra, which actually have different weights
of distributions for low- and high-frequency modes. Note that,
as discussed in our work on the nature of the interaction-
induced variation, the bipolaron and the quadpolaron states
respectively have blockaded and enhanced left-right tunnel-
ings, which is closely related to the situation of the localized
and delocalized states involved in the spin-boson model. As
indicated by our ground-state phase diagram and the obtained
gc expression, the same coupling could be located in different
regimes depending on whether frequency is low or high.
Our ground-state phase diagram and gc expression might
provide a primary reference and some insights into the different
behaviors of the Ohmic, super-Ohmic, and sub-Ohmic spectra
since the distribution weights of low and high frequencies
would make different contributions to blockaded and enhanced
tunneling, thus affecting the competition in the quantum phase
transition of the localized and delocalized states.

On the other hand, the overweighted antipolaron region
might have some implication for the coherence-incoherence
transition in the spin-boson model. It has been found that,
within the delocalized phase of the spin-boson model, there
is possibly another coherence-incoherence transition [26,44]
for which the nature is still not very clear. Interestingly, in
our ground-state phase diagram of the Rabi model, within
the strong-tunneling regime in the quadpolaron state, there
is also an underlying particular region characterized by an
unexpected overweighted antipolaron; the possible implication
and relation of the overweighted antipolaron regime in the
Rabi model and the coherence-incoherence transition in the
spin-boson model might be worth exploring.

Since in the present work our focus is on the single-mode
Rabi model, we would like to leave the investigations of
these possible implications for the spin-boson model to some
future works. Nevertheless, in the following we provide some
indication of the method and variational wave function.

2. Method extension to the multiple-mode case

The basic variational physical ingredients introduced in
the single-mode case also should apply for the multiple-
mode case. The treatments are readily extendable from the

FIG. 13. (Color online) Ground-state energy as a function of g1

in the two-mode case. The parameters used are ω1/� = 0.1,ω2/� =
0.01 and g2/� = 0.025. Our variational method (solid line) is in good
agreement with exact numerics (dots).

single-mode case. The Hamiltonian including M modes of
harmonic oscillators can be written as

H =
M∑

k=1

ωka
†
kak + σz

M∑
k=1

gk(a†
k + ak) + �

2
σx. (D1)

We propose the variational trial wave function as

ψ[{xk}] = α

M∏
k=1

ϕk
α + β

M∏
k=1

ϕk
β, (D2)

where ϕk
α (ϕk

β) is the kth mode polaron (antipolaron) under
the direct extension {ω,g,x,ξi,ζi} → {ωk,gk,xk,ξ

k
i ,ζ k

i }. The
energy is simply that of the single-mode energy in (A6) with
the overlap integrals replaced by the product of all modes. We
find the same accuracy as in the single-mode case, as illustrated
in Fig. 13 by an example of the two-mode case, for which exact
numerics are available for comparison. One can also include a
bias term εσz with a broken parity for ψσ (x) at different spin
σ . The multiple-mode case deserves special investigations in
detail, which we shall discuss in future works.
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