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We consider specific signatures of squeezing for time-modulated light fields and propose the scheme of an
optical parametric oscillator driven by a continuously modulated pump field. The application of a periodically
modulated driving field instead of a continuous wave field drastically improves the degree of quadrature integral
squeezing. This quantity goes below the standard limit of 50% relative to the level of vacuum fluctuations. We
develop semiclassical and quantum theories of an optical parametric oscillator under the influence of a pump
field with harmonically modulated amplitude for all operational regimes, including numerical simulations at the
threshold point. The results can be directly applied in time-resolved quantum communication protocols.
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I. INTRODUCTION

Squeezed states of light play an important role in the
development of quantum physics. These states have been
widely employed to achieve a measurement sensitivity beyond
the standard quantum limits in applications such as precision
interferometry and atomic spectroscopy. Squeezed light was
first produced using atomic sodium as a nonlinear medium [1],
optical fibers [2], and nonlinear crystals [3]. Squeezed-state
generation using a Josephson parametric amplifier has been
also considered [4], see also Ref. [5]. Novel discoveries made
with squeezed states include quantum information processing
with continuous variables [6]. Single-mode squeezed states
have also served as a continuous-variable entanglement
source, since combining two single-mode squeezed states
at a beam splitter creates an entangled two-mode state
[7–9]. Substantial squeezing has been observed in modern
experiments in applications to gravitational wave detectors
and biological measurements. Different schemes for the
generation of squeezed light states have been proposed and
realized over the years. Among these, we can mention the
generation of squeezed microwave fields with up to 10 dB
of noise suppression [10] in the field of quantum information
processing with superconducting circuits. Optomechanical
squeezing of 1.7 dB below the shot-noise level has been also
observed in an optical cavity with an embedded, mechanically
compliant dielectric membrane [11] and squeezing of a
strongly interacting optoelectromechanical system using a
parametric drive has been also demonstrated [12].

In this field, a wide variety of quantum communication
applications has been investigated operating with continuous
wave squeezed light beams. In addition, squeezing as well as
quantum correlations have been mainly demonstrated in the
spectral domain and not in the time domain. It should be noted
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that such spectral measurements (rather than time-dependent
ones) have been performed even for the case of pulsed
squeezing experiments [13–17]. The method of time-resolved
homodyne measurement of individual pulsed squeezed states
as well as that of individual quadrature-entangled pulses have
been developed [18,19]. Such single-shot homodyne detection
has already been performed in the pioneering experiments on
quantum tomography and quantum correlations [20,21] and
also in papers [22,23]. These approaches open possibilities for
homodyne measurement of quadrature noise variances in the
time domain (see, for example, Refs. [24–26]) and hence for
elaboration of time-resolved quantum information protocols
operating in a pulsed regime in addition to the ordinary ones
elaborated in spectral domains for continuous waves.

In this paper, we continue investigations of the squeezing in
time domain. In this way, we propose and investigate in detail
periodically modulated squeezed states of light generated in
optical parametric oscillators (OPO) driven by a continuously
time-modulated pump field. OPO, based on the processes of
down conversion in a cavity, have proven to be efficient sources
of squeezed light [3,27,28]. Excellent agreement between
theory [29–36] and experiment [3,27] of squeezing is obtained
in the region below threshold of OPO and in the spectral
domain. A systematic quantum theory of OPO including the
near-threshold region has been developed in Refs. [37,38].

In our scheme, quantum systems can display qualitatively
different forms of behavior when driven by fast time-periodic
modulations. Particularly, the application of a sequence of
tailored pulses as well as time-modulated cw field leads
to improving the degree of quantum effects in open-cavity
nonlinear systems and to the onset of qualitatively new
quantum effects. This approach was recently exploited for
the generation of Fock states in a periodically driven Kerr
nonlinear resonator (KNR) [39,40] and for the demonstration
of multiphoton blockades in pulsed regimes of a dissipative
KNR beyond stationary limits [41,42]. The improvement of
optomechanical and electromechanical entanglement by time
modulation has also been shown [43]. It has been demonstrated
that amplitude modulation can improve the performance of
single photon sources based on quantum dots [44]. The idea

1050-2947/2015/92(5)/053818(9) 053818-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.053818


ADAMYAN, BERGOU, GEVORGYAN, AND KRYUCHKYAN PHYSICAL REVIEW A 92, 053818 (2015)

to enrich quantum physical systems by designing a time
modulation has been explored in several other fields of research
including periodically driven nonlinear oscillators [45–47]
and periodically driven quantum matter [48]. Below we
exploit such an approach to improve the degree of one-mode
squeezing.

In this paper we consider the total or integral one-mode
squeezing in OPO, which is analyzed through variances Vθ (t)
of quadrature amplitudes of electromagnetic field Xθ (t) =

1√
2
[a+(t)e−iθ + a(t)eiθ ], where a(t), a+(t) are the boson op-

erators, V (x) = 〈x2〉 − 〈x〉2 denotes the variance. In this case
the integral one-mode squeezing for the intracavity mode of
subharmonics generated by OPO reaches only 50% relative to
the level of vacuum fluctuations, V � 0.5V0, and the equality
holds if the pump field intensity is close to the generation
threshold. This has been demonstrated in the framework of
a linear treatment of quantum fluctuations [49,50] as well
as in the exact quantum theory developed in Refs. [37,38].
An analogous limitation applies to the two-mode squeezed
light beams generated in nondegenerate optical parametric
oscillators (NOPO) as was shown using a Fokker-Planck
equation approach [51]. It is obvious (see, for example, a short
discussion in Ref. [50]) that such a limitation on the degree
of squeezing is due to dissipation and decoherence as well as
cavity induced feedback. It is important to note again that the
limit V � 0.5V0 applies for integral squeezing but not for the
spectral squeezing.

In this paper we obtain a remarkable result, that the
application of a pump field with periodically varying amplitude
instead of a continuous-wave (CW) pump field significantly
improves the degree of squeezing in OPO. We demonstrate the
phenomenon for OPO in a doubly resonant optical ring cavity
(see Fig. 1) and show that the improvement of total squeezing
takes place for both below- and above-threshold operational
regimes.

We would like to underline again the difference between the
focus of our paper and most of the previous works devoted to
the study of squeezing. It is an established standard to describe
squeezing with the spectra of quantum fluctuations, as has
been done in connection with pulsed squeezing experiments
[13–17]. Unlike that, we follow the philosophy of Refs. [18,20]
and analyze the integral squeezing characteristics of time-
modulated light, including periodically pulsed light beams.

We perform our calculations within the framework of
stochastic equations of motion and a linearized treatment of
quantum fluctuations. One should keep in mind, however,
that the linearized approach does not apply in the threshold
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FIG. 1. The principal scheme of OPO in a cavity supporting the
pump mode at frequency ωL and a subharmonic mode.

regime with large quantum fluctuations. In order to verify the
accuracy of our analytical calculations as well as to investigate
the threshold regime we also perform numerical simulations
based on the quantum state diffusion method [52].

The paper is organized as follows. In Sec. II we derive
the stochastic equations for the complex c-number variables
corresponding to the operators a, aL, and present a semiclas-
sical analysis of the periodically modulated OPO. Section III
is devoted to the perturbative analysis of quantum fluctuations
employing the ratio of nonlinearity to damping rate, k/γ � 1,
as the small parameter. In Sec. IV we investigate the time-
modulated dynamics and squeezed variance for the case of
continuously modulated OPO. We also discuss in Sec. V the
critical effects in the near-threshold regime. We summarize
our results and give our conclusion in Sec. VI.

II. EQUATIONS AND TIME-MODULATED
SEMICLASSICAL DYNAMICS

The Hamiltonian describing the system within the frame-
work of the rotating wave approximation and in the interaction
picture is

H = Hsys + Hint + HR, (1)

where the intracavity or system Hamiltonian is given by

Hsys = i�f (t)(ei(�L−ωLt)a+
L − e−i(�L−ωLt)aL)

+ i�k(ei�kaLa+2 − e−i�ka+
L a2). (2)

Here, aL and a are the boson operators for cavity modes at the
frequencies ωL and ωL/2. The pump mode aL is driven by an
amplitude-modulated external field at the frequency ωL with
time periodic, real valued amplitude f (t + T ) = f (t). Down
conversion of pump photons to resonant subharmonic-mode
photons at frequency ωL/2 occurs due to a χ (2) nonlinearity
placed in the cavity. The constant kei�k determines the
efficiency of the down-conversion process ωL → ωL

2 + ωL

2 in
the χ (2) medium. The term HR is the reservoir Hamiltonian,
which describes the free evolution of the extracavity modes.
The term

Hint = �(aL�+
L + a�+ + H.c.) (3)

is the Hamiltonian describing the interaction between the
system and the reservoir, and �L,�+

L ,�,�+ are reservoir
operators that create and destroy photons in the loss reservoir
coupled to internal pump and subharmonic modes.

Due to presence of dissipation in this problem, the adequate
description is given by a master equation for the reduced
density operator ρ of the system. Within the framework of
the rotating wave approximation and in the interaction picture
it takes the form

∂ρ

∂t
= 1

i�
[H ′,ρ] + γL(2aLρa+

L − a+
L aLρ − ρa+

L aL)

+ γ (2aρa+ − a+aρ − ρa+a), (4)

where for the case of zero detunings

H ′ = i�f (t)(a+
L − aL) + i�k(aLa+2 − a+

L a2), (5)

while γL, γ are the damping rates for the pump and
subharmonic modes, respectively. Let us also note that this
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equation is rewritten through the transformed boson operators
aL → aL exp(−i�L), a → a exp[− i

2 (�L + �k)]. That leads
to a cancellation of the phases on the intermediate stages of
the calculations. As a result, the Hamiltonian H ′ depends only
on real-valued coupling constants.

We perform the calculations within the framework of
the positive-P representation [53,54], and obtain stochastic
equations for the complex c-number variables α, αL and β, βL,
corresponding to the operators a, aL and a+, a+

L . We consider
the regime of adiabatic elimination of the pump mode for the
case of high cavity losses for the pump mode, γL � γ . In this
approach the stochastic amplitudes are given by the following
equations:

dα = −(γ + λαβ)αdt + ε(t)βdt + dWα, (6)

dβ = −(γ + λαβ)βdt + ε(t)αdt + dWβ, (7)

αL(t) = [f (t) − kα2]/γL, (8)

βL(t) = [f (t) − kβ2]/γL, (9)

and dWα , dWβ are Gaussian noise terms (the Wiener incre-
ments) with the following nonzero correlators

〈dWα(t)dWα(t)〉 = [ε(t) − λα2]dt, (10)

〈dWβ(t)dWβ(t)〉 = [ε(t) − λβ2]dt, (11)

where ε(t) = f (t)k/γL, λ = k2/γL.
The equations of motion have time-dependent coefficients.

Nevertheless, surprisingly, it is possible to find their analytical
solution in the semiclassical approach for an arbitrary, but
real modulation amplitude f (t). The presentation of both
semiclassical and quantum theories of such a time-modulated
OPO is another important goal of this paper.

First, we shall study the solution of stochastic equations in
semiclassical treatment, neglecting the noise terms, for mean
photon numbers n and phases ϕ of the modes [n = αβ, ϕ =
1
2i

ln(α/β)] for time intervals exceeding the transient time,
t � γ −1. An analysis shows that similar to the standard OPO,
the considered system also exhibits a threshold behavior, which
is easily described through the period-averaged pump field
amplitude f (t) = 1

T

∫ T

0 f (t)dt , where T = 2π/δ is the period
and δ is the frequency of modulation, δ � ωL, which will
be specified below. The below-threshold regime with a stable
trivial zero-amplitude solution α = β = 0 is realized for ε <

εth = γ , or f = 1
T

∫ T

0 f (t)dt < fth, where fth = γ γL/k is the
threshold value of the pump field amplitude. When f > fth a
stable nontrivial solution exists with the following properties.
The equations for the mean photon number of the subharmonic
nc = 〈a+a〉 = |α|2 and the phase ϕ read as

d

dt
nc = 2ε(t)nc cos(2ϕ) − 2λn2

c − 2γ nc, (12)

d

dt
ϕ = −ε(t) sin(2ϕ), (13)

with the following solution for the phase:

cos[2ϕ(t)] = tanh

[
2
∫ t

t0

ε(t ′)dt ′ + c0

]
. (14)

Let us consider this result for asymptotic time intervals that
are long compared to the transient time, t � γ −1. Note, that
the formula∫ t2

t1

ε(t)dt = (t2 − t1)ε + ε(t2) − ε(t1) (15)

applies for a periodic function ε(t + T ) = ε(t), where ε =
1
T

∫ T

0 ε(t)dt is the period-averaged amplitude and ε(t) is a
periodic function ε(t + T ) = ε(t). In particular, for the case
of harmonic modulation f (t) = f0 + f1 cos δt , the mean value
is f = f0 and hence

ε(t) = ε + ε1 cos δt, (16)

where ε = kf /γL, ε1 = kf1/γL. In this case we have∫ t2

t1

ε(t)dt = (t2 − t1)ε + ε1

δ
[sin(δt2) − sin(δt1)] (17)

and

ε(t) = ε1

δ
sin(δt). (18)

Using these equations we conclude from (14) that for
time intervals exceeding the transient time t − t0 � γ −1,
cos[2ϕ(t)] → 1 and hence the phase becomes ϕ = πm, (m =
0, ± 1, ± 2, . . .). Restoring the previous phase structure of
intercavity interaction we conclude that the phase of the
subharmonic mode has a twofold symmetry

ϕ = 1
2 (�L + �K ) ± πm. (19)

Then, for nc = 1/Z, Eq. (12) is reduced to

d

dt
Z = −2[ε(t) − γ ]Z + 2λ, (20)

and the mean photon number reads as

n−1
c (t) = Zh + 2λ

∫ t

t0

e−2
∫ t

τ
[ε(t ′)−γ ]dt ′dτ. (21)

Here, Zh = Z(t0) exp{−2
∫ t

t0
[ε(t ′) − γ ]dt ′} is the solution of

the homogeneous equation corresponding to (20).
As the analysis shows, beyond the transient time intervals,

t − t0 � γ −1, the term Zh can be neglected and we arrive at
the result

n−1
c (t) = 2λ

∫ t

t0

exp

{
−2

∫ t

τ

[ε(t ′) − γ ]dt ′
}
dτ. (22)

Note, that in this case nc(t) is a periodic function of time. For
the case of a monochromatic pump field, f (t) = const, we
obtain the usual result for the photon number of an ordinary
OPO in the steady state,

nst = (ε − γ )/λ = (f − fth)/k. (23)

It is interesting to consider the period-averaged mean photon
number nc = 1

T

∫ T

0 nc(t)dt . Straightforward calculations show
that nc depends on the period-averaged amplitude f and
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coincides with the analogous result for non-modulated OPO,
nc = nst = (f − fth)/k.

III. PERTURBATION THEORY AND SQUEEZED
VARIANCE

The aim of the present section is to study the quantum-
statistical properties of an OPO in a linearized treatment of
quantum fluctuations. We assume that the quantum fluctua-
tions are sufficiently small so that Eqs. (6) and (7) can be
linearized around the stable semiclassical steady state α(t) =
α0 + δα(t), β(t) = β0 + δβ(t). This method is appropriate
for analyzing the quantum-statistical effects, i.e., squeezed
variances, for all operational regimes with the exception of
the vicinity of the threshold, where the level of quantum noise
increases substantially.

Nevertheless, in our analysis we will use the modified
perturbative approach expanding measurable quantities in
power series in the small parameters of the theory. Indeed,
in current experiments the ratio of nonlinearity to damping
is small, k/γ � 1 (typically 10−4 or less), and hence λ/γ =
k2/(γ γL) � 1 is a small parameter of the theory.

It should be also noted that the assumption of vanishing
boundary terms in the standard procedure of deriving a Fokker-
Planck equation in the positive-P representation is generally
valid only when k/γ � 1. In this case the boundary terms,
which allow the master equation to be rewritten as a Fokker-
Planck equation, are exponentially suppressed.

In this approach, the limit λ → 0 corresponds to neglecting
noise terms in the equations (6) and (7). This means that in the
limit λ/γ � 1 the solutions of Eqs. (6), (7) are transformed
to the semiclassical solutions. Indeed, the solutions of the
deterministic parts of (6), (7) are proportional to λ−1/2 (nc ∼
λ−1, accordingly α ∼ λ−1/2, β ∼ λ−1/2) while the noise terms
containing the terms λα2 and λβ2 remain finite for k → 0.

In order to develop this perturbative analysis systematically
and in order to avoid the λ−1/2 terms for the stochastic
amplitudes α, β in the zero order of perturbation theory, we
introduce the scaled amplitudes as α′ = sα, β ′ = sβ with the
scaling parameter s = √

λ/γ . This leads to the equations

dα′ = −γ (1 + α′β ′)α′dt + ε(t)β ′dt + dWα′ , (24)

dβ ′ = −γ (1 + α′β ′)β ′dt + ε(t)α′dt + dWβ ′ , (25)

where dWα′ = sdWα , dWβ ′ = sdWβ , and the correlators are

〈dWα′ (t)dWα′(t)〉 = s2[ε(t) − γα′2]dt, (26)

〈dWβ ′ (t)dWβ ′(t)〉 = s2[ε(t) − γβ ′2]dt. (27)

Note, that in these variables the noise terms vanish while
the scaled photon number n′ = s2n remains finite for λ → 0.
Further, we omit the primes for simplicity.

Another important difference of our approach, in compar-
ison with the standard ones, is connected with the choice
of appropriate stochastic variables [45,46]. Since in the
present paper our primary interest is to calculate the mean
photon number and the squeezed variance, it is convenient
to perform the perturbative analysis of the system for the
following combination of stochastic amplitudes: n = αβ, R =

n − 1
2 (α2 + β2). It is easy to check that the variance Vθ (t)

is expressed through R. Indeed, using the periodic nature of
intracavity interaction and the relationships between normally
ordered operator averages and stochastic moments with respect
to the P function, we obtain

Vθ (t) = 1
2 (1 + 2〈a+a〉 − 〈a2〉ei� − 〈a+2〉e−i�)

= 1
2 (1 + 2〈αβ〉 − 〈α2〉ei� − 〈β2〉e−i�), (28)

where � = θ + �k . Thus, for � = 2πn, (n = 0, ± 1, ±
2, . . .), we have V (t) = 1

2 + 〈R〉. The remarkable advantage
of this approach is that it allows us to obtain results for both
below and above threshold operational regimes in the same
way. Using Ito rules for changing the stochastic variables, we
obtain from (24) and (25),

dn = − 2γ ndt − 2γ n2dt + 2ε(t)ndt − 2ε(t)R + dWn,

(29)

dR = −2[γ + γ n + ε(t)]Rdt

− s2[ε(t) − γ n + γR]+dWR, (30)

where the stochastic correlations are given by

〈dWn(t)dWn(t)〉 = s2[ε(t)n − γ n2 − ε(t)R]dt, (31)

〈dWR(t)dWR(t)〉 = −2s2R[ε(t)R − γ n + γR]dt, (32)

〈dWR(t)dWn(t)〉 = −s2R[ε(t) + γ n]dt. (33)

We expand the scaled variables in a truncated power
series of the parameter s, n = n(0) + sn(1) + s2n(2) and R =
R(0) + sR(1) + s2R(2), to perform the perturbative analysis of
the moments. Similar expansion is used for the noise terms Wn,
WR . It is not difficult to check that amongst the correlators with
first-order noise terms the only nonzero one is〈

dW (1)
n (t)dW (1)

n (t)
〉 = n′

0[ε(t) − γ n′
0]dt. (34)

The zero-order form of the equations (29), (30) is

dn(0) = − 2γ n(0)dt − 2γ (n(0))2dt

+ 2ε(t)n(0)dt − 2ε(t)R(0), (35)

dR(0) = −2[γ + γ n(0) + ε(t)]R(0)dt. (36)

Thus, in the asymptotic regime we obtain R(0) = 0 and hence
the semiclassical results for the mean photon numbers read as

n(0) =
{

0; ε < εth

s2nc; ε > εth.
(37)

The first-order equations (29), (30) are given by

dn(1) = − 2[γ + 2γ n(0) − ε(t)]n(1)dt

− 2ε(t)R(1)dt + dW (1)
n , (38)

dR(1) = −2[γ + γ n(0) + ε(t)]R(1)dt. (39)

We conclude that R(1) = 0 for t → ∞. As 〈W (1)〉 = 0, we
have for 〈n(1)〉

d〈n(1)〉 = −2[γ + 2γ n(0) − ε(t)]〈n(1)〉dt. (40)
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Therefore we conclude that for both regimes of generation
〈n(1)〉 = 0. However, the noise terms W (1) lead to the nonvan-
ishing variance of the photon number. Using Ito rules we arrive
for the variance 〈(n(1))

2〉 at

d〈(n(1))2〉 = −4[γ + 2γ n(0) − ε(t)]〈(n(1))2〉dt

+ n(0)[ε(t) − γ n(0)]dt, (41)

with the following formal solution

〈(n(1)(t))2〉 =
∫ t

−∞
exp

{
−4

∫ t

τ

[γ + 2γ n(0)(t ′) − ε(t ′)]dt ′
}

× n(0)(τ )[ε(τ ) − γ n(0)(τ )]dτ. (42)

In the below-threshold regime, n(0) = 0 and the variance
〈[n(1)(t)]

2〉 is equal to zero, too.
Let us turn to the second-order equations. Because R(0) =

R(1) = 0, the variance in the scaled variables V (t) = 1
2 + 〈R〉

is determined by the second-order term R(2). The correspond-
ing equation for R reads as

d〈R(2)〉 = −2[γ + γ n(0) + ε(t)]〈R(2)〉dt

− [ε(t) − γ n(0)]dt. (43)

This equation leads to the following result for both regimes
of generation:

〈R(2)〉 = −
∫ t

−∞
exp

{
−2

∫ t

τ

[γ + ε(t ′) + γ n(0)(t ′)]dt ′
}

× [ε(τ ) − γ n(0)(τ )]dτ. (44)

Finally, for the variance of the quadrature amplitude V (t) =
1
2 + 〈R(2)〉 we obtain the linear equation

dV (t)

dt
= −2[γ + γ nc(t) + ε(t)]V (t) + γ + 2γ nc(t), (45)

which is rewritten through the original unscaled photon
number nc(t). The solution in the asymptotic regime is given
by

V (t) = γ

∫ t

−∞
exp

{
−2

∫ t

τ

[γ + ε(t ′) + γ nc(t ′)]dt ′
}

× [1 + 2nc(τ )]dτ. (46)

It is not difficult to transform this expression to the form
where its periodic dependence is obvious,

V (t) = γ

∫ 0

−∞
exp

{
−2

∫ 0

τ

[γ+ε(t ′ + t) + γ nc(t ′ + t)]dt ′
}

× [1 + 2nc(τ + t)]dτ. (47)

The analysis of the below-threshold regime is simple and leads
to Eq. (47) with nc = 0,

V (t) = γ

∫ 0

−∞
exp

{
−2

∫ 0

τ

[γ + ε(t ′ + t)]dt ′
}
dτ. (48)

Equations (47) and (48) for the time-dependent variances
constitute the main results of the paper. In particular, when
ε(t) = ε = const, Eq. (48) takes the form V = γ /[2(γ + ε)],
which coincides with the result for the ordinary OPO below

threshold. For the general case the integral in (48) can not be
handled but a lower bound for V (t) can be obtained in the form

V (t) � γ

2(γ + εmax)
. (49)

Next, we present the applications of these general results to
time-modulated OPO.

IV. PERIODICALLY MODULATED SQUEEZING

In the previous section we have derived results for the
mean photon number, Eq. (22), and the quadrature variance,
Eq. (47), of a single-mode light beam generated in time-
modulated OPO. Equations (46) and (47) apply for arbitrary
nc, particularly for nc = 0, which allows us to use them in
both the below- and above-threshold regimes. As applications
of these results we consider in this section the experimentally
available scheme of OPO under the action of a pump field
with continuous, harmonically modulated amplitude, ε(t) =
ε + ε1 cos (δt) with δ � ωL.

Such amplitude modulation can be realized elec-
tronically using standard techniques, in particular, with
the help of an electro-optic amplitude modulator. Al-
ternatively, amplitude modulation can be achieved in
OPO driven by polychromatic pump field. We con-
sider the setup of Fig. 1, assuming the pump mode is
driven by the field Eext(t) = f0 cos (ωLt + �L) + (f1/2) ×
{cos [(ωL + δ)t + �L + �] + cos [(ωL − δ)t + �L − �]} at
the central frequency ωL and two satellites ωL + δ, ωL − δ,
for δ � ωL. It is easy to check that the Hamiltonian of this
system is indeed given by Eq. (1) and the modulation amplitude
is equal to f (t) = f0 + f1 cos (δt + �). Above the threshold,
f = f0 > fth, the mean photon number, Eq. (22), in the case
of harmonic modulation reads as

n−1
c (t) = 2λ

∫ 0

−∞
exp

[
2γ τ

(
f

fth
− 1

)]

× exp

{
2γf1

δfth
{sin[δ(t + τ )] − sin(δt)}

}
dτ. (50)

This result is illustrated in Fig. 2(a) for different levels of
modulation. For f1 = 0 it reaches the standard result nc =
nst = (f0 − fth)/k.

It is not difficult to obtain from Eq. (50) the lower and upper
bounds for the mean photon number,

nst exp (−4ε1/δ) � nc(t) � nst exp (+4ε1/δ). (51)

Using these inequalities we conclude that the amplitude of
oscillations of the photon number decreases with increasing
modulation frequency δ, and increases with the parameter ε1.

Next, we turn to the study of the squeezed quadrature
variance in the presence of harmonic modulation. Below the
threshold from (48) we obtain

V (t) = γ

∫ t

−∞
exp

{
− 2(γ + ε)(t − τ )

+ 2ε1

δ
[sin(δt) − sin(δτ )]

}
dτ. (52)

For the case of a weak modulation level, ε1/δ � 1, the
exponent can be expanded in a power series of the ratio ε1/δ.
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FIG. 2. (a) Mean photon number and (b) variance versus di-
mensionless time for the parameters: k2/γLγ = 10−8, δ = 2γ , f0 =
2γ γL/k = 2fth; f1 = 0 (curve 1) corresponds to the stationary limit,
f1 = 0.75f0 (curve 2), and f1 = 1.5f0 (curve 3). The dashed line in
Fig. 2(b) corresponds to the stationary limit V = 1/4.

Then, the variance up to the first order is

V (t) ≈ γ

2(γ + ε)

{
1 − 2ε1

δ

sin(δt) + [ 2(ε+γ )
δ

]
cos(δt)

1 + [ 2(ε+γ )
δ

]2

}
.

(53)
The maximal degree of squeezing in this case is achieved

for the time intervals δt = arctan δ
2(γ+ε) + 2πk, and reads as

Vmin = γ

2(γ + ε)

{
1 − 2ε1

δ

1√
1 + [ 2(ε+γ )

δ

]2

}
. (54)

Note that, near the threshold the level of integral squeezing is
less than 25%.

Typical numerical results for the above-threshold regime
are presented in Fig. 2(b), based on Eq. (47). The variance
shows a time-dependent modulation with a period 2π/δ.
The drastic difference between the degree of single-mode
squeezing for modulated and stationary dynamics is also
clearly seen in Fig. 2(b), where curve 1 represents an example
for the stationary case (f1 = 0). This variance, however, is still
above the stationary limit of 1/4 for the chosen parameters.
The stationary variance near the threshold is bounded by the
condition V ≥ 1

2V0, where the variance V0 corresponds to the
level of vacuum fluctuations and is normalized as V0 = 1/2.

FIG. 3. The minimum levels of the variance versus f /fth for
three levels of modulation: f1 = 0 (curve 1), f1 = 0.75f (curve 2),
and f1 = 1.5f (curve 3). The parameters are as in Fig. 2. The dashed
line corresponds to the stationary limit.

However, the variance for the case of modulated dynamics
can be less than 1

4 for definite time intervals. To indicate these
effects we also show in Fig. 2(b) the stationary limit V = 1/4
as a dashed line.

The minimum values of the variance Vmin = V (tm) at fixed
time intervals tm = t0 + 2πm/δ, (m = 0,1,2 . . .) are shown
in Fig. 3. (curves 2 and 3) for various operational regimes.
As it is expected, the degree of squeezing increases with
the ratio f1/f . Curve 1 represents the stationary case where
the variance is constant and hence Vmin = V . Therefore, this
result demonstrates the transition of the variance through
the threshold. Another peculiarity here is that the stationary
variance (curve 1) has a characteristic threshold behavior,
which disappears in the case of strong modulation (curve 3).
We conclude that there is nothing of principle that prohibits
reaching approximately perfect squeezing for the case of
strong modulation. An analysis shows that the production
of strong squeezing occurs for the period of modulation
comparable with the characteristic time of dissipation, δ ≈ γ ,
and disappears for asymptotic cases of slow (δ � γ ) and fast
(δ � γ ) modulations.

At the end of this section we briefly discuss the squeezing in
the framework of external-operator moments, since measure-
ments are usually performed on output fields that are external to
the cavity. We consider the output behavior of OPO assuming
that all losses occur through the output coupler (see Fig. 1).
For this goal the method of external-field measurements based
on input-output relations [31–33] is used. In this case the
output photon field of the subharmonic is �out(t) = √

2γ a(t),
while the output photon field of the pump mode is equal
to �out

L (t) = √
2γ aL(t) − �in

L (t), where �in
L (t) is the input

photon field. The output-quadrature field variable is defined
as Xout(θ ) = 1√

2
[�out(t)eiθ + �out+(t)e−iθ ], while the output

measured time-dependent variance can be written through
the normal ordered moments as V out

θ (t) = 〈: Xout(θ )Xout(θ ) :
〉 − 〈Xout(θ )〉2 (see, for example Ref. [55]). Using these
formulae we get the variance V out(t) = 2γ (V − 1

2 ), as well
as the mean photon number per unit time nout(t) = 2γ nc(t).
Thus, the time-dependent output variance corresponding to
an instantaneous measurement of the output field moments
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is easily calculated in terms of the intracavity quadrature
variance. Integral output squeezing is realized if V out < 0 [55],
while the lower bound for V out is determined by the stationary
limit and reads V out/2γ > −1/4. Thus, the normalized output
time-dependent variance for the case of modulated OPO can be
less than −1/4, (V out/2γ < − 1

4 ), for definite time intervals.

V. CRITICAL FLUCTUATIONS AND WIGNER FUNCTION

We now consider what happens at or near the classical
threshold, f ≈ fth, where the perturbative analysis in general
gives divergent results. It is well known that the linearized
theory is applicable only outside the critical region, although
the variance (46) is surprisingly well defined also at the
threshold.

In order to verify the accuracy of our analytical calculations,
we use the numerical quantum trajectory simulations, which
are valid in all regions. We investigate also the variance of the
critical fluctuations at the threshold point as well as the Wigner
functions.

Our approach is based on the quantum state diffusion
simulation method [52], (details of analogous calculations
for an anharmonic oscillator in a time-modulated field can
be found in Refs. [39,40,56,57]). The numerical simulations
are performed in the truncated Fock basis of the subharmonic
mode ωL/2 in the regime of strong nonlinear coupling k � γ

or λ/γ � 1. We note that OPOs with such extremely large
nonlinearities are not realized in practice and in this part
of the article we do not intend to give results close to an
experimental situation but discuss the fundamental problems
of critical fluctuations. As our analysis shows, this simulation
tends to disagree with analytical results obtained for the
ranges of comparatively high values of the parameter λ/γ

and especially at the threshold. Figure 4 shows the detailed
results of the simulation for the numerical values of the
variance, for λ/γ = 0.06. As we see, in the deep quantum
operational regime, λ/γ = 0.06, the analytical solution (curve
1) disagrees with the numerical results (curve 2) in the vicinity
of the threshold. However, for the typical values λ/γ � 1 the

FIG. 4. The minimum values of the variances around the transi-
tion through the threshold of generation as the result of analytical
(curve 1) and numerical calculations (curve 2). The parameters are:
δ = 2γ , λ = 0.06γ , f = f1.
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FIG. 5. Wigner functions in the critical operational ranges of
OPO. The parameters are: δ = 2γ , λ = 0.06γ , f = 1.2fth, f1 =
1.5f ; (a) V = 0.16; (b) V = 0.27; (c) V = 0.4.
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analytical and numerical results are almost indistinguishable
for all operational regimes even for a narrow critical range.

As it is well known, a subharmonic mode in ordinary OPO
above threshold has a twofold symmetry in phase space. In the
steady state and in the semiclassical approach there are two
stable states of ωL/2 mode with equal photon numbers, but
with two different phases. Accordingly, the Wigner function in
a quantum dissipative regime has a twofold symmetry in phase
space under rotation of the phase space by an angle π around
its origin, W (r,θ ) = W (r,θ + π ), where r , θ are the polar
coordinates of the complex phase space. Moreover, the Wigner
function above threshold has two humps corresponding to the
two states. The results for the time evolution of the Wigner
function for the case of time-modulated OPO above threshold,
ε > γ , are depicted in Fig. 5 for fixed moments of time during
the period of modulation. These calculations show that the time
evolution of the Wigner function has a periodic structure with
two humps. The distance between the humps changes during
the period of modulation: it is maximal for the maximal mean
photon number Fig. 5(b), while the situation for two other
photon numbers is shown in Fig. 5(a) and Fig. 5(c).

VI. CONCLUSION

We have considered a model of OPO driven by a time-
modulated pump field. This device has been proposed for
the generation of periodically modulated squeezed light.
It has been shown that a time-modulated OPO provides
a very effective mechanism for the improvement of the
degree of quadrature squeezing even in the presence of
decoherence and cavity induced feedback. The total or integral
squeezing in terms of time-dependent intracavity quadrature
variances goes below the level of 50% relative to the level
of vacuum fluctuations, V < 1/4. It has been shown that a
similar conclusion also holds for the output measured integral
variance. This is in contrast to the case of the usual OPO
operated with CW pump where these spectrally integrated
quantities are bounded by the stationary limit. This progress
is due to the fact that the scheme considered operates under
appropriately tailored nonstationary conditions unlike many
other squeezed light sources. It is essential to note that this
improvement relates to the total or integral squeezing of the
output photon field of subharmonic rather than the spectral
squeezing. Indeed, most of the squeezing experiments have
been performed in the spectral domain in terms of the output
measured spectral variances. Moreover, a squeezing level that
is significantly lower than the integral squeezing has been
achieved at low-frequency spectral ranges. Nevertheless, as

noted in Ref. [55], states with even perfect squeezing of
a certain spectral component may be nonsqueezed in the
full sense. Unlike that, we have considered total or integral
squeezing in terms of both time-dependent intracavity modes
and time-dependent output photon fields instead of spectral
component squeezing.

In our analysis we have considered, as a first stage, the
simplest model of a two-mode OPO, but have not developed
a general theory of time-modulated OPOs, which should
include also a quantum theory of time modulation. Such theory,
being created, should operate with so-called wave-packet field
operators (see, for example Ref. [58]) and with an input wave
packet envelope, instead of operating with ordinary monomode
bosonic operators. In our analysis, we have not investigated the
dependence between time-dependent and spectral quantum
characteristics of OPO. So far such analysis have been
performed mainly for steady-state regimes. The analysis of
quantum fluctuations of temporal modes also deserves special
attention for more accurate identification of squeezing. For
instance, we need to specify a certain temporal mode using a
temporal filter. A simple example is the square filter of duration
τ leading to the measurement of the quadrature operator in the
following form:

Xθ (f ) = 1√
τ

∫ τ

0
dtXθ (t). (55)

It seems that using the temporal filter might lead to
small degradation of the degree of time-modulated squeezing.
However, if the filter duration is shorter than the period
of modulation, τ � T , these effects might be inessential.
Most recently, such time-resolved measurement [59] has been
experimentally demonstrated for investigations of entangling
photons (see, for example, Refs. [60,61]). Recently, a complete
analysis of photon temporal modes for quantum information
science has been given [62]. Nevertheless, we note that a
complete theoretical study of the above-mentioned problems
in application to time-modulated OPO is beyond the scope of
this paper and is a topic for future work.
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