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Passive PT -symmetric couplers without complex optical potentials
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In addition to the implementation of parity-time–(PT -) symmetric optical systems by carefully and actively
controlling the gain and loss, we show that a 2 × 2 PT -symmetric Hamiltonian has a unitarily equivalent
representation without complex optical potentials in the resulting optical coupler. Through the Naimark dilation
in operator algebra, passive PT -symmetric couplers can thus be implemented with a refractive index of real
values and asymmetric coupling coefficients. This opens up the possibility to implement general PT -symmetric
systems with state-of-the-art asymmetric slab waveguides, dissimilar optical fibers, or cavities with chiral mirrors.
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I. INTRODUCTION

With spatial reflection and time reversal, parity-time–(PT -)
symmetric systems that could exhibit entirely real and positive
eigenvalue spectra have attracted considerable attention [1,2].
In Bender and Boettcher’s original proposal, such a class of
non-Hermitian systems reveals the possibility of removing
the restriction of Hamiltonians from Hermiticity to a weaker
PT symmetry. Nevertheless, it was pointed out that the
no-signaling principle will be violated when applying the local
PT -symmetric operation on one of the entangled particles [3].
Although situations become much more complicated when
quantum entanglement is involved, PT symmetry could still
be used as an interesting model for open systems in classical
limit [4].

Based on the equivalence between the Schrödinger equation
and the optical wave equation, classical optical systems have
proven to be an excellent test bed for studying properties
of PT -symmetric systems. To satisfy PT symmetry, optical
systems with a complex potential U (x) = U ∗(−x) are required
for one-dimensional (1D) optical couplers (planar waveguides
or cavities) [5]. As a result, the real part of this complex
potential is an even function of the coordinate variable x,
while the corresponding imaginary part is an odd one. Several
unique features, such as nonlinear soliton dynamics [6], power
oscillations in synthetic optical lattices [7], unidirectional
invisibility [8], and loss-induced suppression of lasing [9],
have been demonstrated on PT -symmetric optical systems.

Experimental demonstration of PT symmetry in optics has
been realized with spatially balanced gain and loss of energy
in a planar slab waveguide [10,11]. However, it still remains
challenging to keep gain and loss constantly balanced in optical
devices. In addition to active PT -symmetric optical systems,
passive PT -symmetry breaking has been experimentally
demonstrated by externally modulating metamaterials on the
Si-on-insulator platform [12]. More recently, it was also
revealed that a supersymmetric transformation can provide a
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versatile platform by synthesizing the refractive index profile
in optical systems with PT symmetry [13].

In this paper, we demonstrate that any 2 × 2 PT -
symmetric system can be unitarily transformed into another
PT -symmetric system with only real-valued Hamiltonians.
This unitary transformation is constructed by applying the
Naimark dilation to embed a PT Hamiltonian in larger system
dimensions [14]. As a result, we show that the refractive
index of real values and asymmetric coupling coefficients
of PT -symmetric optical couplers are sufficient to satisfy
the PT -symmetry condition. Our result has an immediate
experimental implication since asymmetric couplers in the
slab waveguides have been well studied [15]. With current
optical device technologies, these asymmetric couplers can
be easily implemented with dissimilar optical fibers [16]
or through unequal amplitudes at the two boundaries in
the two cladding layers [17]. Furthermore, the asymmetric
transmission of a circularly polarized wave is realized by
applying a metamaterial [18], where the metamaterial has
been used to realize a gain-loss PT -symmetric system [19],
showing that asymmetric coupling system is promising. Our
proposal hence provides a more accessible platform to study
PT -symmetric systems in classical optics and overcomes
the current difficulty of implementing balanced gain-loss
PT -symmetric optical couplers.

II. MODEL

Let us consider a 1D optical coupler, as illustrated in
Fig. 1, with two eigenmodes denoted as A(z) and B(z) for
the left and right channels in the paraxial wave approximation,
respectively. The dynamics for this optical coupler satisfies a
Schrödinger-like wave equation:

i
∂ψ

∂z
= H ψ, (1)

with ψ = (A,B)T and

H = s

(
hA hAB

hBA hB

)
, (2)
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FIG. 1. (Color online) (a) Illustration of a PT -symmetric cou-
pler with complex optical potentials for the Hamiltonian shown in
Eq. (4). Here, two eigenmodes for the left and right channels in
the paraxial wave approximation are denoted as A(z) and B(z),
respectively. The channels with gain and loss are represented in red
(dark gray) and green (light gray). The magnitudes of gain and loss are
the same to satisfy the required PT symmetry, while the coupling
strengths between two channels are the same, i.e., hAB = hBA. (b)
Illustration of a PT -symmetric coupler without complex optical
potentials for the Hamiltonian shown in Eq. 17(a). Asymmetry
coupling strengths are depicted by different sizes of arrows, i.e.,
hAB �= hBA, and gray shading (whole area) is used to show where
there is no gain and loss in each channel.

where s is the scaling factor of the system, hA and hB

are the corresponding potentials (propagation constants) of
the left channel and right channel, and hAB and hBA are
the coupling strengths between two channels, respectively. The
optical Hamiltonian H is PT symmetric when it commutes
with the PT operator, i.e.,

[PT ,H ] = 0, (3)

where P is the spatial reflection operator that takes x → −x

and T is the time-reversal operator that takes i → −i. It is
easy to see that the eigenvalues of H are always real when
the eigenstates of a PT -symmetric Hamiltonian are also the
eigenstates of PT . However, when the eigenstates of H are
no longer the eigenstates of PT , the eigenvalues become
complex. This is called spontaneous PT -symmetry breaking.

In the following, we will show how to construct a general
PT -symmetric Hamiltonian with only the real values of the
refractive index involved. In the case of Hermitian Hamilto-
nians, the situation is much simpler since one can directly
apply a unitary transformation to construct a real-valued
Hamiltonian. In contrast, it is not clear if this is also true
in the PT -symmetric system, in which the inner product is
defined differently from a Hermitian one. In the following, we
answer this question positively.

Based on the Naimark dilation [14], the PT -symmetric
Hamiltonian is expanded into a Hermitian one with a larger
system dimension. Consider the following PT -symmetric

Hamiltonian in Ref. [11]:

H = s

(
i sin α 1

1 −i sin α

)
, (4)

from which the coupled-mode equations for an optical coupler
can be derived as

i
∂A

∂z
= i s sin α A + s B, (5)

i
∂B

∂z
= s A − i s sin α B. (6)

Here, the coupling strengths hAB and hBA between two
channels are equal. Gain and loss also exist in channels A and
B with coefficients ± sin α, respectively. It can be checked that
the corresponding eigenvalues of this Hamiltonian are E± =
±s cos α, where α is introduced as a Hermiticity parameter.
When α = 0, the Hamiltonian H returns to a Hermitian one.
When α �= 0, this Hamiltonian is not Hermitian, i.e., H �= H †,
but gives the right eigenstates |ER

±〉 and left eigenstates
|EL

±〉, respectively. Here, we define H |ER
±〉 = E±|ER

±〉 and
H †|EL

±〉 = E±|EL
±〉, which have the following explicit forms:

|ER
+(α)〉 = eiα/2

√
2 cos α

(
1

e−iα

)
, (7)

|ER
−(α)〉 = ie−iα/2

√
2 cos α

(
1

−eiα

)
, (8)

and |EL
±(α)〉 = |ER

±(−α)〉. The eigenvalue equation of H can
be written as

�†H� = Ẽ, (9)

where � ≡ (|ER
+〉,|ER

−〉), � ≡ (|EL
+〉,|EL

−〉), and the diagonal
matrix Ẽ consists of the energy spectrum:

Ẽ =
(

E+ 0
0 E−

)
. (10)

III. GENERALIZATION

It is known that a non-Hermitian matrix does not have an
orthogonal set of eigenvectors [20]. In other words, a non-
Hermitian matrix, in general, cannot be transformed into a
diagonal form by an orthogonal matrix. Nevertheless, the left
and right eigenstates of H have the biorthogonality property:

�† � = I. (11)

Therefore, the Naimark dilation theorem allows us to embed
the original 2 × 2 non-Hermitian Hamiltonian H into a 4 × 4
Hermitian one:

H = cos α

2

(
Hη−1 + ηH H − H †

H † − H Hη−1 + ηH

)
, (12)

where η ≡ ��† is the metric operator coming from the
Naimark dilation in Ref. [14]. To answer the question of
whether a unitary transformation exists that can rotate the
PT -symmetric system shown in Eq. (4) to one with only
real values, note the structure of our dilated Hamiltonian H
shown in Eq. (12). Since H is Hermitian, it is simple to use
the unitary transformation U to change the basis and find the
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different mathematical representations of the physics system
H. It is important to note that the connection between H and
H is based on the constraint of the dilated quantum state �

having the form

� ∝
(

ψ

ηψ

)
, (13)

and one can see the relation by applying H on � and thus can
obtain

H� =
(

H 0
0 H †

)(
ψ

ηψ

)
. (14)

To preserve the structure in Eqs. (13) and (14), the unitary
transformation to be applied onto H is

U =
(

U 0
0 U †

)
, (15)

where U lives in the two-dimensional Hilbert space and gives
a new Hamiltonian, H ′ = UHU †, while H ′ keeps the same
spectrum as H . The corresponding left and right eigenstates
of H ′ are �′ = U� and �′ = U�, respectively. With the help
of the Bloch sphere, we can regard this unitary transformation
as a rotation operator by decomposing the operator U with the
Euler angles φz, φy′, and φz′ , i.e.,

U = e−iσzφz/2e−iσyφy′ /2e−iσzφz′ /2, (16)

where z corresponds to the rotation axis and y ′ and z′
indicate the new axis after rotation. Here, σz and σy are
the corresponding Pauli matrices; φz, φy ′ , and φz′ are the
corresponding Euler angles. Then, we can derive an explicit
form for the generalized H ′ with the matrix elements

h′
A = −(cos φz′ sin φy ′ − i sin α cos φy ′ ),

h′
AB = e−iφz (cos φz′ cos φy ′ − i sin φz′ + i sin α sin φy ′ ),

h′
BA = eiφz (cos φz′ cos φy ′ + i sin φz′ + i sin α sin φy ′ ),

h′
B = cos φz′ sin φy ′ − i sin α cos φy ′ ,

and we can compute its eigenvalues:

E± = (h′
A + h′

B) ± √
(h′

A + h′
B)2 − 4(h′

Ah′
B − h′

ABh′
BA)

2
.

With this unitary transformation, the condition of the
PT symmetry in the new Hamiltonian H ′ is changed to
P ′T ′H ′P ′T ′ = H ′, where P ′ and T ′ are the new parity
and time-reversal operators after the unitary transformation.
It is worth remarking that T ′ is equal to a unitary operator
multiplied by an antilinear operator. It is the general form of a
time-reversal operator. Both P ′ and T ′ satisfy the conditions
of P ′2 = T ′2 = I and [P ′,T ′] = 0.

In general, there are eight degrees of freedom in an
arbitrary Hamiltonian. Among them, four degrees of freedom
correspond to three Euler angles introduced in Eq. (16) and
the non-Hermiticity α. We can also introduce the following
three constraints for the energy spectrum E± to be satisfied:
(1) E+ + E− = 0, (2) E+ − E− = ω0, and (3) E+, E− ∈ R.
Here, the first constraint comes from the fact that the overall
energy shift should not affect the physical phenomena. The
second constraint helps us to focus on physical systems with
the same energy scale, denoted by ω0; the third ensures all the

energies are real values. Finally, we can derive PT -symmetric
Hamiltonians coping with all these constraints.

In addition to the original PT -symmetric Hamiltonian in
Eq. (4), we explicitly list all other possible PT -symmetric
Hamiltonians for 2 × 2 couplers:

H1 = s

(
0 1 − sin α

1 + sin α 0

)
, (17a)

H2 = s

(
i sin α −i

i −i sin α

)
, (17b)

H3 = s

(
0 −i + i sin α

i + i sin α 0

)
, (17c)

H4 = s

(
1 −i sin α

−i sin α −1

)
, (17d)

H5 = s

(
1 − sin α

sin α −1

)
. (17e)

Note that the Hamiltonians H1 and H5 shown in Eqs. (17a)
and (17e) contain only real-number matrix elements. In terms
of the interacting optical channels, the non-Hermiticity in the
PT -symmetric system comes from the asymmetric couplings
between two channels. Since there is no complex number
involved, the gain and loss effects can be absent to satisfy
the PT -symmetry condition.

To realize these passive PT -symmetric couplers as optical
devices, one may need to implement asymmetric couplings
between two channels. Physically, the difference between
gain and loss contributes to asymmetric coupling. Take the
Hamiltonian H1 shown in Eq. (17a) as an example; as
illustrated in Fig. 1(b), asymmetric couplers in the slab
waveguides, dissimilar optical fibers, or coupled cavities with
chiral mirrors [21] are ready to act as PT -symmetry-based
functional devices.

IV. DISCUSSION

We remark that, although a seemingly general PT -
symmetric Hamiltonian was proposed in [2],

H =
(

x + (z + iy) z
tan γ

− iy tan γ
z

tan γ
− iy tan γ x − (z + iy)

)
, (18)

with x,y,z,γ ∈ R, under the condition of fixed energy
difference, it is unitarily equivalent to H ′ with φz′ = φz = 0.
The rotation operator used to generate H ′ gives an explicit
picture that Eq. (18) can be obtained by only rotating Eq. (4)
about the y axis, which is obviously not the most general 2 × 2
PT -symmetric Hamiltonian.

Another feature which is not obvious in our generalized
Hamiltonian H ′ and Eqs. (17a)–(17e) is the symmetry-broken
phase where the eigenvalues become complex. The absence of
this feature is due to the fact that the range of sin α in Eq. (4)
is restricted in [−1,1]. To recover the complex eigenvalue
feature, one can replace sin α by κ , where κ ∈ (−∞,∞). With
the replacement, e.g., Eq. (17a) becomes

H̃1 = s

(
0 1 − κ

1 + κ 0

)
, (19)
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with eigenvalues ±√
1 − κ2, which are complex when κ > 1

and while all the entries are real.
The unitary matrix providing the generalization here is not

as trivial as the basis transformation in conventional quantum-
mechanics theory. In PT -symmetric theory, a new inner
product is defined so is the meaning of unitary transformation.
Thus, the matrix of transformation in this paper is unitary
in the conventional inner product but not in PT -symmetry
theory and cannot be consider a basis transformation in PT -
symmetry theory. The relation established here first illustrates
the reason that the unitary matrix generates a more general
Hamiltonian by using Naimark dilation and then provides a
clear picture by decomposing the transformation matrix into
rotation operators on the Bloch sphere. The idea here does not
only apply in a two-level system but may also apply in higher
dimensions and gives a systematic way to find out other general
PT -symmetric Hamiltonians.

V. CONCLUSION

In conclusion, based on the Naimark dilation to construct a
Hermitian Hamiltonian with left and right eigenstates from
a PT -symmetric system, we reveal a generalized 2 × 2
PT -symmetric coupler without any complex optical potentials
involved. Instead of gain-loss-balancedPT -symmetric optical
couplers, now passive devices with asymmetric coupling co-
efficients can also be used to implement these PT -symmetric
optical systems.
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