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Synchronization of qubit ensembles under optimized π-pulse driving
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We propose a technique of a simultaneous excitation of disordered qubits providing an effective suppression of
inhomogeneous broadening in their spectral density. The technique is based on applying of an optimally chosen
π pulse with a smooth nonrectangular shape. We study excitation dynamics of an off-resonant qubit subjected to
a strong classical electromagnetic driving field with a large reference frequency and slow envelope. Within this
solution we optimize the envelope to achieve a preassigned accuracy in qubit synchronization.
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I. INTRODUCTION

The investigation of qubit ensembles reveals analogies with
quantum optics effects [1–3] and possibilities for construction
of quantum computers and simulators [4–7]. Solid-state
realizations of qubit ensembles are superconducting Josephson
circuits [5,8,9], nitrogen-vacancy (NV) centers in diamond
samples [10–12], or nuclear and electron spins realized as 31P
donors in 28Si crystals [13] and Cr3+ spins in Al2O3 [14].
The coupling of qubit ensembles with a superconducting mi-
crowave resonators results in the formation of subwavelength
quantum metamaterials [15–19]. The long-range interaction
through a photon mode results in the formation of collective
qubit states in these metamaterials [20,21], as the Dicke
model describes. One of the crucial distinctions of artificial
qubits from natural atoms is that their excitation energies are
in many cases tunable in situ by external magnetic fields.
Beside of the tunability, another property is a disorder in
excitation frequencies and, as a consequence, inhomogeneous
broadening of the density of states in qubit ensembles. This
is related to fundamental mechanisms such as an exponential
dependence of excitation energy on Josephson and charging
energies in superconducting qubits or spatial fluctuations of
background magnetic moments [22] in systems with NV
centers.

A disordered spectrum of collective modes offers mul-
timode quantum memory, where information about a pho-
ton state is encoded as a tunable collective qubit mode
[23,24]. The storage and retrieval protocols were proposed in
Refs. [25–27] and are based on spin-refocusing techniques
[28,29] or successive magnetic-field gradients. In the context
of quantum memory the unavoidable spectral broadening in
qubit excitation frequencies provides multimode performance
from one side, but from the other side it is one of the limiting
factors affecting coherence times. Therefore, the development
of techniques of effective suppression of the disorder in
qubit frequencies and synchronization of their dynamics is
an important problem. For instance, one of the options to
suppress the disorder is an atomic frequency comb (AFC) tech-
nique applied to rare-earth-metal-ion qubit ensembles [30].
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This method is based on frequency-selective optical pumping
and subsequent transitions to metastable auxiliary hyperfine
states. Also, adiabatic passage (AP) methods such as Stark-
shift-chirped rapid AP (SCRAP) [31,32] or stimulated Raman
AP (STIRAP) [33] can be applied. Another way of solving this
problem was demonstrated in Ref. [11] as a “cavity protection”
effect in NV centers. The effect is related to decreasing the
relaxation rate of collective qubit modes proportional to the
spectral broadening.

Our research is inspired by one of the key ideas of Ref. [11]:
the succession of microwave rectangular pulses can serve as an
efficient method for exciting disordered NV centers from the
ground to the excited state. In our paper we study the possibility
of a simultaneous qubit excitation by a single nonrectangular π

pulse, rather than the sequence mentioned above. We observe
that the optimized nonrectangular shape of a π pulse provides
an efficient tool for suppression of the disorder effects as well.
It allows us to excite qubits within a wide detuning range with
almost 100% probability. In contrast to AFC methods, this
technique does not require using auxiliary level transitions. It
should be noted that the π -pulse duration time in our approach
is proportional to the inverse Rabi frequency, which means
that the operation time of our technique is significantly shorter
than the timescales of the SCRAP and STIRAP methods.

We assume that the π pulse is realized as electromagnetic
signal f (t)e−iωt with a carrying frequency ω being almost in
resonance with the qubit excitation frequency. In our study
we optimize the envelope shape f (t) in a class of smooth
functions, which guarantees that higher energy levels of a
qubit are not affected. In particular, we use a superposition
of sine functions, which guarantees the continuity of f (t)
over the entire π -pulse duration period, including its starting
and final moments. Moreover, this feature is relevant for
experimental realization of π pulses based on GHz signal
generators. Meanwhile, the use of sine functions is not crucial
in this technique and another envelope shape can be used, such
as a set of rectangular pulses.

This technique can be applied to disordered systems with
strong qubit-cavity couplings like NV centers or supercon-
ducting metamaterials, as well as to the atomic-clock devices
[34] as a tool for the preparation of a specific atomic
state.
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II. DEFINITIONS

We address the possibility of a simultaneous excitation of
disordered qubit ensemble coupled to a photon transmission
line being the source of the driving. Qubits are assumed to be
noninteracting with each other and long lived in comparison to
the π -pulse duration time: τ � τϕ . The absence of qubit-qubit
interactions means that we can study the dynamics of a single
off-resonant driven qubit. We fix the carrying frequency ω and
assume that the qubit energy ε can be varied to reflect the spec-
tral broadening. Neglecting the qubit decoherence, we solve
the Schrödinger equation i∂t |ψ〉 = (Hq + Hext)|ψ〉, where the
unperturbed qubit Hamiltonian is Hq = ε(σ0 + σz)/2 and
the external driving is Hext = [f (t)e−iωtσ+ + f ∗(t)eiωtσ−]/2.
We define the wave function of the qubit state in the ω rotating
frame as

|ψ(t)〉 =
(

α(t)e−i(ω+δ/2)t

β(t)e−iδt/2

)
,

where the detuning frequency is δ = ε − ω. The Hamiltonian
H of the driven qubit in this rotating frame reads

H = 1

2

(
δ f (t)

f ∗(t) −δ

)
. (1)

We assume that the qubit is close to the cavity resonance
ε ≈ ω and consider the evolution of the qubit wave function
within the time interval 0 < t < τ starting from the ground
state |ψ(0)〉 = |g〉 at the initial moment of time t = 0.

The π -pulse time τ is considered as a fixed value. At this
point we define the frequency

 = π

τ
,

which is the main scale in our consideration along with
the detuning δ. The frequency  has a transparent physical
meaning: this is frequency of Rabi oscillations of the resonant
qubit with δ = 0 under the constant driving amplitude given
by F0(t) = e−iωt . Hence, time τ is the half of the Rabi period
associated with a rectangular π pulse F0(0 < t < τ ) exciting
the system from |g〉 to |e〉. Nonzero detuning, related to the
inhomogeneous broadening or spread in qubit frequencies,
does not allow us to achieve full qubit excitation if the
envelope shape f (t) is constant. In the following consideration
we modify f (t) in the time interval 0 < t < τ into a more
complicated nonrectangular shape f (t) �= const. to achieve
higher efficiency in near-to-resonance qubit excitation.

The Schrödinger equation with the Hamiltonian (1) allows
analytical solutions only in several particular cases. The
basic one is the constant driving amplitude f (t) = f = const.
and arbitrary detuning δ which corresponds to damped Rabi
oscillations of the frequency R = (f 2 + δ2)1/2. In this case
the evolution of the wave function being in the ground state at
t = 0 reads

|ψ(t)〉 =
( − if

R
sin Rt/2

cos Rt/2 + iδ
R

sin Rt/2

)
. (2)

One can see that detuning reduces the maximum of the
excitation probability. This effect results in an impossibility
of a synchronization of the qubit ensemble by the rectangular
shape of the driving envelope.

Our further consideration is based on another exact solution,
which holds for the on-resonance driving regime δ = 0 and
arbitrary real-valued f (t). The time evolution of the ground
state within this solution reads

|ψ(t)〉 =
(

−i sin ϕ(t)
2

cos ϕ(t)
2

)
, (3)

where the phase ϕ(t) is given by the time integral

ϕ(t) =
∫ t

0
f (t1)dt1.

The π -pulse condition, which is the inversion of a qubit
occupation number, for this resonant case holds for

ϕ(τ ) = π. (4)

The last constraint (4) provides the class of real-valued
functions f (t) that we address in the optimization procedures
below.

III. PERTURBATIVE SOLUTION

As mentioned above, the exact solution is not known for
arbitrary f (t) and nonzero detuning δ �= 0. Hence, we develop
a perturbation theory based on treating the δσz/2 terms in the
Hamiltonian (1) as a small perturbation and considering the
exact solution (3) at δ = 0 as the zeroth-order approximation.
We end up with the following recursive equations forming the
perturbation theory in δ:

iα̇(n)(t) − f (t)

2
β(n)(t) = δ

2
α(n−1)(t), (5)

iβ̇(n)(t) − f (t)

2
α(n)(t) = − δ

2
β(n−1)(t). (6)

The full solution reads(
α(t)
β(t)

)
=

(
x(t) cos ϕ(t)

2 − iy(t) sin ϕ(t)
2

y(t) cos ϕ(t)
2 − ix(t) sin ϕ(t)

2

)
. (7)

Assuming that the qubit was in the ground state at the initial
moment of time |ψ(0)〉 = |g〉, the solution for x(t) and y(t) is
given by a δn series with nested integrals as the coefficients:

x(t) = − δ

2

∫ t

0
dt1 sin ϕ(t1)

+ δ2i

4

∫ t

0
dt1

∫ t1

0
dt2 sin[ϕ(t2) − ϕ(t1)] + · · · , (8)

y(t) = 1 + δi

2

∫ t

0
dt1 cos ϕ(t1)

− δ2

4

∫ t

0
dt1

∫ t1

0
dt2 cos[ϕ(t2) − ϕ(t1)] + · · · . (9)

These are general equations of the perturbation theory we
use to find the optimal shape of a π pulse f (t) providing
simultaneous qubit excitations. Assuming the envelope of the
driving to be a smooth function at t = 0 and at t = τ , we model
f (t) as a superposition of a finite number N of sine functions,
where  comes as a factor both in the sine arguments and in
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the driving amplitude,

f (t) = 

N∑
n=1

k2n−1 sin(n − 1/2)t. (10)

According to Eq. (7) the wave function after the π pulse
takes the following form:(

α(τ )
β(τ )

)
=

(−iy(τ )
−ix(τ )

)
. (11)

We optimize numerically a finite set of coefficients k2n−1 and
require that the ground-state amplitude at t = τ is zero up to
δN in the δ expansion, i.e., β(τ ) = O(δN ). It is possible if two
conditions are fulfilled: (i) the resonant qubit is excited, i.e.,
ϕ(τ ) = π , which is expressed in terms of k2n−1 as

4
N∑

n=1

k2n−1

2n − 1
= π, (12)

and (ii) the off-resonant qubit excitation almost does not
depend on detuning, i.e., x(τ ) = O(δN ) in Eq. (11). The
requirement x(τ ) = O(δN ) can be reduced to a set of N − 1
equations corresponding to the vanishing of the δn terms
at n � N − 1 in the expansion (8), if we represent it as
x(τ,δ) = ∑

n=1 cnδ
n, where

c1 =
∫ τ

0
dt1 sin ϕ(t1) = 0, (13)

c2 =
∫ τ

0
dt1

∫ t1

0
dt2 sin[ϕ(t2) − ϕ(t1)] = 0.

... (14)

To summarize, our perturbative solution consists of a finite
system of N equations [(12), (13), (14), . . .] providing a
smooth solution for f (t). The precision order of the technique
is given by N and ensures that the excitation probability
n↑(τ,δ) of an off-resonant qubit is close to unity up to the
small correction n↑(τ,δ) = 1 − |x(τ,δ)|2. This correction is
nothing but the precision of the technique and is given by
the probability of the ground-state qubit occupation n0(τ,δ) ≡
|x(τ,δ)|2.

IV. RESULTS

A. π -pulse optimization scheme at N = 3

In this section we provide numerical results for optimizing
a π pulse constructed from N = 3 terms:

f (t) = (k1 sin t/2 + k3 sin 3t/2 + k5 sin 5t/2).

We start from the numerical solution for k3 and k5 by using
Eqs. (13) and (14); after that we choose k1 according to the
π -pulse condition constraint (12). In Fig. 1 we plot two sets of
curves in coordinates (k3,k5): (i) Solid (red) curves correspond
to vanishing of the term linear in δ in x(τ ), i.e., c1 = 0,
according to Eq. (13). Hence, in this case the residual part
for the ground-state amplitude is x(τ ) = O(δ2). (ii) Dashed
(blue) curves correspond to vanishing of the quadratic term
c2 = 0 in x(τ ), given by Eq. (14). Note that, under the last
condition c2 = 0, the term linear in δ may survive (c1 �= 0).

FIG. 1. (Color online) Curves in (k3,k5) plane formed by optimal
values of sine amplitudes. Solid (red) curve corresponds to quadratic
dependence of the ground-state amplitude upon detuning. Crossing
points of solid (red) and dashed (blue) curves correspond to the cubic
dependence of the ground-state amplitude upon detuning. Such a
point nearest zero is marked by a dot (green) and is studied in detail.
The value of k1 is selected so that the π pulse is formed.

The crossing points of these dashed (blue) and solid (red)
set of curves satisfy both conditions (i) and (ii). These points
correspond to the synchronization of qubit excitations with
the precision n0(τ,δ) ∝ (δ/)6. The third parameter k1 is
found from Eq. (12) where we set N = 3 and take k3,k5 in
accordance with dashed (blue) and solid (red) curve crossing
points, e.g., that one is marked as a dot (green). This green
point corresponds to the envelope f (t) having the smallest
maximum value which provides the effective suppression of
the disorder.

B. Synchronization of qubit excitation vs detuning

The higher-order schemes are build straightforwardly
around the above solution at N = 3. In this section we collect
all the results for N = 1,2,3,4 order schemes in the driving
envelope function (10). In the left column of Fig. 2 we plot
the optimized shapes of π pulses found within the above
perturbative approach for a given truncation number N . In the
right column we show plots illustrating time evolution of the
qubit excitation dynamics n↑(t) within the π -pulse duration
time 0 < t < τ . Solid curves in the right column in Fig. 2
correspond to resonant driving δ = 0, while dashed curves
are related to nonzero detuning. The dynamics starts from the
ground state at t = 0 and grows significantly at the half of the
π -pulse duration time τ/2. The increase of n↑(t) resembles
the response to singular driving at t = τ/2, because the limit
of f (t) at N → ∞ corresponds to the ideal π pulse with
fN→∞(t) = πδ(t − τ/2), which is obviously not achievable
experimentally. We stress that we work in the regime of finite
N and finite amplitudes and treat the efficiency of this approach
by means of deviation of the resulting n↑(τ ) from unity with
respect to nonzero detuning δ. The last two plots in Fig. 2
illustrate good efficiency of the corresponding π -pulse shapes:
at N = 3 and 4 we observe that the dashed curves are very close
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(a) N = 1

(b) N = 2

(c) N = 3

(d) N = 4

FIG. 2. The shapes of driving amplitudes (on left) and the time
dependence of excited level occupation number n↑(t) (on right)
plotted for schemes of a different orders. The driving envelope f (t)
shown in panel (a) corresponds to a nonoptimized π pulse and is
plotted as a reference. Solid curves in the right column correspond to
resonant driving δ = 0, while dashed and dotted curves are related to
the detuning δ =  and 2, respectively.

to the solid ones at t = τ . This means that the inhomogeneous
broadening is effectively suppressed in a Rabi frequency range
∝ and this technique offers the synchronization of qubit
ensemble starting even from N = 3.

In Fig. 3 we plot the numerical results for the dependencies
of ground-state-amplitude absolute values

√
n0(τ ) after a π

pulse as a function of detuning δ associated with a spectral
broadening. It can be seen that the increase of the scheme
order N results in flattening of the curves for

√
n0(τ ) around

the point δ = 0. This flattening is a quantitative demonstration
of the inhomogeneous-broadening suppression.

Figure 4 is plotted in double logarithmic scale and illustrates
the precision n0(τ ) of the π -pulse technique proposed. This
figure allows one to estimate the residual value of the ground-
state amplitude for the given scheme order. For instance,

FIG. 3. (Color online) Dependence of ground-state amplitude
after optimized π pulse as a function of detuning in schemes of
different orders N .

for N = 3 the optimized π pulse allows us to achieve the
probability of qubit ensemble excitation up to n↑ ≈ 1 to 10−3

at detuning values up to . Besides that, Fig. 4 illustrates a
robustness of the scheme against intensity fluctuations of the
driving field. The discrepancy of the kn amplitudes from their
optimal values results in decreasing of the effective scheme
order. This is illustrated by the curve marked N = 3∗ where

FIG. 4. (Color online) Dependence of residual ground-state oc-
cupation number after optimized π pulse on detuning value plotted
in double logarithmic scale. Solid and dotted curves correspond
to locked π -pulse duration time τ = π/ and locked maximum
value  of the intensity, respectively. For the latter case the
dependence τ (N ) is plotted in the inset. Blue dashed curve marked
as N = 3∗ corresponds to slightly changed values of k3 and k5 by
2% in the third-order scheme and illustrates the robustness of the
technique.
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FIG. 5. Tolerance in qubit occupation number at detuning |δ| <

 as a function of optimization scheme order N . These data are
extracted from the linear parts of the curves in Fig. 4.

values of k3 and k5 in the third-order scheme are increased by
2% from the optimal values. One can see from the dashed curve
N = 3∗ that the scheme is stable up to the precision n0 ≈ 10−4.
For higher precision the slope of the curve N = 3∗ changes:
it goes parallel to the N = 1 curve related to the first-order
scheme and reflects an effective decrease of the scheme order
from the third to the first.

The driving amplitude is limited in a real experiment. That
means that we must rescale the π -pulse duration time in order
to satisfy the π -pulse condition if we keep maximum of the
intensity being locked to a certain value. To illustrate this,
we use the envelope shapes evaluated above and rescale their
maximum value down to , i.e., max |f (t)| = . After that
we find optimized value of π -pulse duration times τ (N ) at
different scheme orders. The dependencies calculated for the
rescaled envelope shapes and corresponding τ (N ) are plotted
as dotted curves in Fig. 4. The dependence τ (N ) is close to
linear and is shown in the inset of Fig. 4.

From the curves for
√

n0(τ ) shown in Fig. 4 we ex-
tract the coefficients of power-law dependencies of residual
ground-state amplitude for a given N . As one can see, the
dimensionless combination n0(δ)(δ/)−2N does not depend
on δ. Dependence on N of a logarithmically scaled value of
this combination can be fit by a straight line, as shown in
Fig. 5,

n0(δ) = 1 − n↑ ≈ 34

(
0.16

δ



)2N

. (15)

Equation (15) is one of the central results which show the
quantitative dependence of the precision on the order N and
on detuning. The small scaling factor 0.16 for δ/ shows
that this technique based on the sine representation (10)
could provide the synchronization of the ensemble even if
the driving-signal amplitude is less than the broadening by
one order of magnitude.

V. DISCUSSION

The efficient excitation of NV centers in diamond reported
in Ref. [11] were achieved through the sequences of rectangu-

lar pulses with periodical switching of the amplitude sign. This
technique demonstrates the possibility of excitation of strongly
off-resonant qubits by a weak driving signal. We studied an
opposite regime when the single nonrectangular π pulse effec-
tively suppresses the disorder. The mechanism we addressed
is related to synchronous excitation dynamics of a two-level
system under a particular nonrectangular envelope shape f (t)
of the π pulse. We considered a smooth nonrectangular shape
of the π pulse given by external electromagnetic driving F (0 <

t < τ ) = f (t)e−iωt with the envelope representable as the sum
of N sine functions f (t) = 

∑N
k2n+1 sin(2n + 1)πt/(2τ )

where the amplitude and the pulse duration are locked with
each other τ = π/. The off-resonant response of a qubit
to a nonrectangular signal cannot be calculated exactly and
we found the perturbative solution. Within this solution we
proposed the method based on optimization of the set of N

parameters k2n+1, which provide synchronous excitation of
off-resonant qubits. Note that this optimization is not a direct
expansion in a sine basis of ideal π pulse in a delta-functional
form. The precision of this method, expressed in terms of
qubit excitation number n↑, is controlled by the order N of
the scheme and is proportional to (δ/)2N . This scheme is
efficient for the qubit energies falling into tunable spectral
range estimated as the driving amplitude strength . Within
our solution we demonstrated that the π pulse formed by
N = 4 sine functions shows simultaneous excitation of qubits
with the probability up to n↑ ≈ 1 to 10−5 for qubit frequencies
ranging in ≈ω ± .

The sine expansion we used in this approach was based
on the experimental requirement of continuity of f (t) at
initial and finite moments of time. Optimal envelope shape
f (t) can also be found in another basis, i.e., cosine series or
rectangular-based blocks. Our calculations shows that in these
cases the results will be qualitatively the same as described
above. Thus, the proposed method is quite general and can
be tuned to meet requirement and restrictions of a particular
experiment.

VI. CONCLUSION

To conclude, we propose a model of smooth-shaped single
π pulse which can be applied to realistic disordered qubit
ensembles coupled to a transmission line. Such a π pulse
provides an effective suppression of the inhomogeneous broad-
ening and can be used as qubit synchronization technique.
Our findings can serve as a complementary method to the
disorder-suppression techniques reported in Ref. [11], where
the sequences of rectangular pulses were used to increase the
efficiency in the excitation of qubits within a certain frequency
range. Similar technique can be effectively applied to create
π/2 pulses to prepare entangled states of the inhomogeneously
broadened qubits.
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