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Asymmetric transmission of surface plasmon polaritons on planar gratings
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We describe a surface structure consisting of a metal-air interface where the metallic part consists of two
metallic segments with a periodic modulation of the interface between them. Such a structure possesses a
different transmissivity for a surface plasmon polariton incident on it from one side of it than it has for a
surface plasmon polariton incident on it from the opposite side. This asymmetric transmission of a surface
plasmon polariton is based on the suppression of the zero-order Bragg beam which, for a certain value of the
modulation depth, is not transmitted through the structure, while the diffraction efficiencies of the +1 and −1
Bragg beams can be modified by varying the period of the grating and/or the angle of incidence. For a certain
range of the incidence angle one can observe asymmetry in transmittance for the −1 mode, while the +1 mode is
completely suppressed. By varying the material and geometrical parameters of the diffractive structure one can
control the contrast transmission that characterizes the degree of the asymmetry. This property of the structure is
demonstrated by the results of computer simulation calculations.
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I. INTRODUCTION

In recent years there has been growing interest in investi-
gations of two-dimensional nanostructured metallic structures.
The metallic nanostructures derive their unique optical proper-
ties from their ability to support collective electron excitations,
known as surface plasmon-polaritons (SPPs). Surface plasmon
polaritons are quasi-two-dimensional electromagnetic waves
that propagate along a dielectric-metal interface with ampli-
tudes that decay exponentially with increasing distance into
both of the neighboring media [1]. The possibility to confine
the light into subwavelength volumes, which stems from the
latter feature, has a profound effect on the efficiency of many
optical processes and makes surface plasmon polaritons very
sensitive to surface properties. In this paper we are interested
in exploring nanostructured two-dimensional metallic surfaces
which may provide a platform for a realistic optical analog of
one-way electronic devices such as diodes and transistors. The
majority of the devices supporting unidirectional propagation
of surface plasmon polaritons are based on nonlinear optics
and magneto-optical (MO) effects [2–6]. For example, a
waveguide has been designed in the form of a gap between
a semi-infinite dielectric photonic crystal and a semi-infinite
metal to which a static magnetic field is applied, in which
electromagnetic waves can propagate in only one direction
[5]. It was subsequently shown [6] that if the photonic crystal
in this waveguide structure is fabricated from a transparent
dielectric magneto-optic material, to which the magnetic field
is applied, the window of the frequencies within which the
waveguide displays one-way propagation can be achieved at
much lower magnetic field strengths than are required for this
purpose in the structure proposed in Ref. [5].

The application of a magnetic field to a structure to produce
one-way propagation of the surface or guided waves it supports
may not always be an option for some applications of those
waves. This consideration stimulates searches for surface
structures that produce one-way propagation of a surface or
guided wave without the need of a magnetic field. For example,
we have shown recently [7] that a 2D system consisting of

a square array of scatterers deposited on a metal surface in
a triangular mesh exhibits asymmetric transmission of a SPP
when a diffractive structure is added to one side of the structure.
This structure does not require either electrical nonlinearity
or the presence of the magnetic field to accomplish this.
The asymmetric transmission is a consequence solely of the
geometry of the structure.

In this paper we describe yet another surface structure that
has different transmissivities for surface plasmon polaritons
incident on it from opposite directions. The surface structure
consists of a metal-air interface where the metallic region is
formed by two metallic segments whose interface between
them is periodically modulated. We first employ a theoretical
approach based on the thin phase screen model [8] which
allows determining the transmitted electric field in the form
of a Fourier expansion. We show that when the interface
has the form of a rectangular grating with a critical value
of the modulation depth, the zero-order term in the Fourier
expansion of the transmitted electric field can be suppressed
in a certain frequency range. The +1 and −1 modes which
unlike the zero-order beam do not satisfy reciprocity, remain
propagating in this frequency range, and their diffraction
efficiencies can be independently modified by varying the
period of the grating and/or the angle of incidence and, as
a result, the transmittance of SPP propagating through this
structure may become asymmetric.

The suppression of the zero-order transmitted beam has
been used effectively by Serebryannikov and his colleauges in
designing structures that produce asymmetric transmission of
volume electromagnetic waves through them [9–11]. These are
all slabs whose two surfaces are both periodically corrugated,
but with different periods, and in some cases also pierced by
a slit of subwavelength width. Although the structures studied
in these papers are volume structures, not surface structures,
the electromagnetic waves illuminating them are volume
waves, not surface waves, and the means for suppressing
the zero-order transmitted beam are different from ours; the
mechanisms by which they produce asymmetric transmission
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are basically the same as those producing this effect in our
surface plasmon polaritonic structure.

The predictions obtained by our use of the thin phase screen
model have been verified by using numerical simulations
based on the finite-element frequency-domain method, which
confirm that suppression of the zero-order mode occurs
when there exists a sufficiently large refractive index contrast
between the two metals at a certain frequency. Consequently,
the transmittance of the structure relies on the diffraction
efficiencies of the +1 and −1 Bragg beams that can be
modified by varying the angle of incidence. Namely, we find
that within a certain range of the incidence angle an asymmetry
in transmittance for the −1 mode exists, while the +1 mode
is completely suppressed. By varying the material and geo-
metrical parameters of the diffractive structure one can control
the contrast transmission that characterizes the degree of the
asymmetry. This property of the structure is demonstrated by
the results of computer simulation calculations.

II. THEORETICAL MODEL

The system we consider in this paper consists of vacuum
in the region x3 > 0, while the region x3 < 0 consists of
two metalllic segments characterized by frequency-dependent
dielectric functions ε1(ω) and ε2(ω). The interface between the
two metals is characterized by the profile function ζ (x2) which
separates the neighboring metals in the regions x1 < ζ (x2) and
x1 > ζ (x2)—see Fig. 1.

We denote the third component of the electric field of a sur-
face plasmon polariton in the vacuum region x3 > 0 evaluated
on the surface x3 = 0, E>

3 (x1,x2,0|ω), by E>
3 (x1,x2,|ω). The

equation it satisfies in the region x1 < ζ (x2) is

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ k2
‖(ω)

)
E>

3 (x1,x2|ω) = 0, (1)

where k‖(ω) = ω
c

[1 − 1
ε1(ω) ]

1
2 .

The incident field is a solution of this equation, and we
write it in the form

E>
3 (x1,x2,|ω)inc = − c

ω
k‖e[iα1(k2,ω)x1+ik2x2)]. (2)

FIG. 1. (Color online) Surface structure studied in this paper.

where

k1 = α1(k2,ω) = [
k2
‖(ω) − k2

2

] 1
2 , k2

2 < k2
‖(ω) (3a)

= i
[
k2

2 − k2
‖(ω)

] 1
2 , k2

2 > k2
‖(ω). (3b)

The equation E>
3 (x1,x2,|ω) satisfies in the region x1 >

ζ (x2),x3 = 0 is(
∂2

∂x2
1

+ ∂2

∂x2
2

+ p2
‖(ω)

)
E>

3 (x1,x2|ω) = 0, (4)

where p‖(ω) = ω
c

[1 − 1
ε2(ω) ]

1
2 .

The transmitted field is the solution of this equation, which
we write as

E>
3 (x1,x2,|ω)tr =

∫ ∞

−∞

dq2

2π
T (q2)ei[p2

‖ (ω)−q2
2 ]

1
2 x1+iq2x2 . (5)

Now

E>
3 (0+,x2,|ω)tr =

∫ ∞

−∞

dq2

2π
T (q2)eiq2x2 , (6)

so that

T (q2) =
∫ ∞

−∞
dx ′

2e
−iq2x

′
2E>

3 (0+,x ′
2,|ω)tr. (7)

Therefore,

E>
3 (x1,x2,|ω)tr =

∫ ∞

−∞
dx ′

2

{∫ ∞

−∞

dq2

2π
ei[p2

‖ (ω)−q2
2 ]

1
2 x1+iq2(x2−x

′
2)

}

×E>
3 (0+,x ′

2,|ω)tr. (8)

The thin phase screen model [8] states that

E>
3 (0+,x2,|ω)tr = ei�n ω

c
ζ (x2)E>

3 (0−,x2,|ω)inc, (9)

where

�n = n1(ω) − n2(ω) =
[

1 − 1

[ε1(ω)

] 1
2

−
[

1 − 1

ε2(ω)

] 1
2

.

(10)

By inserting the relation given by Eq. (9) into Eq. (8) one
obtains for the third component of the electric field of the
transmitted SPP in the thin phase screen model

E>
3 (x1,x2,|ω)tr = − c

ω
k‖

∫ ∞

−∞

dq2

2π
ei[p2

‖−q2
2 ]

1
2 x1+iq2x2

×
∫ ∞

−∞
dx ′

2e
i(q2−k2)x

′
2ei�n ω

c
ζ (x

′
2). (11)

We assume the surface profile function ζ (x2) is a periodic
function of x2, ζ (x2 + a) = ζ (x2), where a is the period. Then
the second integral on the right-hand side (RHS) of Eq. (11)
can be replaced by the following sum:∫ ∞

−∞
dx2e

−i(q2−k2)x2ei�n ω
c
ζ (x2)

=
∞∑

n=−∞

∫ (n+ 1
2 )a

(n− 1
2 )a

e−i(q2−k2)x2+i�n ω
c
ζ (x2).
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Then by introducing x2 = na + x, the RHS of this equation
becomes

∞∑
m=−∞

2πδ

(
q2 − k2 − 2πm

a

)
1

a

∫ a
2

− a
2

dx e−i 2πmx
a ei�n ω

c
ζ (x).

(12)

Therefore,

E>
3 (x1,x2,|ω)tr

= − c

ω
k‖

∫ ∞

−∞

dq2

2π
ei[p2

‖−q2
2 ]

1
2 x1+iq2x2

×
∞∑

m=−∞
2πδ(q2 − k2m)

1

a

∫ a
2

− a
2

dx e−i 2πmx
a ei�n c

ω
ζ (x)

= −ω

c
k‖

∞∑
m=−∞

ei[p2
‖−k2

2m]
1
2 x1+ik2mx2

×1

a

∫ a
2

− a
2

dx e−i 2πmx
a ei�n ω

c
ζ (x), (13)

where k2m = k2 + 2πm
a

. If ζ (x) is an even function of x1,
ζ (−x1) = ζ (x1),

E>
3 (x1,x2,|ω)tr = −ω

c
k‖

∞∑
m=−∞

ei[p2
‖−k2

2m]
1
2 x1+ik2mx2

×2

a

∫ a
2

0
dx cos

2πmx

a
ei�n ω

c
ζ (x). (14)

In the case of a periodic rectangular profile,

ζ = ζ0, 0 < x <
a

4
,

ζ = −ζ0,
a

4
< x <

a

2
, (15)

we obtain for the zero-order and the higher-order terms in the
expansion given by Eqs. (13) and (14)

1

a

∫ a
2

− a
2

dx e−i 2πmx
a ei�n(ω) ω

c
ζ (x)

= cos αζ0, m = 0,

= 2i

π
(−1)k

sin αζ0

2k + 1
, m = 2k + 1, k = 0, ± 1, ± 2, . . . ,

(16)

where α = �n(ω)ω
c

. Therefore, the amplitude of the zero-
order term given by Eq. (16) vanishes when the depth of
the rectangular grating ζ0 = π/(2α), which states that the
critical value of the modulation depth ζ0 at given wavelength
is inversely proportional to the refractive index contrast �n

ζ0 = λ

4�n
. (17)

The amplitudes of the higher-order Bragg beams accord-
ingly follow the sinelike behavior of Eq. (16) and thus, for
example, first-order waves have a nonzero amplitude at the
same wavelength at which the zero-order beam vanishes.

III. RESULTS: THIN PHASE SCREEN MODEL

We demonstrate asymmetric transmission characteristics of
a SPP by the use of the thin phase screen model in the case
of the periodically modulated interface characterized by the
rectangular periodic profile given by Eq. (15). A key idea
underlying asymmetric transmission in such a planar grating
structure is the suppression of the zero-order Bragg mode in a
certain frequency range, which occurs at a given wavelength
for the critical value of the modulation depth ζ0 given by
Eq. (17). Then one can modify the diffraction efficiencies of
the first-order Bragg beams by varying the period a of the
grating and/or the angle of incidence θ .

A. Normal incidence

In the following we consider the case of normal incidence
and study transmission through a lamellar grating at an
Au/Al interface with a period a = 600 nm. By using the
refractive index contrast �n = 0.140 906 between Au and
Al for the wavelength λ = 500 nm, one obtains the critical
modulation depth ζ ref

0 = 887 nm at which the amplitude of
the transmitted zero-order Bragg beam vanishes according to
relation (17). The behavior of the zero-order Bragg beam is
shown in Fig. 2(a) where the transmittance |T0|2(red dashed
curve) reveals a profound suppression in the vicinity of the
reference wavelength λref = 500 nm. This feature reflects
the strong dependence of |T0|2 on the modulation depth ζ0,
which is evident in comparison with results obtained for the
interface characterized by a 10× smaller modulation depth
ζ0 = 0.1ζ ref

0 for which the interface becomes transparent in the
wavelength range considered (full blue curve). The frequency
range in which the suppression of the zero-order mode occurs
can be modified by varying the modulation depth ζ0 as is
demonstrated in Fig. 2(a) where the minimum in the transmit-
tance |T0|2 associated with the zero-order SPP Bragg beam is
redshifted to the wavelength λ = 550 nm when the modulation
depth is increased by a factor of 2—see the magenta dashed
curve in Fig. 2(a). The dependence of the critical depth ζ0 on
the wavelength λ is affected by the strongly dispersive behavior
of the dielectric functions of both metals in the wavelength
range considered, which give rise to a decreasing refractive
index contrast as the wavelength is increased. In fact, the
choice of the Au/Al interface stems from the fact that these
two metals yield a large refractive index contrast �n at the
wavelength λ = 500 nm. For example, the transmittance of the
zero-order Bragg beam through a Au/Ag interface to a large
extent resembles that for a Au/Al interface—see Fig. 2(a).
However, it requires at the same wavelength a significantly
larger modulation depth ζ0 = 1350 nm, which renders this
configuration technologically more challenging from the point
of view of both its numerical and experimental verification.

We offer the following simple intuitive explanation of this
result. The difference in optical path lengths between the waves
incident on the regions of the surface where ζ (x2) = −ζ0 and
where ζ (x2) = +ζ0 is equal to 2ζ0�n. When ζ0 has its critical
value ζ0 = λ/(4�n) this difference in path lengths equals
λ/2. The resulting destructive interference of these two waves
leads to the suppression of the zero-order beam. An analogous
interpretation can be given for the higher-order beams. For
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FIG. 2. (Color online) (a) Transmittances of the zero- and first-
order Bragg beams vs wavelength λ obtained from the thin phase
screen model as functions of the modulation depth ζ0 when a =
600 nm; (b) the transmittances of both forward- and backward-
propagating first-order Bragg beams vs λ as functions of the period
a; (c) the transmittance contrast ratio Rc between the forward- and
backward-propagating first-order Bragg beams as functions of the
period a when the latter varies in the frequency range 460 nm < a <

500 nm. The red dashed line in (b) and (c) indicates the transmittance
of the zero-order Bragg beam for ζ0 = 887 nm and a = 600 nm.

example, the first-order waves incident on the regions of the
surface where ζ (x2) = −ζ0 and where ζ (x2) = ζ0 are in phase,
and thus interfere constructively at the same wavelength at
which the zero-order beam vanishes.

Now we inspect the possibility of achieving asymmetry in
the transmittance of the first-order Bragg beam in the case of
normal incidence. We found that a lamellar grating at an Au/Al

interface with the period a = 600 nm and modulation depth
ζ0 = 887 nm exhibits a suppression of the zero-order Bragg
beam in a certain frequency range, while the transmittance
of the first-order Bragg beams become significantly enhanced
in this frequency range in comparison with that associated
with a shallow modulation ζ0 = 0.1ζ ref

0 —see the dashed lines
in Fig. 2(b), which correspond to the transmittances of the
first-order Bragg beams |T±1|2 when the modulation depth
ζ0 = ζ ref

0 (red dash-dotted line) and ζ0 = 2ζ ref
0 (magenta dash-

dotted line). The transmittances |T±1|2 for a = 600 nm are
nearly identical for the first-order Bragg beams propagating in
the opposite directions. However, they become significantly
different when the period a is decreased. Specifically, the
transmittances |T±1|2 associated with the first-order Bragg
beams propagating in the Au → Al direction (LI) vanish when
the period a = 460 nm [solid magenta line in Fig. 2(b)],
and gradually recover when the period a is increased—see
the transmittances |T±1|2 for a = 480 nm and a = 500 nm
indicated by the solid blue and green lines in Fig. 2(b), respec-
tively. The transmittances |T±1|2 for the backward-propagating
first-order Bragg beams along the Al → Au direction (RI)
exhibit a similar dependence on the magnitude of the period
a, except that the upper wavelength cutoff at which the
transmittance vanishes is redshifted—see the transmittances
|T±1|2 for a = 460 nm, a = 480 nm, and a = 500 nm indicated
by dash-dotted magenta, blue, and green lines in Fig. 2(b).

We describe the asymmetry in the transmittance of the first-
order Bragg beams in terms of the transmissivity contrast ratio
defined as

Rc = TL − TR

TL + TR

, (18)

where TL and TR denote the transmittances of the forward-
and backward-propagating first-order Bragg beams. The mis-
match in the transmittances |T±1|2 demonstrated in Fig. 2(b)
implies a significant transmissivity contrast Rc between the
counterpropagating beams in the wavelength range 490 nm <

λ < 550 nm—see Fig. 2(c). We note that the size of the
asymmetry and wavelength range in which this effect occurs
depend on the period a, namely when the latter is decreased
(increased) the size of the asymmetry decreases and the
corresponding wavelength range is shifted towards smaller
(larger) wavelengths. This is demonstrated in Fig. 2(c), where
we depict the transmissivity contrast Rc for the periods
a = 460 nm, a = 480 nm, and a = 500 nm indicated by the
magenta solid lines, and the dashed blue and green lines,
respectively. We also note that the degree of asymmetry
decreases as the wavelength increases.

B. Oblique incidence

In this section we explore regimes which support asymme-
try in the transmittance of the first-order Bragg beams in the
case of oblique incidence. We consider our reference system to
be a lamellar grating at an Au/Al interface with the period a =
600 nm and modulation depth ζ0 = 887 nm. It is well known
that at normal incidence the transmittances associated with
the +1 and −1 Bragg beams are identical, and the two waves
propagate along directions that are symmetric with respect
to the normal to the interface. When the angle of incidence
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FIG. 3. (Color online) (a) Transmittances of the +1 and −1
forward Bragg beams vs wavelength λ incident on the Au/Al lamellar
grating at angle θ = 22.5◦ from the left (solid blue line) and from
the right side (dash-dotted blue line) obtained from the thin phase
screen model; (b) the same except the transmittances correspond
to the backward-propagating +1 and −1 Bragg beams at the angle
θ = 35◦; (c) the transmittances of both the forward- (solid blue line)
and backward- (dash-dotted blue line) propagating −1 Bragg beams
vs λ when the lattice constant a = 430 nm. The red dashed line in all
panels indicates the transmittance of the zero-order Bragg beam for
ζ0 = 887 nm and a = 430 nm.

is changed the transmittances exhibit different dependencies
on the wavelength, as is illustrated in Figs. 3(a) and 3(b)
for the forward- (LI) and backward- (RI) propagating waves,
respectively. Namely, for the angle of incidence θ = 22.5◦,
the transmittance associated with the +1 Bragg beam [solid
blue line in Fig. 3(a)] reveals a cutoff at the wavelength λ =

w

x
3

x
2

x
1

FIG. 4. (Color online) Computational domain used for numerical
simulations of the surface grating structures. Port1 and Port2 denote
the waveguide ports used in the frequency-domain solver.

500 nm, while that belonging to the −1 Bragg beam remains
unaffected in the frequency range where the zero-order beam is
suppressed and shows a slowly decaying tail as the wavelength
is increased [dash-dotted blue line in Fig. 3(a)]. We observe
similar behavior in the case of the backward-propagating wave
(RI)—see Fig. 3(b)—except that the equivalent wavelength
cutoff for the transmittance associated with the +1 Bragg beam
is achieved for a larger angle of incidence θ = 35◦ [solid blue
curve in Fig. 3(b)], while the transmittance associated with the
−1 Bragg beam [dash-dotted blue curve in Fig. 3(b)] resembles
the behavior of the corresponding counterpropagating wave.

The results presented in Figs. 3(a) and 3(b) show that
the +1 SPP Bragg beams incident in a certain range of
the angle of incidence become evanescent, and only the −1
Bragg beams are propagating in this regime. Referring to
the results shown in Figs. 2(b) and 2(c) it is obvious that
one can achieve an asymmetry in the transmittance of the
−1 Bragg beams by varying the size of the period a as is
illustrated in Fig. 3(c), where the transmittance associated with
the forward-propagating −1 Bragg beam [solid blue curve
in Fig. 3(c)] indicates that the wave becomes evanescent for
λ > 500 nm when the period a = 430 nm, while the −1
SPP Bragg beam incident from the opposite side remains
propagating [dash-dotted blue curve in Fig. 3(c)] in the
wavelength range where both the zero-order and +1 Bragg
beams are suppressed.

IV. RESULTS: FINITE-ELEMENT
FREQUENCY-DOMAIN METHOD

In order to verify the predictions of the thin phase screen
model we calculate numerically the transmittance of the SPP
propagating across the modulated Au/Al interface shown in
Fig. 1. We employ the CST frequency domain solver [12]. The
interface between a semi-infinite vacuum and a semi-infinite
metal depicted in Fig. 1 is replaced by the computational
domain shown in Fig. 4, where a finite thickness of the metal
region w is assumed, typically w = 400 nm, and periodic
boundary conditions are applied along the x2 axis. We assume
in this configuration a surface plasmon polariton propagating
in the forward direction along the x1 axis, incident on the
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FIG. 5. (Color online) Spatial intensity distribution of the electric
fields associated with the (a) zero-order and (b) ±1 SPP Bragg
modes belonging to the shielded Au waveguide port obtained from
the frequency-domain solver. The SPP modes with the wavelength
λ = 500 nm incident on the structure depicted in Fig. 4 from the
bottom correspond to the left incidence (LI) indicated in Fig. 1. The
electric fields are in V m−1 units.

structure from the bottom, which corresponds to the left
incidence (LI) indicated in Fig. 1, while a surface plasmon
polariton propagating in the backward direction along the
x1 axis is incident on the structure from the top, which
corresponds to the right incidence (RI). We impose the electric
wall boundary condition Et = 0 along the x+

1 , x−
1 , and x3

axes and open boundary conditions along the x+
3 axis in the

region x3 > w. As the excitation source we choose waveguide
ports attached to the bottom (Au) and the top (Al) of the
metallic region. The waveguide ports represent a special
kind of boundary condition of the calculation domain, which
requires enclosing the entire domain filled with the electric
field. This kind of port simulates an infinitely long waveguide
connected to the structure. Then the eigenmode solver allows
calculating the exact port modes within these boundaries,
including the wave numbers (propagation constants) of these
modes km

1 = ω
c
nm

eff , or more precisely their effective indices
nm

eff . In calculating the transmittance of the structure we take
into account a sufficiently large number of modes which form
a finite subset of the eigenmodes supported by the structure.
We note that the majority of the modes are radiative, which
together with ohmic losses represent two channels of decay
that determine the lifetime of the SPP. We focus on the surface
modes with electric fields strongly confined to the surface x1x2,
which correspond to the lowest-order diffraction orders of the
SPP propagating along the metal-vacuum interface.

A. Normal incidence

In the following we consider the case of normal incidence.
In Figs. 5 and 6 we show the intensities of the electric field
associated with the zero and ±1 SPP modes belonging to the
Au and Al waveguide ports, respectively. One can see that the
lowest-order SPP modes associated with the Au port are more
confined to the surface than those belonging to the opposite Al
port. The field intensity patterns shown in Figs. 5(b) and 6(b)
correspond to the doubly degenerate ±1 modes obtained from
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FIG. 6. (Color online) Spatial intensity distributions of the elec-
tric fields associated with the (a) zero-order and (b) ±1 SPP
Bragg modes belonging to the Al waveguide port obtained from
the frequency-domain solver. The SPP modes with the wavelength
λ = 500 nm incident on the structure depicted in Fig. 4 from the top
correspond to the right incidence (RI) indicated in Fig. 1. The electric
fields are in V m−1 units.

the frequency-domain solver in the case of normal incidence
with shielded ports. The latter feature represents a special kind
of boundary condition, which restricts the influence of the
higher-order radiative modes but at the same time does not
allow calculating the eigenmodes for oblique incidence when
periodic boundary conditions along the x1 axis are imposed.
In the unshielded regime, the asymmetry of the structure leads
to the splitting of the doubly degenerate ±1 Bragg modes, and
the frequency-domain solver yields singlets corresponding to
the +1, −1 waveguide eigenmodes. The nearly degenerate
modes belonging to the Au port possess the effective indices
n

f

eff(±1)θ=0◦ = 0.39—see Fig. 7—and the degenerate +1 and
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FIG. 7. (Color online) Spatial intensity distributions of the elec-
tric fields associated with the (a) −1 and (b) +1 SPP Bragg modes
belonging to the Au waveguide port obtained from the frequency-
domain solver in the regime of unshielded waveguide ports. Both
nearly degenerate modes correspond to the doubly degenerate ±1
modes displayed in Fig. 5. The SPP modes with the wavelength
λ = 500 nm are incident on the structure depicted in Fig. 4 from the
bottom, which corresponds to the left incidence (LI) shown in Fig. 1.
The electric fields are in V m−1 units.
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−1 modes belonging to the Al port possess the effective
indices nb

eff(±1)θ=0◦ = 0.38. Here the subscripts f and b

denote forward- and backward-propagating modes belonging
to the Au and Al ports, respectively.

To understand the propagation of the SPP through the
grating region represented by the modulated Au/Al interface
with a rectangular profile it is helpful to employ the results
of the modal method described in detail in Ref. [13]. In
this method the incident, transmitted, and reflected fields are
expressed in terms of the eigenmodes of the structure and
thus cannot be described solely by the well-known grating
equation, since for the calculation of the amplitudes of the
diffraction orders the EM field inside the grating region has
to be considered. According to this approach, the propagation
of the wave in the x1 direction through the grating region
resembles that of a simple slab waveguide that is able to
guide a discrete set of modes. The similarity between the field
distributions associated with the incident and excited modes is
given by an overlap integral, while matching of the effective
indices is characterized by the difference between the wave
number of the incident wave kin

1 = ω
c

cos φin and the wave
number km

1 , where φin is angle of incidence. Both factors
determine how much energy of the incident wave is coupled
to a specific mode.

The transmittance of the structure shown in Fig. 4 can
be described in terms of diffraction efficiencies calculated as
the intensities of the transmitted higher-order Bragg beams
divided by the intensity of the incident wave. The frequency-
domain solver calculates the scattering matrix between the
two sets of eigenmodes associated with both waveguide ports.
We first implemented our reference structure with a lamellar
grating at an Au/Al interface with the period a = 600 nm and
modulation depth ζ0 = 887 nm which, according to the results
of the thin phase screen model, does not support propagation
of the zero-order Bragg beam in a certain frequency range. We
confirmed this by evaluating the transmittance associated with
the eigenmodes that correspond to the zero-order SPP mode
supported by both the Au and Al ports, and showed that they
possess vanishing values T0 ∼ 0.01.

B. Oblique incidence

In this subsection we consider the case of oblique incidence,
namely we study how the diffraction efficiencies depend
on the angle of incidence θ . We focus on the +1 and
−1 modes, which reveal strong and profoundly different
dependencies on the incidence angle and simultaneously
reveal a dependence on the direction of propagation. We
first consider the modes belonging to the Au port, i.e., the
forward-propagating waves. The transmittance of the +1 mode
propagating in the forward direction Au → Al in the case of
normal incidence is somewhat larger Tf (+1)θ=0◦ = 0.26 than
that of the −1 mode Tf (−1)θ=0◦ = 0.19. When the angle of
the incidence is increased, the difference in the transmittances
of the +1 and −1 modes increases, and for sufficiently
large angles of incidence θ � 60◦ the transmittance of the
+1 mode vanishes. Specifically, the transmittance belonging
to the −1 mode is slightly increased Tf (−1)θ=75◦ = 0.28
when θ = 75◦, while the transmittance of the +1 mode
becomes negligible Tf (+1)θ=75◦ = 0.0001. This behavior is
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FIG. 8. (Color online) Spatial intensity distributions of the elec-
tric fields along the waveguide structure associated with (a) the −1
and (b) the +1 forward-propagating SPP Bragg modes incident at an
angle θ = 75◦. The electric fields are in V m−1 units.

demonstrated in Fig. 8, where the spatial distributions of
the electric field intensities along the waveguide structure
for the −1 (a) and +1 (b) Bragg beams are shown for the
Au waveguide port. While the field pattern corresponding to
the −1 mode displays a propagating character, the −1 mode
reveals an exponentially decaying amplitude along the x1 axis
in accord with the vanishing diffraction efficiency predicted
for the +1 mode for large values of the incidence angle.

The dependence of the effective indices associated with the
+1 and −1 SPP modes on the incidence angle θ provides
an additional insight into their nature. In the case of normal
incidence the effective indices corresponding to the +1 and
−1 modes belonging to the Au port are nearly identical and
have the values n

f

eff(−1)θ=0◦ = 0.39 and n
f

eff(+1)θ=0◦ = 0.38.
When the angle of incidence is increased in the range 0 < θ <

75◦ the effective index of the −1 mode becomes significantly
larger, n

f

eff(−1)θ=75◦ = 0.64, while the effective index of the
+1 mode becomes smaller n

f

eff(+1)θ=75◦ = 0.13.
We observe similar, although quantitatively somewhat dif-

ferent, behavior of the transmittance for the SPP eigenmodes
belonging to the Al port, i.e., propagating in the opposite
direction. The transmittance of the −1 mode propagating
in the Al → Au direction in the case of normal incidence
is somewhat larger, Tb(−1)θ=0◦ = 0.16, than that of the +1
mode, Tb(+1)θ=0◦ = 0.09. When the angle of the incidence
is increased, the difference in the transmittances of the
+1 and −1 modes increases, and for a certain angle of
incidence θ � 60◦ the transmittance of the +1 mode vanishes.
Specifically, the transmittance belonging to the −1 mode
is slightly increased, Tf (−1)θ=75◦ = 0.17, when θ = 75◦,
while the transmittance of the +1 mode becomes negligible,
Tf (+1)θ=75◦ = 0.0006.

This behavior is demonstrated in Fig. 9 where the spatial
distributions of the electric field intensities along the waveg-
uide structure for the −1 (a) and +1 (b) Bragg beams are
shown for the Al waveguide port. Likewise for the forward-
propagating wave, the field pattern corresponding to the +1
mode displays a propagating character, while the −1 mode
reveals an exponentially decaying amplitude along the x1 axis
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FIG. 9. (Color online) Spatial intensity distributions of the elec-
tric fields along the waveguide structure associated with (a) the −1
and (b) the +1 backward-propagating SPP Bragg modes incident at
an angle θ = 75◦. The electric fields are in V m−1 units.

in accord with the vanishing diffraction efficiency predicted
for the +1 mode for large values of the incidence angle. The
effective indices associated with the +1 and −1 SPP modes
belonging to the Al port in the case of normal incidence are
identical and have values nb

eff(+1)θ=0◦ = nb
eff(−1)θ=0◦ = 0.32.

When the angle of incidence is increased in the range 0 < θ <

75◦ the effective index of the −1 mode becomes significantly
larger, nb

eff(−1)θ=75◦ = 0.58, while the effective index of the
+1 mode becomes negligible nb

eff(+1)θ=75◦ = 0.006.
The results shown in Figs. 8 and 9 illustrate the two key

effects associated with the behavior of the first-order Bragg
modes at oblique incidence. First, one of the first-order beams
(+1) is completely suppressed when the SPP impinges the
interface at a sufficiently large angle, θ � 60◦. Second, as a
result, the structure supports only the +1 Bragg beams, with
the backward-propagating beam having a significantly smaller
transmittance than that of the forward-propagating one, and
yields the contrast transmissivity ratio Rc = 0.25.

To compare the results obtained on the basis of the thin
phase screen model and those obtained from numerical
simulations one has to take into account the approximation
associated with the former approach. Namely, the theoretical
model does not take into account radiative modes, and the
electric fields associated with the incident and transmitted
waves are expressed in terms of a Fourier expansion. On the
other hand, the frequency-domain solver deals with a finite
set of the eigenmodes supported by the structure, the majority
of which are radiative. The differences in both approaches
are reflected in the differences in the quantitative parameters
describing an asymmetry in the transmittance. However, one

can see that the diffraction efficiencies obtained from the
numerical simulations confirm qualitatively the predictions of
the thin phase screen model. Namely, for a certain magnitude
of the modulation depth of the interface between the two
metallic regions, which are characterized by a sufficiently
large refractive index contrast at a certain wavelength, the
transmittance of the zero-order Bragg beam is suppressed
while the +1 and −1 modes become dominant among the
surface modes supported by the grating planar structure. We
have shown that such a configuration, which supports at
normal incidence propagation of both the +1 and −1 Bragg
beams, offers the possibility of modifying the diffraction
efficiency of the +1 and −1 modes by varying the angle
of incidence. Specifically, we found that for a sufficiently
large angle of incidence the structure supports only the −1
propagating beam, which leads to a substantial asymmetry in
the transmittance characterized by the contrast transmissivity
ratio Rc = 0.25. This value can be increased by carefully
choosing both the geometrical and material parameters of the
structure.

V. CONCLUSION

We have demonstrated that a system consisting of an air-
bimetal interface, whose boundary between the two metallic
segments is periodically modulated, possesses a different
transmissivity for a surface plasmon polariton incident on
it from one side of it than it has for a surface plasmon
polariton incident on it from the opposite side. This asymmetric
transmission of a surface plasmon polariton is based on the
suppression of the zero-order Bragg beam, which is not
transmitted through the structure for a certain value of the mod-
ulation depth of the periodically corrugated boundary between
the metals. Consequently, the mechanism for the asymmetry
in the transmittance is related to the higher Bragg modes that
are excited on the composite metallic waveguide structure. We
have shown that the diffraction efficiencies of the +1 and −1
Bragg beams can be modified by varying the period and/or the
angle of incidence, and for a certain range of the incidence
angle one can observe asymmetry in the transmittance of
the −1 mode, while the +1 mode is completely suppressed.
By varying the material and geometrical parameters of the
diffractive structure one can control the contrast transmission
that characterizes the degree of the asymmetry.
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