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Temporal coherence and correlation of counterpropagating twin photons
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This work analyzes the temporal coherence and correlation of counterpropagating twin photons generated in a
quasiphase matched nonlinear crystal by spontaneous parametric down-conversion. We find out different pictures
depending on the pump pulse duration relative to two characteristic temporal scales, determined, respectively, by
the temporal separation between the counterpropagating and the co-propagating wave packets. When the pump
duration is intermediate between the two scales, we show a transition from a highly entangled state to an almost
separable state, with strongly asymmetric spectral properties of the photons.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is one
of the most accessible sources both of entangled photon pairs
and of single photons, heralded by detection of the partner.
The microscopic process, where a high energy photon of the
pump laser splits into two lower energy photons, is ruled by
conservation laws (energy, momentum, angular momentum,
polarization), which are at the origin of a wide range of
quantum correlations between the members of the pair.

In the standard co-propagating configuration, the two-
photon state is characterized by a high dimensional entan-
glement, because a quantum correlation is present over huge
temporal and angular bandwidths. The temporal correlation
was historically the first one to be studied [1]: A down-
conversion event can take place anywhere along the crystal,
so that the arrival time of the twins is not known. However,
the members of a pair, generated at the same point, propagate
nearly in the same direction, and exit the crystal almost simul-
taneously. A small uncertainty in their temporal separation
is present because of their different group velocities (type
II) or because of the group velocity dispersion (type I), and
can be reduced to the smallest limit (the optical cycle) when
the spatial degrees of freedom are properly controlled [2,3].
Such a short correlation time results in a high-dimensional
temporal entanglement [4]. Its spectral counterpart is the
huge spectral bandwidth of SPCD emission, and the high
dimensional spectral entanglement of SPDC photons [5].
High-dimensional entanglement offers relevant opportunities
in view of broadband quantum communication schemes, but
can also be regarded as a negative feature, because it affects
the purity of heralded single photons.

This work considers a nonconventional configuration,
where one of the down-converted photons is generated in
the backward direction with respect to the pump laser, in
a periodically poled crystal (Fig. 1). Although predicted
almost 50 years ago [6], counterpropagating down-conversion
has been only recently realized [7,8], thanks to technical
advancements in achieving the submicrometer poling periods
necessary to phase match the interaction [9].

Counterpropagating PDC presents unique features, as
the presence of a threshold value of the pump intensity,
beyond which coherent parametric oscillations take place [10],
thereby the name Mirrorless Optical parametric Oscillator

(MOPO) [7]. In a related work [11], we study the quantum
correlation of counterpropagating twin beams close to the
threshold; here, instead, we focus on the regime of spontaneous
photon pairs production, well below threshold, and analyze
the temporal quantum properties of counterpropagating twin
photons generated in a purely collinear configuration.

A second peculiar feature of the MOPO is the narrow spec-
tral bandwidth of emission (the backward-propagating wave
can be more monochromatic than the pump laser [7]). In the
quantum domain, as pointed out in [12], counterpropagating
SPDC can generate highly monochromatic photon pairs in an
almost separable state, which makes it a promising source of
high-purity heralded single photons.

In this work we provide a detailed theoretical analysis of
the effects of the spectral properties of the pump laser on
the degree of entanglement of the state, identify the physical
conditions under which the state may become separable, and
provide a consistent interpretation of the transition from an
entangled to a separable state.

In particular, we show that the system dynamics is governed
by two well-separated time scales: a long one, related to the
temporal separation of counterpropagating waves, which is
on the order of the transit time of light along the crystal
(tens of picoseconds), and a short one related to the temporal
separation of co-propagating waves due to their different group
velocities (order 1 ps or smaller). When the duration of the
pump pulse is intermediate between the two scales, we show
that the state becomes separable, and remains separable for
a wide range of pump durations. Conversely, it has a high
degree of entanglement in the two opposite limits. Notice
that such a difference of time scales occurs naturally in the
counterpropagating configuration, for basically any kind of
material and tuning condition. This is quite different from the
co-propagating case where separability of the state requires
special operational points [13].

In addition, we shall investigate the coherence properties
of the SPDC photons taken individually, showing a transition
from a symmetric state, for a long pump pulse, to a highly
asymmetric state for a short pump pulse. In particular, in the
regime where the state is separable, the spectrum of the signal
turns out to reproduce the spectrum of the co-propagating
pump laser, while that of the backward-propagating idler is
entirely determined by the crystal properties.

1050-2947/2015/92(5)/053809(13) 053809-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.053809


A. GATTI, T. CORTI, AND E. BRAMBILLA PHYSICAL REVIEW A 92, 053809 (2015)

signal in (vacuum)

idler in (vacuum)

signal out
Λ

idler out 

pump pump

FIG. 1. (Color online) Geometry of the counterpropagating
down-conversion (see text).

The paper is organized as follows: Section II introduces
a quantum model for counterpropagating PDC; Sec. III
characterizes the quantum correlation of twin photons in the
spectral domain, while Sec. IV gives an interpretation of the
transition from entanglement to separability by analyzing the
correlation in the temporal domain. Section V is devoted to
the coherence properties of twin photons. Finally, Sec. VI
quantifies the degree of entanglement of the state via the
Schmidt number.

II. THE MODEL

The starting point of our analysis are the equations
describing the propagation of three interacting pump, signal,
and idler waves along a slab of periodically poled second-order
nonlinear crystal (Fig. 1). We consider here only collinear
propagation, either assuming that light is collected at small
propagation angles with respect to the pump, or because of a
waveguiding configuration. In a crystal with periodic inversion
of the nonlinear susceptibility, the momentum conservation in
the three-wave interaction is replaced by a less restrictive law
(quasiphase matching) [14], which includes also the momenta
2π
�

m of the nonlinear lattice, where � is the poling period
(for example, m = ±1, ± 3 . . . for a simple poling). Since
the effective nonlinearity is higher for lower orders, one
usually tries to phase match the first order m = ±1 interaction.
The counterpropagating configuration (Fig. 1), in which one
wave—say the idler—is generated in the backward direction
with respect to the pump laser, thus requires a poling period
on the order of the pump wavelength, because the pump
momentum needs to be almost entirely compensated by the
grating momentum kG = 2π

�
. In these conditions, the central

frequencies ωs , ωi = ωp − ωs of the down-converted wave
packets are determined by quasiphase matching at the central
pump frequency ωp,

k0s − k0i = k0p − 2π

�
, (1)

where k0j = nj (ωj )ωj/c, j = s,i,p are the wave numbers at
the three central frequencies. We shall mostly focus on the
commonly realized type O interaction [7], where the three
waves have the same polarization, but we leave the formalism
quite general. Hence the subscript j in the wave number
may refer to dispersion relations for either the ordinary or
extraordinary wave, including thus type II or I PDC.

Next, we introduce the positive frequency part of field
operators (with dimension of photon destruction operators)
for the three wave packets as

Âs(�,z) = e+iks (�)zâs(�,z), (2a)

Âi(�,z) = e−iki (�)zâi(�,z), (2b)

Âp(�,z) = e+ikp(�)zâp(�,z), (2c)

where capital � is a frequency offset from the carrier
frequencies, and kj (�) are the wave numbers at frequency
ωj + �. In this definition, the factors e±ikj (�)z account for all
the effects of the linear propagation along the medium. Hence
the operators âj have a slow variation along the crystal because
they evolve only under the effects of the nonlinear interaction.
Their coupled equations of propagation can thus be written as
(see [11] for a more detailed analysis)

∂

∂z
âs(�,z) = χ

∫
d�′âp(� + �′,z)â†

i (�′,z)e−iD(�,�′)z,

(3a)

∂

∂z
âi(�,z) = −χ

∫
d�′âp(� + �′,z)â†

s (�′,z)e−iD(�′,�)z,

(3b)

∂

∂z
âp(�,z) = −χ

∫
d�′âs(�

′,z)âi(� − �′,z)eiD(�,�−�′)z,

(3c)

where χ is proportional to the effective second-order suscep-
tibility of the crystal, and only the first-order terms ±1 in the
Fourier expansion of the periodic nonlinear susceptibility have
been retained (namely order −1 for signal and idler, order +1
for the pump). In these equations,

D(�,�′) = ks(�) − ki(�
′) − kp(� + �′)′ + 2π

�
(4)

is the effective phase mismatch that rules the efficiency of
each elementary down-conversion process, where a signal and
an idler photon of frequencies ωs + �, ωi + �′ are generated
out of a pump photon of frequency ωp + � + �′. Notice that,
apart from the different form of the phase matching (4), the
only formal difference with the usual co-propagating case
(see, e.g., [15]) is the minus sign appearing at the right-hand
side of (3b) for the counterpropagating idler. As we shall
see, however, this minus sign leads to very relevant physical
differences.

A. Low-gain limit

In a parent work [11], we analyze these equations for
a generic gain, including the region close to the MOPO
threshold. This work, instead, focuses on the ultralow gain
regime, much below the MOPO threshold, where photons pairs
are generated by purely spontaneous down-conversion. In this
regime, the depletion of the pump beam can be neglected
and the pump approximated by a constant c-number field,
corresponding to the pump pulse at the crystal input face,

âp(�,z) → αp(�,z) ≈ αp(�,z = 0). (5)
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The strength of the parametric coupling is then described by
the dimensionless gain parameter,

g =
√

2πχαp(t = 0)lc, (6)

where αp(t = 0) is the peak value of the pump temporal profile.
Notice that in the limit of a monochromatic pump [11,16]
g = π/2 represents the threshold for the MOPO. Conversely,
in the limit g � 1 Eq. (3) can be solved perturbatively. Namely,
we write the formal solution of (3), starting from the boundary
conditions:

âs(�,z = 0) = âin
s (�), (7)

âi(�,z = lc) = âin
i (�), (8)

determined by the input signal and idler fields, entering
the crystal from the left face at z = 0 and from the right
face at z = lc, respectively (Fig. 1). By solving iteratively, a
perturbative series of powers of g is obtained. By keeping only
the first-order terms in g � 1, one obtains a Boguliobov linear
transformation that links the output to the input operators:

âout
s (�s) = âs(�s,z = lc)

= âin
s (�s) +

∫
d�iψ(�s,�i)â

in†
i (�i), (9a)

âout
i (�i) = âi(�s,z = 0)

= âin
i (�i) +

∫
d�sψ(�s,�i)â

in†
s (�s), (9b)

where

ψ(�s,�i) = g√
2π

α̃p(�s + �i)

× sinc

[D(�s,�i)lc
2

]
e−i

D(�s ,�i )lc
2 (10)

is the so-called biphoton amplitude. Here

α̃p(�) =
∫

dt√
2π

ei�t α(t)

αp(t = 0)
(11)

is the Fourier profile of the pump pulse at the crystal input
face, normalized to its temporal peak value. Notice that Eq. (9)
defines a unitary transformation only up to first order in g. In
the following, the input signal and idler field at the left and
right end faces of the crystal will be taken in the vacuum state.

It is worth remarking that the quantum-field formalism here
employed can be replaced by a state formalism (see also [17]),
where the state evolves under the parametric interaction
instead of the field operators. By finding the generator of
the transformation (9), applying it to the input vacuum state,
and retaining terms up to first order in the gain g � 1 (see
Appendix B for details), one obtains

|φ〉out = |0〉 +
∫

d�sd�iψ(�s,�i)â
†
s (�s)â

†
i (�i)|0〉. (12)

This is the well-known biphoton state, describing the superpo-
sition of the vacuum state |0〉 and of a two-photon state, where
the photon pair can be generated in any of the Fourier modes
�s,�i with probability amplitude ψ(�s,�i). In this respect,

the formalism used here can be connected to the one employed
in [12,18].

III. SPECTRAL BIPHOTON CORRELATION

This section is devoted to the biphoton correlation in the
spectral domain. Precisely, we focus on the field correlation
〈Âout

s (�s)Âout
i (�i)〉, proportional to the probability amplitude

of finding a pair of photons at frequencies �s,�i at the crystal
output faces. Using the input-output relations (9) and the
definitions (2):〈

Âout
s (�s)Â

out
i (�i)

〉 = eiks (�s )lcψ(�s,�i), (13)

with ψ given by Eq. (10). As usual, the biphoton correlation
is the product of two terms: (i) the pump spectral ampli-
tude α̃p(�s + �i), reflecting the energy conservation in the
microscopic process, and (ii) the phase matching function
sinc(Dlc/2)e−iDlc/2, reflecting the generalized momentum
conservation. Concerning the latter, we can expand D(�s,�i)
in Eq. (4) in power series of the frequency shifts from the
carriers. Down-conversion spectra are typically narrow [7,8],
as will become clear in the following, so that one is allowed to
retain only terms up to first order in �s , �i ,

D(�s,�i)
lc

2
≈ lc

2
[(k′

s − k′
p)�s − (k′

i + k′
p)�i] (14)

= −
(

�s

�gvm
+ �i

�′
gvs

)
, (15)

where the zero-order term vanishes because of Eq. (1), and
k′
j = dkj/dω|

ω=ωj
, j = s,i,p. We thus see the appearance of

the two characteristic temporal scales:

τgvm := �gvm
−1 = 1

2

[
lc

vgp

− lc

vgs

]
, (16)

τ ′
gvs := �′

gvs
−1 = 1

2

[
lc

vgp

+ lc

vgi

]
, (17)

where vgj = 1/k′
j are the group velocities of the three wave

packets at the central frequencies. The first scale in Eq. (16)
describes the “small” temporal separation between the co-
propagating waves due to their group velocity mismatch
(GVM). The second one in Eq. (17) accounts for the
“large”temporal separation of the counterpropagating pump
and idler waves, which is ruled by the time needed by the
pulse centers to cross the crystal. Closely related,

τgvs = �gvs
−1 = 1

2

[
lc

vgs

+ lc

vgi

]
, (18)

describes the characteristic separation of the arrival times of
an idler and a signal photon at their exit faces. Clearly, since
group velocities are close, τgvs ≈ τ ′

gvs, while τgvm � τ ′
gvs,τgvs,

and

η = τgvm

τ ′
gvs

= �′
gvs

�gvm
� 1. (19)

Therefore, the phase matching has two well-separated scales
of variation: As a function of the signal frequency it decays
on the broad bandwidth �gvm, while as a function of the idler
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FIG. 2. (Color online) Ratio η = τgvm/τ ′
gvs for periodically poled

KTP and LiNbO3, pumped in the infrared or visible, for type 0
e → ee down-conversion. Point A is KTP pumped at λp = 821 nm,
with �pol = 800 nm, λs = 1141 nm, λi = 2932 nm, corresponding
to the experiment in [7]; B is the zero GVM point for the KTP
at λp = 821 nm, corresponding to �pol = 290 nm, λs = 3523 nm,
λi = 1071 nm. C is a LiNbO3 slab pumped at λp = 527.5 nm, for
degenerate PDC at λs = λi = 1055 nm, with �pol = 236 nm.

frequency it decays on the narrow bandwidth �′
gvs. Plots of

the parameter η, for periodically poled KTP (potassium titanyl
phosphate) and LiNbO3 (lithium niobate), are shown in Fig. 2,
where A,B,C are the points that will be used as examples in
the following.

Finally, a third relevant scale is the pump spec-
tral bandwidth. For a coherent Gaussian pump αp(t) =
αp(0) exp (− t2

2τ 2
p

), the pulse duration τp is the inverse of the

bandwidth,

τp = 1

��p
. (20)

Depending on the pump bandwidth relative to the spectral
scales of phase matching, different physical situations arise.
The three relevant possibilities, depicted in Fig. 3, will be
studied separately in the following.

(i) Limit of a CW pump
We assume a narrowband pump pulse, such that

τp 	 τ ′
gvs 	 τgvm, or ��p � �′

gvs � �gvm. (21)

This limit corresponds to a pump pulse that in the z direction
is much longer than the crystal slab, and for a crystal of
some mm length requires a pulse duration of hundreds of
picoseconds or longer. In this limit the pump spectral profile
α̃p(�s + �i) is much narrower than the phase matching
bandwidths, and the geometry of the correlation is dominated
by energy conservation, which requires that the twins are
generated at symmetric frequencies �s + �i = �p ≈ 0. As
a consequence, the biphoton correlation (10) has a sharp max-
imum along the diagonal �s = −�i , as shown by Fig. 3(a).
Indeed, as derived in Appendix A, in this limit the correlation
is well approximated by

ψ(�s,�i) 
 g√
2π

α̃p(�s + �i)sinc

(
�s

�gvs

)
e
−i �s

�gvs (22)


 g√
2π

α̃p(�s + �i)sinc

(
�i

�gvs

)
e
i

�i
�gvs . (23)

(ii) Limit of an ultrashort pump pulse
We consider here the limit:

τp � τgvm,τ ′
gvs, or ��p 	 �gvm,�′

gvs, (24)

where the pump pulse is not only shorter than the crystal
length, but also shorter than the average separation between
the pump and signal wave packets due their GVM. In our
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FIG. 3. (Color online) Biphoton correlation |ψ | [Eq. (10)] in the plane (�i,�s), in various pumping regimes. Example of a 4-mm PPKTP,
pumped at 821.4 nm, corresponding to the point A in Fig. 2, with τ ′

gvs = 25.2 ps, τgvm = 0.27 ps. (a) Quasi-CW pump pulse τp = 253 ps.
(b) Intermediate pump pulse τp = 1.1 ps. (c) Ultrashort pump τp = 0.03 ps. Note the different scales of the plots 1011 → 1013 Hz.
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examples this corresponds to duration shorter than 100 fs.
In these conditions, the pump spectral profile α̃p(�s + �i)
decays slowly with respect to sincD(�s,�i)lc/2, so that the
geometry of the biphoton correlation is dominated by the phase
matching, i.e., by the momentum conservation. As a result
[Fig. 3(c)] the biphoton correlation takes the approximated
form,

ψ(�s,�i) 
 g√
2π

α̃p[�s(1 − η)]sinc

(
�s

�gvm
+ �i

�′
gvs

)

×e
i( �s

�gvm
+ �i

�′
gvs

)
(25)


 g√
2π

α̃p

[
− �i

1 − η

η

]
sinc

(
�s

�gvm
+ �i

�′
gvs

)

× e
i( �s

�gvm
+ �i

�′
gvs

)
. (26)

When plotted in the plane (�i,�s), the function shows a sharp
maximum along the line,

�s = −�i

�gvm

�′
gvs

, (27)

where phase matching occurs [see Eq. (15)], and very
asymmetric spectral properties of the signal -idler photons.

(iii) Intermediate pump pulse
The intermediate case, where

τ ′
gvs 	 τp 	 τgvm, or �′

gvs � ��p � �gvm, (28)

is the most peculiar one, because the biphoton correlation
may approach a separable function of �s,�i [Fig. 3(b)]. First
of all, we remark that the limit (28) is strictly realized only
for η = τgvm/τ ′

gvs → 0, i.e., for a vanishing group velocity
mismatch between the pump and the signal. This condition is
favorable to separability, because as η → 0 the phase matching
function tends to become a stripe parallel to the �s axis [see
Eq. (27)], but it is not a sufficient one, because of the role
of the pump profile in Eq. (10). However, provided that the
pump spectrum satisfies the intermediate limit (28), it can
be demonstrated (Appendix A) that the biphoton ampli-
tude (10) approaches the factorized form:

ψ(�s,�i) → g√
2π

α̃p(�s)e
i �s

�gvm sinc

(
�i

�gvs

)
e
i

�i
�′

gvs , (29)

i.e., it becomes the product of a function of �s , reproducing
the pump profile, and a function of �i , corresponding to
the phase matching profile. This describes a nonentangled
biphoton state, with the signal photon generated in the same
spectro-temporal mode as the pump, while the spectral mode
of the idler is dictated by the phase matching “sinc” function
of width �gvs.

This qualitative picture will be confirmed by the evaluation
of the Schmidt number in Sec. VI, and will be interpreted and
discussed in the light of the temporal correlation of biphotons
in the next section.

IV. INTERPRETATION: THE BIPHOTON CORRELATION
IN THE TEMPORAL DOMAIN

An alternative insight into the issue of separability vs
entanglement is provided by the analysis of the biphoton

correlation in the temporal domain. We consider

φ(ts ,ti) = 〈
Âout

s (ts)Â
out
i (ti)

〉
=

∫
d�s√

2π

∫
d�i√

2π
e−i(�sts+�iti )eiks (�s )lcψ(�s,�i),

(30)

which is proportional to the probability amplitude of finding
a signal and an idler photon at their crystal end faces at times
ts ,ti .

By using the linear approximation for phase matching (15)
and performing the simple Fourier transformations involved
in (30) we obtain

φ(t̄s ,t̄i) = geiks lc

2τgvs
αp

(
t̄s + η

t̄s − t̄i

1 − η

)
Rect

(
t̄s − t̄i

2τgvs

)
, (31)

where

Rect(x) =
{

1 for xε
( − 1

2 , 1
2

)
0 elsewhere

(32)

is the box function of unitary width. The barred arguments t̄s ,t̄i
denote time intervals measured starting from the arrival times
of the centers of the signal and idler wave packets. Precisely,
t̄s,i = ts,i − tAs,i , where

tAs = (k′
s + k′

p)
lc

2
= tAp − (k′

p − k′
s)

lc

2
, (33)

tAi = (k′
i + k′

p)
lc

2
= tAp − (k′

p − k′
i)

lc

2
, (34)

where tAp = k′
plc is the time when the center of the pump

pulse exits the crystal slab. Figure 4 shows three examples of
the temporal correlation function (31).

The general formula (31) simplifies in the limit of a pump
long with respect to τgvm, i.e., in the quasi-CW or intermediate
limits (21), (28):

φ(t̄s ,t̄i)
τp	τGVM
 geiks lcαp(t̄s)

1

2τgvs
Rect

(
t̄i − t̄s

2τgvs

)
. (35)

Indeed, for a pump pulse long with respect to τgvm, one has
αp(t̄s + η t̄s−t̄i

1−η
) ≈ αp(t̄s), because |t̄s − t̄i | is limited by the

box function to values smaller than τgvs, so that η
|t̄s−t̄i |
1−η

=
τgvm

τgvs
|t̄s − t̄i | � τgvm � τp.

Formula (35) shows that in the limit of a negligible GVM,
the distribution of separations t̄s − t̄i between the arrival times
of the twin photons is entirely described by the box function of
half-width τgvs, which roughly corresponds to the long transit
time of light along the crystal slab. As already noticed in [16],
this is a noteworthy difference with the copropagating case,
where the uncertainty in the temporal separation of the twins
is short, because determined at most by the group velocity
dispersion or mismatch along the crystal. This long correlation
is at the origin of the narrow frequency bandwidth of the
counterpropagating scheme (see also Sec. V), in sharp contrast
with the huge bandwidth of the standard configuration.

The form (35) of the temporal correlation clearly reflects
the spontaneous character of the process, where photon pairs
can be generated at any point of the crystal with uniform
probability. Thus, assuming for simplicity that the twins
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FIG. 4. (Color online) Temporal correlation of twin photons |φ(t̄i ,t̄s)|, given by Eq. (31), plotted in the plane (t̄i ,t̄s). (a) High entanglement
case, withK 
 26, for a quasi-CW pump τp = 14τ ′

gvs. (b) Almost separable case withK 
 1.06, for an intermediate pump τp = 0.04τ ′
gvs = 4τgvm.

(c) Ultrashort pulse τp = 0.22τgvm, corresponding to an entangled state with K 
 4. Same KTP crystal as in Fig. 6.

travel with the same group velocities vgs = vgi , the separation
between their arrival times ranges with uniform probability
from zero, when the two photons are generated at the center
of the crystal up to ±τgvs = lc/vg , when they are generated at
each of the end faces.1

The CW pump limit [Fig. 4(a)] corresponds to the situation
where the pump pulse is much longer than the possible
temporal separation τgvs of the twins. In this case, the usual
picture of the temporal entanglement of twin photons holds:
The time when a signal or idler photon is individually detected
has a large undeterminacy, because a photon pair can be
generated at any time along the pump pulse. However, from
the arrival time of one member of the pair one can infer the
arrival time of the other with a much smaller uncertainty τgvs,
which represents the mean uncertainty in the arrival time of one
photon provided its twin hs been detected, i.e., the correlation
time. This kind of correlation is basically what was predicted
in Ref. [16] for a strictly monochromatic pump.

However, when the pump pulse shortens below τgvs

[Fig. 4(b)] this description ceases to be valid, because the
localization of the pump pulse provides an absolute timing
information of the arrival of the signal, more precise than
the uncertainty in the temporal separation of the twins.
Indeed when the pump pulse is much shorter than τgvs, but
still long enough that GVM is negligible, the signal wave
packet overlaps almost exactly with the pump pulse during
propagation, and the uncertainty in the arrival time of the
signal is just the pulse duration. This is much smaller than
the conditional uncertainty τgvs by which the arrival time
of the idler can be inferred from that of the signal. As
a consequence, the exit times of the twins appear to be

1Precisely, when the two photons are generated at the crystal
center ts − ti = tAs − tAi = (k′

s − k′
i)lc/2 ≈ 0, and the delay between

their arrival times ranges uniformly between (i) ts − ti = tAs − tAi −
τgvs = −k′

i lc, when they are generated at the right end face of the
slab, and (ii) ts − ti = tAs − tAi + τgvs = k′

s lc when the photon pair is
generated at the left end face.

completely uncorrelated. Indeed, the temporal correlation in
Fig. 4(b) is, approximately,

φ(t̄s ,t̄i) 
 geiks lcαp(t̄s)
1

2τgvs
Rect

(
t̄i

2τgvs

)
, (36)

which is a factorable function of t̄s ,t̄i .
Notice that when the pump pulse is so short that GVM starts

to be important [Fig. 4(c)], there is again a loss of absolute
timing information. In this case, the arrival time of the signal
cannot be inferred from that of the pump with a precision better
than τgvm. In contrast, the arrival time of the signal conditioned
to a photon count in the idler arm can be predicted within the
short pump duration τp, and the state becomes again entangled.
This can be better understood by looking at the correlation
function (31), which for τp � τgvm can be rewritten as

φ(t̄s ,t̄i) = geiks lc

2τgvs
αp

(
t̄s − ηt̄i

1 − η

)
Rect

(
t̄s − t̄i

2τgvs

)
(37)


 geiks lc

2τgvs
αp

(
t̄s − ηt̄i

1 − η

)
Rect

(
t̄s

2τgvm

)
, (38)

where the last line has been obtained by substituting t̄i = t̄s/η

inside the argument of the box function (valid because the
pump profile is much narrower than both τgvs and τgvm). From
formula (38) we see that, provided that an idler photon is
detected at time t̄i , the arrival time of the signal can be predicted
as t̄s = ηt̄i within the narrow uncertainty of the pump duration
τp [see also Fig. 4(c)]. However, when the idler is not detected,
the overall uncertainty in the signal arrival time is the larger
width τgvm of the box function. Clearly this argument predicts
an entangled state, with the number of modes scaling as
τgvm/τp, in agreement with the results for the Schmidt number
that will be presented in Sec. VI [see Eq. (62)].

V. SPECTRAL COHERENCE OF
COUNTERPROPAGATING PHOTONS

This section is devoted to the marginal statistics of individ-
ual signal and idler photons. The focus is on their spectral

053809-6



TEMPORAL COHERENCE AND CORRELATION OF . . . PHYSICAL REVIEW A 92, 053809 (2015)

Ωs (Hz)

Ω
s' (

H
z)

-5 0 5
x 1013

-5

0

5

x 1013

H
z-1

0.5

1

1.5

2

2.5

x 10-17

SIGNALSIGNAL

Ωi (Hz)

Ω
i' (

H
z)

-2 -1 0 1 2
x 1012

-2

-1

0

1

2

x 1012

H
z-1

0

0.5

1

1.5

2

2.5

3

3.5

x 10-15

Ωs (Hz)

Ω
s' (

H
z)

-2 -1 0 1 2
x 1012

-2

-1

0

1

2

x 1012

H
z-1

1

2

3

4

5

x 10-14

Ωi (Hz)

Ω
i' (

H
z)

-2 -1 0 1 2
x 1012

-2

-1

0

1

2

x 1012

H
z-1

1

2

3

4

5

6

7
x 10-13

Ωs (Hz)

Ω
s' (

H
z)

-2 -1 0 1 2
x 1011

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 1011

H
z-1

0

0.5

1

1.5

2

x 10-10

Ωi (Hz)

Ω
i' (

H
z)

-2 -1 0 1 2
x 1011

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 1011

H
z-1

0

0.5

1

1.5

2

x 10-10

SIGNALSIGNAL SIGNALSIGNAL

IDLERIDLERIDLERIDLER IDLERIDLER

(a) τp=353 ps (b) τp=1.1 ps (c) τp=0.03 ps

FIG. 5. (Color online) The coherence functions |G(�,�′)| of the forward signal and backward-propagating idler are plotted in the upper
and lower row, respectively, for different pumping regime. (a) Quasi-CW pump pulse τp = 353 ps. (b) Intermediate pump pulse τp = 1.1 ps.
(c) Ultrashort pump τp = 0.03 ps. Same KTP crystal slab as in Fig. 3 (point A in Fig. 2), with τ ′

gvs = 25.2 ps, τgvm = 0.27 ps. Note the different
scales in the panels.

coherence properties, studied by means of the first-order
coherence functions,

G(1)
s (�,�′) = e−i[ks (�′)−ks (�)]lc

〈
Â† out

s (�)Âout
s (�′)

〉
,

(39)
G

(1)
i (�,�′) = 〈

Â
† out
i (�)Âout

i (�′)
〉
,

(where a propagation phase factor is present in the first
definition just for convenience of notation). From the input-
output relations (9) one has

G(1)
s (�s,�

′
s) =

∫
d�iψ

∗(�s,�i)ψ(�′
s ,�i), (40)

G
(1)
i (�i,�

′
i) =

∫
d�sψ

∗(�s,�i)ψ(�s,�
′
i), (41)

i.e., the coherence functions are convolution integrals over the
biphoton amplitude ψ , given by Eq. (10). The knowledge of
the G

(1)
j is sufficient to determine all the statistical properties

of the marginal distributions. For example, the autocorrelation
of the light intensities Îj = Â

†
j Âj ,

〈Îj (�)Îj (�′)〉 = δ(� − �′)〈Îj (�)〉 + 〈Îj (�)〉〈Îj (�′)〉
+ ∣∣G(1)

j (�,�′)
∣∣2

, (42)

where 〈Îj (�)〉 = G
(1)
j (�,�). This relation is typical of

thermal-like light, and is a consequence of the Gaussian nature

of the field statistics, when the linear transformation (9) is
applied to the vacuum state. As it is well known, in fact the
marginal distributions of the signal-idler light generated from
vacuum are in general thermal-like. We remark that in the
low-gain g � 1, the dominant term is the first one, i.e., the
“shot-noise” term δ correlated in frequencies.

〈Îj (�)Îj (�′)〉 g�1≈ δ(� − �′)〈Îj (�)〉. (43)

Therefore, the statistics of photon counts in each arm is
Poissonian, in accordance with the result that can be obtained
with the biphoton state (12) (see Appendix B for a discussion).

In the following we shall illustrate the three relevant cases.
The coherence functions will be evaluated both numerically
(Fig. 5) and analytically. In the first case, the complete
Sellmeier relations [19] will be used to compute the integrals
in (40) and (41), while the linear approximation for phase
matching will be exploited to derive approximated analytical
formulas.

(i) Limit of a CW pump
Figure 5(a) shows an example of the signal and idler coher-

ence functions in the plane (�,�′), numerically computed in
the case of a long pump pulse τp 
 14τ ′

gvs.
In the limit τp 	 τ ′

gvs, approximated expressions for the
coherence functions can be calculated by inserting the formu-
las for the biphoton correlation (22) and (23), valid in this
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limit, into Eqs. (40) and (41), respectively, and performing the
simple integrals. After some passages,

G
(1)
i (�,�′) 
 G(1)

s (�,�′), (44)

τp	τ ′
gvs−→ Ĩp(�′ − �) g2sinc2

(
�

�gvs

)
, (45)

where Ĩp(�) = ∫
dt
2π

ei�t |αp(t)/αp(0)|2 is the Fourier trans-
form of the pump intensity profile. These approximated
formulas have been checked with the numerical results and
show an excellent match. These results may be considered the
more refined version of the much simpler CW model analyzed
in [11,16], with the narrow peak Ĩp(�′ − �) being the finite
counterpart of the singular Dirac δ appearing in the strictly
CW pump model [11].

For a quasi-CW pump the counterpropagating signal and
idler photons are predicted to have identical spectral coherence
properties. In particular, by looking at the G(1) functions
along the diagonal �′ = � we see that their spectra 〈Îj (�)〉 =
〈Â†

j (�)Âj (�)〉,

〈Îs(�)〉 = 〈Îi(�)〉 
 g2τp√
2π

sinc2

(
�

�gvs

)
, (46)

are identical and entirely determined by the narrow bandwidth
of phase matching �gvs. This bandwidth is in turn the inverse of
the long temporal scale τgvs, which rules the correlation of the
twins. As already remarked, this strongly differs from the co-
propagating scheme, where the down-conversion bandwidths
are huge.

On the other side, when studied as a function of �′ − � the
G(1) gives the characteristic size of spectral fluctuations, i.e.,
the spectral coherence length. This is determined by the pump
bandwidth, more precisely by the width

√
2��p of Ĩp(�′ −

�), which is much narrower than the spectral bandwidths �gvs.
We can heuristically estimate the number of modes by counting
the number of coherence length contained in the spectrum:
Therefore, for such a long pulse we expect each signal and idler
photon to be generated in a highly incoherent and multimode
state, with the number of modes ∝ �gvs

��p
= τp

τgvs
.

(ii) Ultrashort pump pulse
When the pump pulse shorten below the transit time τ ′

gvs
along the crystal slab, the spectral properties of the coun-
terpropagating idler and signal change drastically, becoming
strongly asymmetric. First we consider the case of an ultrashort
pulse, τp � τgvm (i.e., such that the pump and the signal tend to
split apart during propagation). The asymmetry between the
forward- and backward-propagating photons can be clearly
appreciated in the third column of Fig. 5, which plots their
coherence functions for τp ≈ 0.1τgvm.

Approximated expressions for the coherence functions are
derived also in this case, by using the limit behavior of the
biphoton correlation described by Eqs. (25) and (26). With
some calculations,

G(1)
s (�,�′)

τp�τgvm−→ g2�′
gvs

2
|α̃p[�(1 − η)]|2

× sinc

(
�′ − �

�gvm

)
e
−i( �′−�

�gvm
)
. (47)

This formula predicts that the spectrum of the forward-
propagating signal,

〈Îs(�)〉 = g2�′
gvs

2
|α̃p[�(1 − η)]|2, (48)

is a replica of the pump spectrum with a scale factor 1
1−η

=
k′
p+k′

i

k′
i+k′

s
on the order unity. The coherence length of the signal

(the characteristic size of spectral fluctuations) is instead
determined by the width of the narrower sinc function, lcoh,s ≈
�gvm. From this picture we thus expect that the signal photon,
when detected independently from its twin, is in a incoherent
multimode state, with the number of modes ∝ ��p

(1−η)�gvm
.

In a similar way, for the idler photon we get

G
(1)
i (�,�′)

τp�τgvm−→ g2�gvm

2

∣∣∣∣α̃p

[
− �

1 − η

η

]∣∣∣∣
2

×sinc

(
�′ − �

�′
gvs

)
e
−i( �′−�

�′
gvs

)
. (49)

This formula predicts an idler bandwidth much narrower than
the pump; precisely it predicts that the idler spectrum follows

the pump spectrum with a scale factor η

1−η
= k′

p−k′
s

k′
i+k′

s
� 1. The

coherence length of the idler is lcoh,i ≈ �′
gvs, so that the number

of temporal modes is predicted to scale as η��p

(1−η)�′
gvs

= ��p

(1−η)�gvm
,

which is the same number as for the signal (as it must be
because the signal and idler are the two members of the same
entangled state, and their reduced states must exhibit the same
Schmidt dimensionality; see next section).

Notice that this particular scaling of the bandwidths of
the forward- and backward-propagating waves with the pump
bandwidth is well known in the literature concerning the

MOPO. There, the same scaling factors,
k′
p+k′

i

k′
i+k′

s
for the forward-

propagating signal and
k′
p−k′

s

k′
i+k′

s
for the backward-propagating

idler, are predicted to occur [7,8], by using arguments based
on the phase-matching characteristic of the process. Here,
however, the analysis concerns the quantum properties of the
single photons generated well below the MOPO threshold.
Moreover, at difference with the classical analysis in [7], such
a scaling with the pump spectrum is predicted only in rather
extreme conditions, corresponding to an ultrashort pump pulse
τp � τgvm. Notice that this limit imposes a precise and not
trivial constraint on the minimum observable bandwidth of
the idler photon: The behavior described by Eq. (49) is indeed
realized only for τp � τgvm, or for ��p 	 �gvm, so that it
requires that the idler bandwidth,

δ�i 
 η

1 − η
��p 	 η

1 − η
�gvm = �gvs. (50)

(iii) Intermediate pump pulse
When τgvm � τp � τ ′

gvs, the properties of the twin photons
are actually intermediate between the two former cases, with
the forward-propagating signal photon replicating the pump
spectrum, while the coherence properties of the backward-
propagating idler are determined by phase matching. These
features are clearly exhibited by the central column Fig. 5(b),
which plots a numerically computed example of the coherence
functions for τp = 0.04τ ′

gvs ≈ 4τgvm, short with respect to the
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transit time along the slab, but long enough that GVM does
not play a relevant role.

The observed features are a straightforward consequence
of the separable form (29) of the biphoton amplitude which
holds in this limit. Indeed, by using Eq. (29), in the limit
τp/τ ′

gvs → 0 ,τgvm/τp → 0 we obtain

G(1)
s (�,�′) → g2�gvs

2
α̃∗

p[�(1 − η)]α̃p[�′(1 − η)], (51)

G
(1)
i (�,�′) → g2τp√

2π
sinc

(
�

�gvs

)
sinc

(
�′

�gvs

)
e
i �′−�

�′
gvs . (52)

Thus in this case the signal spectrum is a replica of the
broad pump spectrum Is(�) ∝ |α̃p[�(1 − η)]|2, while the
idler spectrum is determined by the much narrower phase-
matching function Ii(�) ∝ sinc2( �

�gvs
). Precisely, the signal

spectrum is described by the same formula (48) as in the
ultrashort pump case, while the idler spectral properties are
described by the same formula (46) that holds in the CW pump
limit. However, notice that in the present case the coherence
properties are remarkably different, as the two coherence
functions are perfectly symmetrical along the two diagonals
� ± �′: As can be easily inferred from Eqs. (51) and (52)
the two coherence lengths are lcoh,s ≈ ��p and lcoh,i ≈ �gvs,
i.e., they are equal to the respective spectral widths. This is in
accordance with the separability of the biphoton state, which
corresponds to single-mode, almost coherent reduced states
for each of the two twin photons taken separately.

We conclude this section observing that the results
of (46), (50), and (52) imply that in any pumping regime the
idler bandwidth cannot be narrower than the phase-matching
bandwidth �gvs, a limitation that arises from the imperfect
momentum conservation due to the finite length of the crystal
slab.

VI. SCHMIDT NUMBER OF ENTANGLEMENT

So far our considerations about the number of modes and
the degree of entanglement of the system have been qualitative.
A quantitative measure of the entanglement is offered by the
so-called Schmidt number [20,21], which is recognized to give
an estimate of the number of Schmidt modes participating in
the entangled state, i.e., of the effective dimensionality of the
entanglement [22]. First of all, as usual, we consider the state
conditioned to a photon count,

|φC〉 =
∫

d�sd�iψ(�s,�i)â
†
s (�s)â

†
i (�i)|0〉, (53)

where with respect to the true output state (12), the vacuum
term has been dropped. Then, we introduce the Schmidt
number, as the inverse of the purity of the state of each separate
subsystem,

K = 1

Tr
{
ρ2

s

} = 1

Tr
{
ρ2

i

} , (54)

where ρs , ρi are the reduced density matrix of the signal and
idler, e.g., ρs = Tri{|φC〉 〈φC|}. For a two-particle state of the
form (53), the Schmidt number can be calculated via an integral

formula, as, e.g., derived in [17] (see also [4]),

K = N 2

B
, (55)

where

N =
∫

d�G(1)
s (�,�) =

∫
d�G

(1)
i (�,�), (56)

B =
∫

d�

∫
d�′∣∣G(1)

s (�,�′)
∣∣2

=
∫

d�

∫
d�′∣∣G(1)

i (�,�′)
∣∣2

. (57)

As can be easily checked, N is the expectation value of the
photon number operator N̂j = ∫

d�Îj (�) in either the signal
or idler arm,

N = 〈N̂s〉 = 〈N̂i〉. (58)

The quantity at the denominator can be linked to the second-
order moment of the photon number. By using Eq. (42) (valid
within the field formalism), and integrating it over the two
spectral arguments,∫

d�

∫
d�′∣∣G(1)

j (�,�′)
∣∣2 = 〈

:N̂2
j :

〉 − 〈N̂j 〉2, (59)

where : : indicates normal ordering, and j = s,i. In terms of
the normalized g(2) coefficient,

g(2) =
〈
:N̂2

j :
〉

〈N̂j 〉2
= 1 + 1

K . (60)

As recognized in [23,24], the Schmidt number can thus
be related to measurable statistical properties of light. In
particular, formula (60) is well known to describe the statistics
of multimode thermal light, with K playing the role of the
effective number of independent modes in a thermal beam.

Figure 6 shows our results for the Schmidt number.
The solid lines plot the “exact” results, where K has been
calculated by numerically performing the integrals involved
in (56) and (57), with the phase-matching calculated via the
complete Sellmeier relations. The red dashed lines in Figs. 6(a)
and 6(b) are asymptotic behaviors, analytically derived by
exploiting the linear approximation for phase matching. In
particular, by using the approximated formula (45) for the
coherence function, and performing the integrals involved
in (56) and (57), one obtains the limit of the Schmidt number
for a long pump pulse,

K
τp	τ ′

gvs−→ 3

2

√
π

2

�′
gvs

��p

. (61)

For an ultrashort pump pulse, the asymptotic behavior of K is
calculated by using formula (49) or (47), for either the signal
or the idler coherence function (identical results are indeed
obtained). In this case,

K
τp�τgvm−→ 1

1 − η

√
2

π

��p

�gvm
. (62)

The calculated asymptotes are well in accordance with our
qualitative estimates of the number of modes in Sec. V, based
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FIG. 6. (Color online) (a) Schmidt number, as a function of the
pump spectral bandwidth (lower axis) or duration (upper axis). (b)
and (c) Insets of (a), showing the transition from high entanglement
for a long pump τp 	 τ ′

gvs to an almost separable state for τ ′
gvs 	

τp 	 τgvm. The red dashed lines in (a) and (b) are the calculated
asymptotic behaviors; the blue dash-dot line in (c) is the result of a
Gaussian approximation. 4-mm PPKTP A in Fig. 2, with τ ′

gvs = 25.5
ps τgvm = 0.27 ps,; other parameters as in Fig. 3.

on the ratio between the spectral bandwidth and the coherence
length.

This shape of the curve, showing a minimum of K for a
given value of the pump bandwidth and linear asymptotes at
small and large values of the bandwidth, is commonplace,
with a qualitatively similar curve characterizing also the

co-propagating case in either temporal [4] or spatial [25]
or even spatio-temporal [17] domains. The novelty here is
that the minimum value of K is very close to unity, and
remains close to unity for a rather large range of ��p [see
Fig. 6(c)]. This represents indeed a big difference compared to
the co-propagating case, where in order to generate separable
biphotons very special matching conditions have to be chosen,
corresponding to a zero group velocity mismatch between the
pump and one of the twin photons, which can be realized only
in type II interactions [13,26].

In the backward-propagating case the conditions for sepa-
rability are very easily approached, and rely entirely on the fact
that η = τgvm/τ ′

gvs is naturally a very small quantity, because
the temporal separations τgvm,τ ′

gvs between the co-propagating
and the counterpropagating waves are on well-separated time
scales.

Indeed, a more refined calculation shows that the minimum
value of K, reached for a pump duration intermediate between
τgvm and τ ′

gvs is Kmin = 1 + O(η). This is also confirmed
by analytical calculations of the Schmidt number, reported
in detail elsewhere [27], performed by means of a Gaussian
approximation of the sinc function of phase matching, simi-
larly to what was done in [26]. These calculations [plotted as
the blue dash-dot line in Fig. 6(c)] show that the minimum
of K is

Kmin = 1 + η

1 − η
≈ 1 + 2η, (63)

reached for ��p =
√

3�′
gvs�gvm. This result suggests that a

higher degree of purity of the reduced states can be achieved
as the GVM between the two forward propagating is reduced.
This is confirmed by the examples in Fig. 7, which compares
different crystals and phase-matching conditions. Notice that a
small GVM corresponds to a higher degree of purity, as in the
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FIG. 7. (Color online) Role of GVM in determining the purity of
the state. Schmidt number for different crystals and/or different phase-
matching conditions, corresponding to the points A, B, C in Fig. 2.
(A) 4-mm KTP with τgvm = 0.27 ps, τ ′

gvs = 25.5 ps, → η = 0.01
(same as in Figs. 3–6). (B) 4-mm KTP, with τgvm = 0, τ ′

gvs = 24.7 ps,
→ η = 0. (C) 4-mm LiNbO3 with τgvm = 1.68 ps, τ ′

gvs = 31.2 ps,
→ η = 0.05.
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co-propagating case, but that in the present case the condition
for separability is much less demanding, as it does not require
a vanishing GVM, but just that τgvm is small compared to the
sum of the inverse of group velocities τ ′

gvs, which is always
verified to some extent.

VII. CONCLUSIONS

In this work we provided a detailed theoretical analysis
of the effect of the pump spectral properties on the quantum
correlation of counterpropagating photons generated by SPDC
in a periodically poled crystal.

In particular, for increasing spectral bandwidths of the
pump (decreasing pump durations), we demonstrated a re-
markable transition from a high-dimensional entangled state,
to an almost separable state. The transition occurs when the
pulse duration shortens below the characteristic transit time
τgvs = lc

2vgs
+ lc

2vgi
≈ lc

2vgp
+ lc

2vgi
of light along the crystal slab.

This long temporal scale is a unique characteristic of the
counterpropagating geometry, being associated with the delay
between the times at which the counterpropagating photons,
generated at some point along the slab, appear at their exit
faces. The temporal correlation (temporal entanglement) is
again restored for pump durations below the short temporal
delay occurring between the co-propagating waves because of
their different group velocities.

The natural existence of such separated time scales ensures
the possibility of generating the high purity single photon (i.e.,
a separable two-photon state), under very general conditions,
which differs drastically from the usual co-propagating geom-
etry [13].

These conclusions have been supported through the paper
by the analysis of the Schmidt number in Sec. VI, and
by analytical and numerical evaluations of the spectral and
temporal correlation function (Secs. III and IV).

The study of the marginal statistics of photons in Sec. V
has revealed several nontrivial features.

While for a long pump pulse twin photons have the same
spectrum and the same coherence properties, in the regime of
separability they exhibit very different features. In particular,
the properties of the counterpropagating idler are entirely
determined by the phase matching in the medium, so that
we can say that they reflect the momentum conservation in the
process. On the other side, the spectro-temporal properties of
the signal are a replica of those of the co-propagating pump
laser pulse, and rather reflect the energy conservation.

For an ultrashort pump pulse, our quantum analysis has
retrieved results analog to what was predicted in the classical
description of the MOPO [7,8], but with some additional
limitation. At difference with the MOPO prediction [7],
our results impose a precise inferior limit to the observable
bandwidth of the backward idler photon, which cannot be
narrower than the phase-matching bandwidth �gvs. Clearly,
our analysis is limited to SPDC, but we notice that, to our
knowledge, measurements of the spectrum of the backward
wave in the MOPO have been limited by the spectrometer
resolution [9], so that our findings may open a question about
the effective bandwidth of the backward wave.

APPENDIX A: APPROXIMATIONS FOR THE BIPHOTON
AMPLITUDE

In this appendix we derive the approximated forms of
the biphoton amplitude used in the text, which holds in
the various pump regimes. In all the cases we make use
of the linear approximation for phase matching (15), based
on the assumption that the bandwidths in play are narrow so
that dispersion can be neglected. Under this approximation, the
general expression (10) of the biphoton amplitude becomes

ψ(�s,�i) = g√
2π

α̃p(�s + �i)V

(
�s

�gvm
+ �i

�′
gvs

)
, (A1)

where for brevity of notation we introduced the phase-
matching function V (s) = sinc(s)eis .

We consider first the limit of a CW pump (21). Since the
pump bandwith is much narrower than the bandwidths �′

gvs
and �gvm of phase matching, the presence of the pump Fourier
amplitude term forces �s = −�i into the phase-matching
function. As a result,

lim
τp/τ ′

gvs→∞
ψ(�s,�i)

= g√
2π

α̃p(�s + �i)V

(
− �s

�gvs

)
(A2)

= g√
2π

α̃p(�s + �i)V

(
�i

�gvs

)
, (A3)

where we used the relation 1/�gvs = 1/�′
gvs − 1/�gvm, ac-

cording to the definitions (16)–(18).
The limit (24) of an ultrashort pump is also straightforward.

In this case the bandwidths of phase matching are assumed to
be much narrower than the pump bandwidth �′

gvs � �gvm �
��p, so that the phase-matching function has a narrow peak,
which on the slow scale of variation of the pump forces �i =
−η�s , or �s = −�i/η inside the pump argument. Therefore,

lim
τp

τgvm
→0

ψ(�s,�i)

= g√
2π

α̃p[�s(1 − η)]V

(
�s

�gvm
+ �i

�′
gvs

)
(A4)

= g√
2π

α̃p

[
− �i

1 − η

η

]
V

(
�s

�gvm
+ �i

�′
gvs

)
. (A5)

The intermediate pump limit (28) where �′
gvs � ��p �

�gvm is a bit more involved. We remind one that the existence
of this limit also requires η = �′

gvs/�gvm � 1, which is in
practice always verified to some extent. By introducing the
pump frequency �p = �s + �i , we recast the argument of
the sinc function,

�s

�gvm
+ �i

�′
gvs

= �p

�gvm
+ �i

(
1

�′
gvs

− 1

�gvm

)
≈ �i

�gvs
, (A6)

where the term �p/�gvm has been neglected because it is on
the order ��p/�gvm � 1.

Concerning the pump amplitude we recast it as

α̃p(�s + �i) = α̃p

[
�s(1 − η) +

(
�s

�gvm
+ �i

�′
gvs

)
�′

gvs

]

≈ α̃p[�s(1 − η)], (A7)
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where the approximation in the second line holds because
( �s

�gvm
+ �i

�′
gvs

) is the argument of the sinc function [see

Eq. (A1)], so that it is limited to values inside the bandwidth
of the sinc, say on the order 
10. Provided that �′

gvs/��p

is small enough, this term becomes therefore negligible. With
this in mind we can write the limiting behavior of the biphoton
amplitude:

lim
τp/τ ′

gvs→0

τgvm/τp→0

ψ(�s,�i)

= g√
2π

α̃p[�s(1 − η)]ei �s
�gvm sinc

(
�i

�gvs

)
e
i

�i
�gvs

≈ g√
2π

α̃p[(�s)e
i �s

�gvm sinc

(
�i

�gvs

)
e
i

�i
�gvs , (A8)

where the approximation in the last line is not mandatory, but
could be useful in order to get consistent results, because this
limit can be realized only for η = τgvm/τ ′

gvs → 0.

APPENDIX B: RELATION BETWEEN THE STATE
AND THE FIELD FORMALISMS

This appendix briefly discusses the relation between the
low-gain field formalism (9) and the formalism of the biphoton
state (12). The following arguments apply to any PDC process
in the low gain.

In particular, we consider the input-output relations (9),
which represent the perturbative solution of the field propaga-
tion equations (3), correct up to first order in the parametric
gain g � 1. The transformation (9) can be recast as

âout
j (�) = R̂†âj (�)R̂ (j = s,i), (B1)

where âj are the input operators (for brevity of notation we
omitted the “in” superscript),

R̂ = exp

{ ∫
d�sd�i[ψ(�s,�i)â

†
s (�s)â

†
i (�i)

−ψ∗(�s,�i)âs(�s)âi(�i)]

}
, (B2)

and it is meant that only zero and first order in g have to be
retained in the transformation (B1).

Conversely, by applying the generator of the transforma-
tion (B1) to the input vacuum state and retaining only terms
up to first order in g, one gets

|φ〉out = R̂|0〉 (B3)



[

1̂ +
∫

d�sd�iψ(�s,�i)â
†
s (�s)â

†
i (�i)

]
|0〉, (B4)

which is the biphoton state (12).
The second procedure, however, does not produce entirely

equivalent results. To be precise, it produces equivalent results
for second-order moments of field operators. As can be
easily verified, the biphoton correlation 〈âs(�s)âi(�i)〉 and the
coherence function 〈â†

j (�)âj (�′)〉 calculated with the output
state (B4) are the same as those calculated within the field
formalism, displayed in formulas (13), and (40) and (41),
respectively.

However, some differences arise for higher order moments.
Let us consider, for example, the autocorrelation of intensities
in each signal-idler arm. The field approach gives the thermal-
like formula (42), while the calculation with the biphoton state
gives only the shot noise term of Eq. (43). For g → 0 the two
results asymptotically coincide. However, when considering
the normally ordered part of the correlation, in the field
formalism,

〈: Îj (�)Îj (�′) :〉 = 〈Îj (�)〉〈Îj (�′)〉 + ∣∣G(1)
j (�,�′)

∣∣2
, (B5)

while with the biphoton state,

〈: Îj (�)Îj (�′) :〉 = 0. (B6)

These differences arise from the truncation at first order in g:
In the field formalism it leaves the possibility of generating
multiple photon pairs, although with a smaller and smaller
probability. As a result, the marginal statistics of each beam is
the thermal statistics corresponding to a very low mean photon
number, where the probability of having more than one signal
or idler photon is small but not zero. Conversely, the truncation
at first order on the state has a more drastic effect, leaving only
a two-photon state, for which the probability of having more
than one photon in each arm is exactly zero, which implies
relation (B6).

[1] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of Subpi-
cosecond Time Intervals between Two Photons by Interference,
Phys. Rev. Lett. 59, 2044 (1987).

[2] A. Gatti, E. Brambilla, L. Caspani, O. Jedrkiewicz, and L. A.
Lugiato, X Entanglement: The Nonfactorable Spatiotemporal
Structure of Biphoton Correlation, Phys. Rev. Lett. 102, 223601
(2009).

[3] O. Jedrkiewicz, J.-L. Blanchet, E. Brambilla, P. Di Trapani, and
A. Gatti, Detection of the Ultranarrow Temporal Correlation of
Twin Beams via Sum-Frequency Generation, Phys. Rev. Lett.
108, 253904 (2012).

[4] Y. M. Mikhailova, P. A. Volkov, and M. V. Fedorov, Biphoton
wave packets in parametric down-conversion: Spectral and

temporal structure and degree of entanglement, Phys. Rev. A
78, 062327 (2008).

[5] M. Avenhaus, M. V. Chekhova, L. A. Krivitsky, G.
Leuchs, and C. Silberhorn, Experimental verification of
high spectral entanglement for pulsed waveguided sponta-
neous parametric down-conversion, Phys. Rev. A 79, 043836
(2009).

[6] S. E. Harris, Proposed backward wave oscillation in the infrared,
Appl. Phys. Lett. 9, 114 (1966).

[7] C. Canalias and V. Pasiskevicius, Mirrorless optical parametric
oscillators, Nature Photonics 1, 459 (2007).

[8] G. Strmqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A.
Picozzi, and C. Montes, Temporal coherence in mirrorless

053809-12

http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.102.223601
http://dx.doi.org/10.1103/PhysRevLett.102.223601
http://dx.doi.org/10.1103/PhysRevLett.102.223601
http://dx.doi.org/10.1103/PhysRevLett.102.223601
http://dx.doi.org/10.1103/PhysRevLett.108.253904
http://dx.doi.org/10.1103/PhysRevLett.108.253904
http://dx.doi.org/10.1103/PhysRevLett.108.253904
http://dx.doi.org/10.1103/PhysRevLett.108.253904
http://dx.doi.org/10.1103/PhysRevA.78.062327
http://dx.doi.org/10.1103/PhysRevA.78.062327
http://dx.doi.org/10.1103/PhysRevA.78.062327
http://dx.doi.org/10.1103/PhysRevA.78.062327
http://dx.doi.org/10.1103/PhysRevA.79.043836
http://dx.doi.org/10.1103/PhysRevA.79.043836
http://dx.doi.org/10.1103/PhysRevA.79.043836
http://dx.doi.org/10.1103/PhysRevA.79.043836
http://dx.doi.org/10.1063/1.1754668
http://dx.doi.org/10.1063/1.1754668
http://dx.doi.org/10.1063/1.1754668
http://dx.doi.org/10.1063/1.1754668
http://dx.doi.org/10.1038/nphoton.2007.137
http://dx.doi.org/10.1038/nphoton.2007.137
http://dx.doi.org/10.1038/nphoton.2007.137
http://dx.doi.org/10.1038/nphoton.2007.137


TEMPORAL COHERENCE AND CORRELATION OF . . . PHYSICAL REVIEW A 92, 053809 (2015)

optical parametric oscillators, J. Opt. Soc. Am. B 29, 1194
(2012).

[9] V. Pasiskevicius, G. Strmqvist, F. Laurell, and C. Canalias,
Quasi-phase matched nonlinear media: Progress towards
nonlinear optical engineering, Optical Materials 34, 513
(2012).

[10] Y. J. Ding and J. B. Khurgin, Backward Optical Parametric
Oscillators and Amplifiers, IEEE J. of Quantum Electronics 32,
1574 (1996).

[11] T. Corti, E. Brambilla, and A. Gatti, Critical behaviour of
coherence and correlation of counter-propagating twin beams
(unpublished).

[12] A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, Pure
single photon generation by type-IPDC with backward-wave
amplification, Opt. Expr. 17, 3441 (2009).

[13] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk,
A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, Heralded
Generation of Ultrafast Single Photons in Pure Quantum
States, Phys. Rev. Lett. 100, 133601 (2008); P. J. Mosley,
J. S. Lundeen, B. J. Smith, and I. A. Walmsley, Condi-
tional preparation of single photons using parametric down-
conversion: A recipe for purity, New J. Phys. 10, 093011
(2008).

[14] R. W. Boyd, in Nonlinear Optics, 3rd ed. (Elsevier, Amsterdam,
2008), Chap. 2, p. 84.

[15] E. Brambilla, O. Jedrkiewicz, P. Di Trapani, and A. Gatti, Space-
time coupling in upconversion of broadband down-converted
light, J. Opt. Soc. Am. B 31, 1383 (2014).

[16] T. Suhara and M. Ohno, Quantum Theory Analysis of
Counterpropagating Twin Photon Generation by Parametric
Downconversion, IEEE J. of Quantum Electronics 46, 1739
(2010).

[17] A. Gatti, E. Brambilla, T. Corti, and D. M. Horoshko, Dimen-
sionality of the spatio-temporal entanglement of PDC photon
pairs, Phys. Rev. A 86, 053803 (2012).

[18] M. C. Booth, M. Atature, G. Di Giuseppe, A. V. Sergienko,
B. E. A. Saleh, and M. C. Teich, Counterpropagating entangled
photons from a waveguide with periodic nonlinearity, Phys. Rev.
A 66, 023815 (2002).

[19] D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey
(Springer, New York, 2005).

[20] A. Ekert and P. L. Knight, Entangled quantum systems and the
Schmidt decomposition, Am. J. Phys. 63, 415 (1995).

[21] S. Parker, S. Bose, and M. B. Plenio, Entanglement quantifica-
tion and purification in continuous-variable systems, Phys. Rev.
A 61, 032305 (2000).

[22] M. P Van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis,
and J. P. Woerdman, Effect of spatial filtering on the Schmidt
decomposition of entangled photons, Phys. Rev. A 74, 012309
(2006).

[23] K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, Testing
spectral filters as Gaussian quantum optical channels, Opt. Lett
36, 1476 (2011).

[24] A. Christ, K. Laiho, A. Eckstein, K. N Cassemiro, and
C. Silberhorn, Probing multimode squeezing with correlation
functions, New J. of Phys. 13, 033027 (2011).

[25] C. K. Law and J. H. Eberly, Analysis and Interpretation of
High Transverse Entanglement in Optical Parametric Down
Conversion, Phys. Rev. Lett. 92, 127903 (2004).

[26] W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Eliminating
frequency and space-time correlations in multiphoton states,
Phys. Rev. A 64, 063815 (2001).

[27] E. Brambilla and A. Gatti, The Schmidt number of counter-
propagating twin photons (unpublished).

053809-13

http://dx.doi.org/10.1364/JOSAB.29.001194
http://dx.doi.org/10.1364/JOSAB.29.001194
http://dx.doi.org/10.1364/JOSAB.29.001194
http://dx.doi.org/10.1364/JOSAB.29.001194
http://dx.doi.org/10.1016/j.optmat.2011.07.026
http://dx.doi.org/10.1016/j.optmat.2011.07.026
http://dx.doi.org/10.1016/j.optmat.2011.07.026
http://dx.doi.org/10.1016/j.optmat.2011.07.026
http://dx.doi.org/10.1109/3.535361
http://dx.doi.org/10.1109/3.535361
http://dx.doi.org/10.1109/3.535361
http://dx.doi.org/10.1109/3.535361
http://dx.doi.org/10.1364/OE.17.003441
http://dx.doi.org/10.1364/OE.17.003441
http://dx.doi.org/10.1364/OE.17.003441
http://dx.doi.org/10.1364/OE.17.003441
http://dx.doi.org/10.1103/PhysRevLett.100.133601
http://dx.doi.org/10.1103/PhysRevLett.100.133601
http://dx.doi.org/10.1103/PhysRevLett.100.133601
http://dx.doi.org/10.1103/PhysRevLett.100.133601
http://dx.doi.org/10.1088/1367-2630/10/9/093011
http://dx.doi.org/10.1088/1367-2630/10/9/093011
http://dx.doi.org/10.1088/1367-2630/10/9/093011
http://dx.doi.org/10.1088/1367-2630/10/9/093011
http://dx.doi.org/10.1364/JOSAB.31.001383
http://dx.doi.org/10.1364/JOSAB.31.001383
http://dx.doi.org/10.1364/JOSAB.31.001383
http://dx.doi.org/10.1364/JOSAB.31.001383
http://dx.doi.org/10.1109/JQE.2010.2063419
http://dx.doi.org/10.1109/JQE.2010.2063419
http://dx.doi.org/10.1109/JQE.2010.2063419
http://dx.doi.org/10.1109/JQE.2010.2063419
http://dx.doi.org/10.1103/PhysRevA.86.053803
http://dx.doi.org/10.1103/PhysRevA.86.053803
http://dx.doi.org/10.1103/PhysRevA.86.053803
http://dx.doi.org/10.1103/PhysRevA.86.053803
http://dx.doi.org/10.1103/PhysRevA.66.023815
http://dx.doi.org/10.1103/PhysRevA.66.023815
http://dx.doi.org/10.1103/PhysRevA.66.023815
http://dx.doi.org/10.1103/PhysRevA.66.023815
http://dx.doi.org/10.1119/1.17904
http://dx.doi.org/10.1119/1.17904
http://dx.doi.org/10.1119/1.17904
http://dx.doi.org/10.1119/1.17904
http://dx.doi.org/10.1103/PhysRevA.61.032305
http://dx.doi.org/10.1103/PhysRevA.61.032305
http://dx.doi.org/10.1103/PhysRevA.61.032305
http://dx.doi.org/10.1103/PhysRevA.61.032305
http://dx.doi.org/10.1103/PhysRevA.74.012309
http://dx.doi.org/10.1103/PhysRevA.74.012309
http://dx.doi.org/10.1103/PhysRevA.74.012309
http://dx.doi.org/10.1103/PhysRevA.74.012309
http://dx.doi.org/10.1364/OL.36.001476
http://dx.doi.org/10.1364/OL.36.001476
http://dx.doi.org/10.1364/OL.36.001476
http://dx.doi.org/10.1364/OL.36.001476
http://dx.doi.org/10.1088/1367-2630/13/3/033027
http://dx.doi.org/10.1088/1367-2630/13/3/033027
http://dx.doi.org/10.1088/1367-2630/13/3/033027
http://dx.doi.org/10.1088/1367-2630/13/3/033027
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815



