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Intrinsic formation of electromagnetic divergence and rotation by parabolic focusing
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A linearly polarized electromagnetic wave is found to form divergent and rotation fields after focused by an
off-axis parabolic mirror. These distributions are generated within a subwavelength scale around the focus and
at times when the electric field at the focus vanishes. We theoretically and experimentally show that not only
the direction but also the structure of the distributions varies with the incident polarization. In addition, the
distributions move in one direction with a phase velocity faster than the speed of light.
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Tight focusing of broadband electromagnetic (EM) waves
ultimately realizes an intense and single-cycle pulse [1], which
has opened a new avenue in higher-order nonlinear optical
processes in condensed matter physics [2,3], molecular physics
[4,5], attosecond science [6,7], and the vacuum decay and
related phenomena [8–10]. The polarization distribution at the
vicinity of the focus plays a crucial role in such nonlinear
optical phenomena. For example, the light-vacuum interaction
strongly depends on the focusing angle through the direction
of the focused EM field [9]. On the other hand, recent progress
of the high-field terahertz-pump optical-probe experiments
[11–14] provides a deep insight on understanding the carrier
and spin dynamics within the temporal scale of the single cycle.
The precise knowledge of the polarization distribution of such
a focused EM field is of a fundamental importance and it is
indeed necessary, e.g., for the precise control of electrons and
spins. In particular, focusing with a parabolic mirror (PM) with
large numerical aperture (NA) should be established, since it
is routinely used for a tight focusing of broadband EM waves
[15]. However, there is no sufficient theoretical expression
and experimental demonstration of the time evolution of the
polarization distribution.

In this paper we discuss the EM field focused by a PM
both theoretically and experimentally. For a linearly polarized
incident EM wave, the focused EM field is found to form
non-negligible and symmetric divergent and rotation spatial
distributions at the vicinity of the focus, depending on the
direction of the incident polarization. These distributions
appear at the zero-crossing time, i.e., the time when the focused
electric field at the focus vanishes. These divergent and rotation
distributions emerge strongly for a PM with large NA and move
with a phase velocity faster than the speed of light. These
features are theoretically derived and experimentally observed
using the time-domain spectroscopy in terahertz frequency
range. Our finding provides a leading theory for the future
polarimetry imaging system [16,17] and precise control of a
spatially and polarization-resolved light-matter interaction.
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†watanabe@phys.keio.ac.jp

We begin with the theoretical calculation. The experimental
results are subsequently shown. Figure 1 shows the coordinate
system used in this study. The PM is expressed by z =
(x2 + y2)/(4f ), where f is the focal length and the focus
is given by (0,0,f ). The incident EM wave is assumed to
be a linearly polarized plane wave with wavelength λ and it
propagates toward the −Z direction. We refer to the incident
EM wave as “X(Y ) polarization” if the electric field is parallel
to the X(Y ) axis. For the reflection on the mirror surface,
we employ the physical optics (PO) method [18]. In this
method, the surface current is approximated by an equivalent
current, which is proportional to the tangential component of
the incident magnetic field.

We first consider the X polarization. We calculate the steady
solution. A physical quantity F (x,t) can be given by F (x,t) =
Re[F̄ (x)e−iωt ], where ω = ck = 2πc/λ. The spatial part of
the focused electric field at x = (x,y,f + z) is calculated by
an integral [19] over the mirror surface

Ē(x) = 2iE0k

∫
g(3)(k; x,x̃)

⎛
⎝ 1

0
x̃/(2f )

⎞
⎠e−ikz̃dx̃dỹ, (1)

where E0 > 0 is the amplitude of the incident electric field,
g(3)(k; x,x̃) is the dyadic Green function, and the longitudinal
vector is derived by the PO method. Since we have employed
the PO method, the curvature radius of the PM must be
sufficiently longer than the wavelength, i.e., we have to
suppose λ/f � 1. For the integration range, we treat the
PM as a segment. We suppose the projection of the mirror
over the XY plane is a circle whose center is (x1,0), with
radius l, and l/f � 1. This is the reason we use a term
“segment” for the mirror. The effective focal length is given by
α = f/ cos2(θ/2), where θ is the offset angle. We discuss the
EM field at position x′ = (x ′,y ′,z′) in a new coordinate system
X′Y ′Z′ defined in Fig. 1. The origin x′ = 0 is the focus.

We now approximate the integral (1) as follows. We have
already assumed λ/f,l/f � 1. In order to see a subwavelength
scale around the focus, let us assume x ′/f,y ′/f,z′/f � 1.
The integrand can be expressed as a power series of these
ratios. A power of the ratios is sometimes represented by
a power of 1/f , e.g., λ2/f 2 and x ′y ′/f 2 are represented
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FIG. 1. (Color online) The coordinate system for the parabolic
mirror. The incident EM wave propagates toward the −Z direction.
The effective focal length is given by α = f/ cos2(θ/2). Z′ is the
direction from the center of the mirror to the focus. The Y ′ axis is
parallel to the Y axis. The unit vector of the X′ axis is given by the
outer product of the unit vectors of the Y ′ and Z′ axes.

by O(1/f 2). The integrand contains the exponential part of
exp[ik(|x − x̃| − z̃)]. This part is calculated as exp[ik(|x −
x̃| − z̃)] = exp[ik(f + z′) + O(1/f )], where exp[ik(f + z′)]
can be extracted from the integral. Then, exp[O(1/f )] and
the rest terms of the integrand can be expressed as a Taylor
series. Since we have assumed the integration ranges of x̃ and
ỹ are sufficiently shorter than the length of f , the expansion is
valid. In this way we obtain Ē(x′) as a power series of 1/f . The
electric field is obtained by multiplying e−iωt to it and using
the real part. The magnetic field is calculated using Faraday’s
law. The detail for all the theoretical processes and results are
given in the Appendix.

The X′ component of the focused electric field at the focus
is given by

E
(X)
X′ (0,t) = kl2E0

2α

[
cos ωt + 1

kα
sin ωt

− 1

α2

(
1

k2
+ l2

4

)
cos ωt

]
+ O

(
1

f 4

)
. (2)

Since α is proportional to f , the first term in the bracket
is the main component or the leading term of the focused
electric field. We define the zero-crossing time t0 as the time
when E

(X)
X′ (0,t0) drops to O(1/f 4) because the electric field is

expressed as a power series of 1/f . The condition is satisfied
if the following holds:

cos ωt0 + 1

kα
sin ωt0 = 0. (3)

Therefore we define the zero-crossing time using this equation.
It can be seen that | sin ωt0| is almost unity under the
assumption that λ/f � 1.

At the zero-crossing time and the vicinity of the focus, by
discarding the second or higher order of x′, the X′ and Y ′
components of the EM field in the focal plane (z′ = 0) are

(a) Electric divergence (b) Magnetic rotation

X polarization
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0
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(c) Electric rotation (d) Magnetic divergence

Y polarization

FIG. 2. (Color online) The EM divergent and rotation fields at
the zero-crossing time t0 in the focal plane for sin ωt0 > 0. For the
X polarization, (a) and (b) represent Eqs. (4) and (5), respectively.
Similarly, for the Y polarization, (c) and (d) represent Eqs. (6) and (7),
respectively. The large arrows indicate the direction that the divergent
and rotation fields move. The phase velocity V > c is given by
Eq. (9).

given by(
E

(X)
X′ (x ′,y ′,0,t0)

E
(X)
Y ′ (x ′,y ′,0,t0)

)
≈ kl2E0 sin ωt0

2f 3

(
1

k
+ kl2

8

)

× sin θ cos4(θ/2)

(
x ′
y ′

)
(4)

and(
B

(X)
X′ (x ′,y ′,0,t0)

B
(X)
Y ′ (x ′,y ′,0,t0)

)
≈k2l4E0 sin ωt0

16cf 3
sin θ cos4(θ/2)

(−y ′
x ′

)
.

(5)

The equations indicate an electric divergent and a magnetic
rotation field for every wavelength λ � f . Figures 2(a) and
2(b) show the schematic of these EM fields. These distributions
are generated even though the incident EM wave is linearly
polarized along the X axis. This is the consequence of the
breaking of the axisymmetry since the electric divergent and
magnetic rotation fields vanish at θ = 0◦ by sin θ . The other
part of θ dependence is cos4(θ/2). It is the result of expanding
the effective focal length. The function sin θ cos4(θ/2) has a
maximum value at θ ≈ 48.2◦. For a zero-crossing time after
the half period, sin ωt0 changes its sign and the directions of
the EM field vectors are reversed. Note that the definition of the
zero-crossing time (3) is important. If the zero-crossing time is
defined by a condition in which only the leading term vanishes,
the electric field around the focus is just a small portion of the
X′ component and the electric divergence never occurs.
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For the Y polarization, the vector (1,0,x̃/(2f )) in Eq. (1) is
replaced by (0,1,ỹ/(2f )). The Y ′ components of the focused
electric field at the focus E

(Y )
Y ′ (0,t) is also expressed by the

right side of Eq. (2). Therefore, the leading term is a part of
the Y ′ component and we can define the zero-crossing time as
the time when E

(Y )
Y ′ (0,t0) drops to O(1/f 4), i.e., using Eq. (3).

Finally, in the focal plane, by discarding the second or higher
order of x′, we obtain(

E
(Y )
X′ (x ′,y ′,0,t0)

E
(Y )
Y ′ (x ′,y ′,0,t0)

)
≈ k2l4E0 sin ωt0

16f 3
sin θ cos4(θ/2)

(−y ′
x ′

)
(6)

and(
B

(Y )
X′ (x ′,y ′,0,t0)

B
(Y )
Y ′ (x ′,y ′,0,t0)

)
≈ −k2l4E0 sin ωt0

16cf 3
sin θ cos4(θ/2)

(
x ′
y ′

)
.

(7)
The equations indicate an electric rotation and a magnetic
divergent field [see Figs. 2(c) and 2(d)]. From Eqs. (4), (5),
(6), and (7), it is clear that not only the direction but also the
structure of the EM divergent and rotation fields varies for the
X and Y polarizations. This indicates that the focused EM field
of higher orders strongly depends on the incident polarization.

We would like to comment on the origin of these divergent
and rotation fields. In general, an oscillating current generates
the electric field and the directions of the current and the
electric field can be different. This effect appears as the nondi-
agonal terms in the dyadic Green function. It is a reason for the
vector field distributions at the zero-crossing time. The other
reason is intrinsic to the PM. For the X(Y ) polarization, the
surface current contains not only X(Y ) component but also Z

component, since the PM is curved and the motion of the elec-
trons on the mirror surface is restricted. The Z component of
the surface current contributes to the symmetric distributions.

For further quantitative analysis on these distributions, we
consider the Y polarization. Similar results are obtained for
the X polarization. The magnitudes of Eqs. (6) and (7) are
proportional to the square of the area of the mirror segment and
f −3. This dependency is obviously different from that of the
leading term; this term is proportional to the area of the mirror
segment and decreases with f −1. Let us consider the ratio
of the magnitude of the electric rotation to the leading term.
Suppose the electric rotation occurs in an area of diameter of
the wavelength λ, we tentatively substitute (x ′,y ′) with (0,λ/2)
for the X′ component of Eq. (6). Using | sin ωt0| ≈ 1 we obtain

∣∣E(Y )
X′ (0,λ/2,0,t0)

∣∣/(
kl2E0

2α

)
≈ πl2 sin θ cos2(θ/2)

8f 2
. (8)

The ratio is proportional to the area of the mirror segment. It
implies that the electric rotation is considerable for a PM with
large NA, although it is derived under the assumption l � f .

Next, let us consider a time t sufficiently close to t0. In this
case, the electric rotation exists and its center (xc,yc) in the
X′Y ′ plane is defined by a point at which both E

(Y )
X′ (xc,yc,0,t)

and E
(Y )
Y ′ (xc,yc,0,t) drop to O(1/f 4). The center is estimated

to be (xc,yc) = (V (t − t0),0), where

V = c
8f 2

l2 sin θ cos2(θ/2)
. (9)
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FIG. 3. (Color online) (a) and (b) The spatial distributions of the
electric field in the focal plane at the zero-crossing time t0. The
experimental results for λ = 602 μm and sin ωt0 > 0 are shown.
The polarization of the incident terahertz pulse is along the X axis
for (a) and the Y axis for (b). (c) E

(X)
X′ (x ′,0,0,t0) along the X′ axis

and E
(X)
Y ′ (0,y ′,0,t0) along the Y ′ axis for the electric divergence in (a).

(d) E
(Y )
X′ (0,y ′,0,t0) along the Y ′ axis and E

(Y )
Y ′ (x ′,0,0,t0) along the X′

axis for the electric rotation in (b). In (c) and (d), each electric field
is normalized by the maximum electric field at the focus.

The center and the electric rotation move along the X′ axis in
the positive direction regardless of the rotation direction. This
is the same for the magnetic divergence. We found that the
phase velocity V exceeds c because of the assumption l � f .
In addition, V is inversely proportional to the ratio in Eq. (8).

For the focusing by a large mirror whose characteristic
length is of the order of f , the above equations are not
applicable directly. However, using numerical calculations,
we confirmed that the essential features of the EM field at the
zero-crossing time remain the same for this case.

We experimentally observed the electric field by a
polarization-resolved terahertz-TDS imaging setup [20]. The
linearly polarized incident terahertz pulse was focused by an
off-axis PM with an offset angle of 90◦, NA of about 0.45, and
focal length of 25.4 mm. The projection of the mirror over the
XY plane is a circle with a diameter of 50.8 mm.

Figures 3(a) and 3(b) show the spatial distribution of the
focused electric field vectors on the electro-optic crystal at
the zero-crossing time for the X- and Y -polarized incident
terahertz EM wave of λ = 602 μm. The divergence for the X

polarization is shown in Fig. 3(a) and the rotation for the Y po-
larization is shown in Fig. 3(b). Figures 3(c) and 3(d) show the
position dependence of the electric fields along each axis. It can
be seen that the fields vary linearly at the vicinity of the focus,
in accordance with Eqs. (4) and (6). The ratio at the distance
of λ/2 is about 0.05. The distributions move along the X′ axis
and their phase velocities are 1.9 × 1010 and 9.3 × 109 m/s for
the divergence and rotation, respectively [21].
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We now compare the theoretical and experimental values.
We derived the ratio of the magnitude of the electric rotation to
the leading term at the focus in Eq. (8) and the velocity of the
moving center in Eq. (9). Although the equations are derived
under the assumption l � f so that they cannot be applicable
to the experiments, we tentatively substitute f = l = 25.4 mm
and θ = 90◦. We obtain the ratio of Eq. (8) as 0.20 and the
velocity of Eq. (9) as 4.8 × 109 m/s. The difference between
the theoretical and experimental results will be caused by the
effect of the large mirror or aberrations since the experimental
results are asymmetric though Eqs. (4) and (6) are symmetric.

In summary, we theoretically and experimentally investi-
gated the linearly polarized EM wave focused by a PM. We
found EM divergent and rotation fields at the zero-crossing
time. These distributions appear within the subwavelength
scale around the focus. The structure of the distributions varies
with the incident polarization because the focused EM field of
higher orders strongly depends on the incident polarization. In
addition, we found that the distributions move along the X′ axis
with a phase velocity V > c. Our findings will be useful for
constructing a broadband polarimetry imaging system [16,17]
as well as a vector field imaging system [22].

This work was partially supported by the Strategic Infor-
mation and Communications R&D Promotion Programme
(SCOPE) from the Ministry of Internal Affairs and Com-
munications of Japan, and the Japan Science and Technol-
ogy Agency (JST) under Collaborative Research Based on
Industrial Demand “Terahertz wave: Towards Innovative De-
velopment of Terahertz-wave Technologies and Applications.”
M.T. and S.W. would like to thank Dr. Makoto Okano for the
valuable discussions.

APPENDIX
System

We show the detail of our analytic calculation. The PM is
expressed by z = (x2 + y2)/(4f ), where f is the focal length
of the PM. The focus is given by (0,0,f ).

The incident EM wave propagating toward the −Z direction
is reflected by the PM and the reflected wave travels toward
the focus. We assume the incident EM wave is a monochro-
matic plane wave with wavelength λ. The wave number is
given by k = (0,0, − k), where k = |k| = 2π/λ. The angular
frequency is given by ω = ck. We consider the steady solution.
The spatial part of the focused electric field at x = (x,y,f + z)
is expressed by an integral over the mirror surface [19]

Ē(x) = iωμ0

∫
PM

g(3)(k; x,x̃) j̄ (x̃)d x̃, (A1)

where j̄ is the surface current on the PM and g(3) is the dyadic
Green function. It is given by

g(3)
mn(k; x,x̃) =

(
δmn − 1

k2

∂2

∂xm∂x̃n

)
eik|x−x̃|

4π |x − x̃| , (A2)

where m,n = 1,2,3 represent the X,Y , and Z components,
respectively. The surface current j̄ (x̃) can be expressed as

j̄ (x̃) = 2

μ0ω
n × [k × Ē(inc)(x̃)]δ[z̃ − (x̃2 + ỹ2)/(4f )]

(A3)

by the physical optics method [18]. Ē(inc)(x̃) is the incident
electric field. The vector n is an outward normal vector at x̃
and it is given by

n = 1√
1 + (x̃2 + ỹ2)/(4f 2)

⎛
⎝−x̃/(2f )

−ỹ/(2f )
1

⎞
⎠. (A4)

The area element is given by

dS =
√

1 + x̃2 + ỹ2

4f 2
dx̃dỹ. (A5)

We assume the incident EM wave is linearly polarized. If the
electric field is parallel to the X(Y ) axis, we refer to the incident
EM wave as “X(Y ) polarization.” For the X polarization, the
focused electric field is given by

Ē(x) = 2iE0k

∫
g(3)(k; x,x̃)

⎛
⎝ 1

0
x̃/(2f )

⎞
⎠e−ikz̃dx̃dỹ, (A6)

where E0 is the amplitude of the incident electric field [Eq. (1)].
For the Y polarization, the vector (1,0,x̃/(2f )) in the integrand
is replaced by (0,1,ỹ/(2f )). Hereafter, the expressed EM field
is divided by E0.

We consider the focusing by a small segment of the PM.
The segment can be characterized by the projection over the
XY plane. We suppose the projection is a circle whose center
is (x1,0), with radius l. A position on the segment can be
expressed by x̃ = (x1 + ξ,η,z̃), where ξ and η are the new
variables of the integration. They are restricted by ξ 2 + η2 �
l2. We define the offset angle θ by the angle defined by the
vector from the center of the mirror to the focus and the unit
vector of the Z axis. In the following, for the sake of saving
space, we often use Sθ and Cθ , instead of sin θ and cos θ ,
respectively. The distance between the center of the mirror
and the focus is the effective focal length α = f/C2

θ/2.

A new coordinate system

We define a new coordinate system X′Y ′Z′ by

X ′ = Cθ X + Sθ Z,

Y ′ = Y ,

Z′ = −Sθ X + Cθ Z, (A7)

where the bold types are unit vectors of the axes. The Z′ axis
is the direction from the center of the mirror to the focus.
The Y ′ axis is parallel to the Y axis and the unit vector of
the X′ axis is given by the outer product of the unit vectors
of the Y ′ and Z′ axes. The focus is taken to be the origin.
The position at the vicinity of the focus in the new coordinate
system x′ = (x ′,y ′,z′) is given by x ′ = Cθx + Sθz, y ′ = y,
and z′ = −Sθx + Cθz.
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Expansion of the integrand

We make an assumption that the wavelength and the mirror radius are both sufficiently shorter than the focal length, i.e.,
λ/f,l/f � 1. In addition, we consider only at the vicinity of the focus and suppose x/f,y/f,z/f � 1. Then we can divide all
the variables with unit of length into two groups. One is the “long” group. Its elements are the focal length f , α, and x1. The
other is the “short” group. Its elements are the wavelength λ, the radius l, x, x′, ξ , and η. We can consider ratios of one of the
short group over f , such as λ/f . By the assumptions, such a ratio is basically small. Therefore we can express the integrand of
Eq. (A6) as a power series of the ratios. We sometimes represent the power of the ratios by the power of 1/f . For example, λ/f

and l/f are represented by O(1/f ). Only the exponential part of exp[ik(|x − x̃| − z̃)] requires a careful treatment.

In the case of the X polarization

The spatial part of the focused electric field Ē(x′) is given by

ĒX′(x′) = ieik(f +z′) kl2

2α

{
1 − 1

k2α2
− l2

4α2
+ Sθx

′

2f
− z′

α
− Sθx

′z′

f α
+ Q(x′)

f 2
− x ′2

α2

+ i

[
1

kα
+ Sθx

′

2f α

(
3

k
+ kl2

4

)
−

(
2

k
+ kl2

4

)
z′

α2
+ k

(
1 + Sθx

′

2f
− 2z′

α

)
x ′2 + y ′2

2α

]}
+ O

(
1

f 4

)
,

ĒY ′(x′) = ieik(f +z′) kl2

2α
y ′

[
Sθ

2f
− x ′

α2
− Sθz

′

f α
+ i

Sθ

2f α

(
kl2

4
+ 3

k
+ k

x ′2 + y ′2

2

)]
+ O

(
1

f 4

)
, (A8)

ĒZ′(x′) = ieik(f +z′) kl2

2α

{
− Sθ

k2f α
− l2Sθ

4f α
− x ′

α
+ 2x ′z′

α2
− Sθ

x ′2 + y ′2

f α

+ i

[
Sθ

kf
−

(
3

k
+ kl2

4

)
x ′

α2
− 2Sθ

kf α
z′ − k

x ′2 + y ′2

2α2
x ′

]}
+ O

(
1

f 4

)
,

where

Q(x′) = −f 2

α2

[
x ′2 + y ′2 − z′2 + k2 x ′2 + y ′2

8
(x ′2 + y ′2 + l2)

]
. (A9)

The zero-crossing time

The electric field is obtained by multiplying e−iωt to Ē(x′) and using the real part, e.g., EX′(x′,t) = Re[ĒX′(x′)e−iωt ].
To simplify the argument of the trigonometric functions, we replace the time t by t + (π/2 + kf )/ω. At the focus (x′ = 0),
EY ′(0,t) = O(1/f 4),EZ′(0,t) = O(1/f 2), and the X′ component [Eq. (2)] is given by

EX′(0,t) = kl2

2α

[
cos ωt + 1

kα
sin ωt − 1

α2

(
1

k2
+ l2

4

)
cos ωt

]
+ O

(
1

f 4

)
. (A10)

The zero-crossing time is defined as in the main text. Considering the very vicinity of the focus and discarding the second or
higher order of x′, in the focal plane and at the zero-crossing time, we obtain

EX′ (x ′,y ′,0,t0) ≈ kl2Sωt0

2f 3

(
1

k
+ kl2

8

)
SθC

4
θ/2x

′, EY ′(x ′,y ′,0,t0) ≈ kl2Sωt0

2f 3

(
1

k
+ kl2

8

)
SθC

4
θ/2y

′,

EZ′(x ′,y ′,0,t0) ≈ kl2Sωt0

2f

[
Sθ

kf
−

(
2

k
+ kl2

4

)
x ′

α2

]
C2

θ/2. (A11)

If Sθ �= 0, the X′ and Y ′ components are a divergent field in the focal plane [Eq. (4)]. The factor of sin ωt0 can be regarded as
unity (or −1) and the divergent field depends on the offset angle θ almost by sin θ cos4(θ/2). For 0 � θ � π/2, this function has
the maximum value at θ0 = sin−1

√
5/3 = cos−12/3 ≈ 0.841 rad ≈ 48.2◦.

The ratio of the magnitude of the electric divergent field to the leading term is given by

R
(X)
x ′ = kl2

2f 3

(
1

k
+ kl2

8

)
SθC

4
θ/2|Sωt0x

′|
/(

kl2

2α

)
= SθC

2
θ/2

f 2

(
1

k
+ kl2

8

)
|Sωt0x

′|. (A12)

Suppose the divergent field occurs in an area of diameter of the wavelength λ, we tentatively substitute x ′ = λ/2. Furthermore,
recall the fact that |Sωt0 | is almost unity, we obtain

R
(X)
λ/2 ≈ SθC

2
θ/2

f 2

(
1

k
+ kl2

8

)
λ

2
. (A13)

The ratio is a linear function of the area of the mirror segment.
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The move of the electric divergence

Let us consider the electric field at the vicinity of the focus for a time t sufficiently close to t0. We introduce t ′ by t = t0 + t ′
and regard it as a small amount. We take the terms of only zeroth or first order of x′ and t ′ for the electric field. The X′ and Y ′
components of the electric field is approximated by

EX′(x ′,y ′,0,t0 + t ′) ≈ kl2Sωt0

2α

[
Sθx

′

2f α

(
2

k
+ kl2

4

)
−

(
1 − l2

4α2

)
ωt ′

]
,

(A14)

EY ′(x ′,y ′,0,t0 + t ′) ≈ kl2Sωt0

4f α2
Sθ

(
2

k
+ kl2

4

)
y ′.

The center (xc,yc) of the divergence can be defined as a point that the right sides of these equations disappear. If the order of ωt ′
is higher than or equal to 1/f , the bracket of the X′ component remains for every x ′. It means the center can be defined if and
only if ωt ′ = O(1/f 2). Under this limitation we obtain (xc,yc) = (VXet

′,0), where

VXe = c
8f 2

l2SθC
2
θ/2

k2l2

8 + k2l2
. (A15)

As a matter of fact, the X′ and Y ′ components are given by(
EX′(x ′,y ′,0,t0 + t ′)
EY ′(x ′,y ′,0,t0 + t ′)

)
≈ kl2Sωt0

2f 3

(
1

k
+ kl2

8

)
SθC

4
θ/2

(
x ′ − xc

y ′ − yc

)
, (A16)

and (xc,yc) is surely the center of the divergence.

The magnetic field

The magnetic field is calculated using Faraday’s law. As a result we obtain

BX′(x′,t) = kl2Sθ

4f α2

(
1 + k2l2

4
+ k2 x ′2 + y ′2

2

)
y ′ Sδ

ω
+ k2l2Sθ

2f α

(
1

2
− z′

α

)
y ′ Cδ

−ω
+ O

(
1

f 4

)
,

BY ′(x′,t) = kl2

2α2

[
−1 −

(
1 + k2l2

4

)
Sθx

′

2f
+

(
2 + k2l2

4

)
z′

α
− k2

(
1 + Sθx

′

2f
− 2z′

α

)
x ′2 + y ′2

2

]

×Sδ

ω
+ k2l2

2α

(
−1 + l2

4α2
− Sθx

′

2f
+ z′

α
− Q(x′)

f 2
+ x ′2 + y ′2

2α2
+ Sθx

′z′

f α

)
Cδ

−ω
+ O

(
1

f 4

)
,

BZ′(x′,t) = kl2y ′

2α3

[
1 + k2

2

(
x ′2 + y ′2 + l2

2

)]
Sδ

ω
+ k2l2y ′

2α2

(
1 − 2z′

α

)
Cδ

−ω
+ O

(
1

f 4

)
, (A17)

where δ = kz′ − ωt .
Therefore, in the focal plane and at the zero-crossing time, the magnetic field at the vicinity of the focus is given by

BX′(x ′,y ′,0,t0) ≈ −k2l4Sωt0

16cf 3
SθC

4
θ/2y

′, BY ′(x ′,y ′,0,t0) ≈ k2l4Sωt0

16cf 3
SθC

4
θ/2x

′, BZ′(x ′,y ′,0,t0) ≈ −k2l4Sωt0

8cα3
y ′. (A18)

If Sθ �= 0, the X′ and Y ′ components are a magnetic rotation field in the focal plane [Eq. (5)].

The move of the magnetic rotation

Let t = t0 + t ′ and t ′ be a sufficiently small amount. The center of the magnetic rotation field can be approximated by
(xc,yc) = (VXmt ′,0), where

VXm = c
8f 2

l2SθC
2
θ/2

. (A19)

As a matter of fact, the X′ and Y ′ components are given by(
BX′(x ′,y ′,0,t0 + t ′)
BY ′(x ′,y ′,0,t0 + t ′)

)
≈ k2l4Sωt0

16cf 3
SθC

4
θ/2

(−(y ′ − yc)
x ′ − xc

)
. (A20)
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In the case of the Y polarization

The spatial part of the focused electric field Ē(x′) is given by

ĒX′(x′) = −ieik(f +z′) kl2

2α2

(
x ′

α
+ ikl2

8f
Sθ

)
y ′ + O

(
1

f 4

)
,

ĒY ′(x′) = ieik(f +z′) kl2

2α

[
1 + i

kα
− 1

k2α2
− l2

4α2
− 1

α

(
1 + 2i

kα
+ ikl2

4α

)
z′

+ ik

(
1 − 2z′

α

)
x ′2 + y ′2

2α
+ i

kl2Sθ

8f α
x ′ + Q(x′)

f 2
− y ′2

α2

]
+ O

(
1

f 4

)
,

ĒZ′(x′) = −ieik(f +z′) kl2

2α2
y ′

(
1 + 3i

kα
+ ikl2

4α
− 2z′

α
+ ik

x ′2 + y ′2

2α

)
+ O

(
1

f 4

)
. (A21)

The zero-crossing time

At the focus (x′ = 0) we obtain EX′(0,t),EZ′(0,t) = O(1/f 4) and

EY ′(0,t) = kl2

2α

[
cos ωt + 1

kα
sin ωt − 1

α2

(
1

k2
+ l2

4

)
cos ωt

]
+ O

(
1

f 4

)
. (A22)

It is apparent the leading term is a part of the Y ′ component.
Discarding the second or higher order of x′, the electric field in the focal plane and at the zero-crossing time is given by

EX′(x ′,y ′,0,t0) ≈ − k2l4

16f 3
Sωt0SθC

4
θ/2y

′, EY ′(x ′,y ′,0,t0) ≈ k2l4

16f 3
Sωt0SθC

4
θ/2x

′, EZ′(x ′,y ′,0,t0) ≈ − kl2

2α3
Sωt0

(
2

k
+ kl2

4

)
y ′.

(A23)

If Sθ �= 0, the X′ and Y ′ components form an electric rotation field in the focal plane [Eq. (6)].
The ratio [Eq. (8)] of the magnitude of the rotation at y ′ = λ/2 to the leading term is given by

R
(Y )
λ/2 ≈ πSθC

2
θ/2

8

l2

f 2
. (A24)

Note that if the wavelength is sufficiently shorter than the mirror radius, the ratio R
(X)
λ/2 of Eq. (A13) accords with Eq. (A24).

The move of the electric rotation

Let t = t0 + t ′ and t ′ be a small amount. The X′ and Y ′ components of the electric field in the focal plane are approximated by

EX′(x ′,y ′,0,t0 + t ′) ≈ −k2l4Sωt0

16f α2
Sθy

′, EY ′(x ′,y ′,0,t0 + t ′) ≈ kl2

2α
Sωt0

[
kl2Sθ

8f α
x ′ −

(
1 − l2

4α2

)
ωt ′

]
. (A25)

The center (xc,yc) of the rotation at the time t can be defined as a point that the right sides of these equations disappear. Finally,
we obtain (xc,yc) = (VYet

′,0), where

VYe = c
8f 2

l2SθC
2
θ/2

. (A26)

It is Eq. (9). As a matter of fact, the X′ and Y ′ components are given by(
EX′ (x ′,y ′,0,t0 + t ′)
EY ′ (x ′,y ′,0,t0 + t ′)

)
≈ k2l4Sωt0

16f 3
SθC

4
θ/2

(−(y ′ − yc)
x ′ − xc

)
, (A27)

and (xc,yc) is surely the center of the rotation.

The magnetic field

The magnetic field is calculated as

BX′(x′,t) = kl2

2cα

{[
1 + k2l2Sθ

8f
x ′ −

(
2 + k2l2

4

)
z′

α
+ k2

(
1 − 2z′

α

)
x ′2 + y ′2

2

]
Sδ

kα

−
(

1 − l2

4α2
− z′

α
+ Q(x′)

f 2
− x ′2 + y ′2

2α2

)
Cδ

}
+ O

(
1

f 4

)
,
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BY ′(x′,t) = k2l4Sθy
′

16cf α2
Sδ + O

(
1

f 4

)
,

BZ′(x′,t) = kl2

2cα2

{
−

[
1 + k2

2

(
x ′2 + y ′2 + l2

2

)]
x ′Sδ

kα
+

[
l2Sθ

4f
+

(
1 − 2z′

α

)
x ′

]
Cδ

}
+ O

(
1

f 4

)
, (A28)

where δ = kz′ − ωt . At the zero-crossing time, discarding the second or higher order of x′, we obtain

BX′(x ′,y ′,0,t0) ≈ −k2l4Sωt0SθC
4
θ/2

16cf 3
x ′, BY ′(x ′,y ′,0,t0) ≈ −k2l4Sωt0SθC

4
θ/2

16cf 3
y ′, BZ′(x ′,y ′,0,t0) ≈ k2l4Sωt0

8cα3
x ′. (A29)

If Sθ �= 0, the X′ and Y ′ components in the focal plane are a magnetic divergent field [Eq. (7)].

The move of the magnetic divergence

Let t = t0 + t ′ and t ′ be a sufficiently small amount. The center of the magnetic divergence can be approximated by
(xc,yc) = (VYmt ′,0), where

VYm = c
8f 2

l2SθC
2
θ/2

. (A30)

As a matter of fact, the X′ and Y ′ components are given by(
BX′(x ′,y ′,0,t0 + t ′)
BY ′(x ′,y ′,0,t0 + t ′)

)
≈ −k2l4Sωt0SθC

4
θ/2

16cf 3

(
x ′ − xc

y ′ − yc

)
. (A31)

Finally, from Eqs. (A15), (A19), (A26), and (A30), it can be seen that only the velocity of the electric divergence for the X

polarization VXe is different from the other three velocities.
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