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electromagnetically-induced-transparency–based light storage
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We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in
electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temper-
ature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide
numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the
experimental results.
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I. INTRODUCTION

Because they do not interact with each other and can be
guided via optical fibers over long distances with relatively
low losses, photons appear as ideal information carriers and
are therefore put forward as the “flying qubits” in most
quantum communication protocols. The design of memories
able to reliably store and retrieve photonic states is, how-
ever, still an open problem. The most commonly studied
protocol, considered to implement such a quantum memory,
is electromagnetically induced transparency (EIT) [1]. This
protocol was implemented in various systems such as cold
atoms, gas cells, and doped crystals [2–4]. Although the
Doppler broadening might seem to lead to strong limitations,
EIT-based light storage in warm alkali vapors gives good
results and is still a subject of active investigation [5]. In recent
years, some experiments were also performed in a Raman
configuration, using pulses which are highly detuned from the
optical resonances in gas cells [6–8].

The EIT-based storage protocol in a � atomic system
relies on the long-lived Raman coherence between the two
ground states which are optically coupled to the excited level.
When a strong-coupling beam is applied along one of the
two transitions, a narrow transparency window limited by the
Raman coherence decay rate is opened along the other leg of
the system. Because of the slow-light effect associated with
such a dramatic change of the medium absorption properties,
a weak probe pulse on the second transition is compressed
while propagating through the medium. When this pulse has
fully entered the atomic medium, it can be mapped onto
the Raman coherences which are excited by the two-photon
process by suddenly switching off the coupling beam. It can be
safely stored during times smaller than the lifetime of Raman
coherence. Finally, the signal pulse can be simply retrieved
by switching on the coupling beam again. In the Raman
configuration, the coupling and probe pulses are optically
far off-resonance but still fulfill the two-photon transition
condition. The advantage is a large bandwidth that allows us
to work with data rates higher than in the usual EIT regime [6].

Atoms at room temperature in a gas cell are particularly
attractive for light storage because of the simplicity of
their implementation. The effects of the significant Doppler
broadening can be minimized using copropagating coupling
and probe beams, so that the two-photon resonance condition
can be verified for all velocity classes: all the atoms can

thus participate in the EIT phenomenon as soon as they are
pumped in the probed level. As a consequence, handy simple
gas cells have turned out to be attractive for slow-light or
even stopped-light experiments [5]. In a previous work [9],
we reported on an added phase shift recorded for EIT-based
light-storage experiments carried out in a helium gas at room
temperature when the coupling beam is detuned from the
center of the Doppler line. The simple model that we have
derived could not satisfactorily account for our observations
that were recorded for intermediate detunings, e.g., close to
the Doppler broadening of the transition. In the present paper,
we come back to this problem and provide new experimental
results, i.e., time-dependent measurements of the retrieved
signal phase shift, as well as numerical results obtained through
the simulation of the full system of Maxwell-Bloch equations.
The behavior of these phase shifts with the coupling detuning
seems to be satisfactorily accounted for by our simulations.
We also perform numerical calculations in the Raman regime.

This paper is organized as follows. In Sec. II we present
the system and setup and describe how to measure the
time-dependent phase shift of the retrieved pulse with respect
to the coupling beam. We also briefly review the system
of Maxwell-Bloch equations which governs our system and
describe their numerical integration. In Sec. III, we provide
our experimental and numerical results and show that they
qualitatively agree. We also apply our simulations to the
far-off-resonant Raman case. Finally, we conclude in Sec. IV
and give possible perspectives of our work.

II. EXPERIMENTAL SETUP AND
NUMERICAL SIMULATIONS

A. EIT storage experimental setup

The atoms preferably used for EIT storage experiments
are alkali atoms, mainly rubidium and sometimes sodium
or cesium. We choose here to work with metastable 4He
atoms, which have the advantage of a very simple structure
without hyperfine levels: transitions are thus far enough from
one another to investigate the effect of detunings of the
coupling and probe beams on light storage and retrieval. We,
however, think our results also apply, at least qualitatively, to
the behavior of EIT experiments carried out with the species
mentioned above in the far-detuned regime [6–8].

In our setup represented in Fig. 1, a 6-cm-long cell is filled
with 1 Torr of helium atoms which are continuously excited
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FIG. 1. (Color online) Experimental setup for EIT storage in
metastable helium. The coupling and signal beams are derived from
the same laser diode. They are initially linearly and orthogonally
polarized, of optical frequencies ωc and ωs and Rabi frequencies
�c and �s , respectively. Acousto-optic modulators are used to
control the frequencies and amplitudes of the beams. Polarizing beam
splitters (PBS) allow us to separate or recombine the beams. Circular
orthogonal polarizations are obtained by a quarter-wave plate. The
cell is contained in a μ-metal shielding. After the cell, polarization
optics select mainly the probe beam with some remaining coupling
beam. The phase of the coupling beam is scanned thanks to a mirror
on a piezoelectric transducer.

to their metastable state 2 3S1 by a rf discharge at 27 MHz.
Each of the metastable ground states |2 3S1,mJ = 0, ± 1〉
is hence fed with the same rate, denoted by �

3 . The cell
is isolated from magnetic field gradients by a three-layer
μ-metal shield to avoid spurious dephasing effects on the
different Zeeman components. A strong circularly polarized
field, called the control beam, propagates along the quan-
tization axis z. Its power is set at 18 mW for a beam
diameter of 3 mm. As shown in Fig. 2, the coupling
field drives the transitions |2 3S1,mJ = −1〉 ↔ |2 3P1,mJ = 0〉
and |2 3S1,mJ = 0〉 ↔ |2 3P1,mJ = 1〉. Owing to the spon-
taneous transitions |2 3P1,mJ = 0〉 → |2 3S1,mJ = ±1〉 and

FIG. 2. (Color online) Atomic structure scheme for the D1 tran-
sition of metastable helium. The relevant states which constitute the
three-level � system are shown in black. �c and �s are the optical
detunings, and �c and �s are the Rabi frequencies of the coupling and
signal beams, respectively. The two-photon resonance is achieved for
�c = �s .

|2 3P1,mJ = 1〉 → |2 3S1,mJ = 0,1〉, the atoms end up in the
state |1〉 ≡ |2 3S1,mJ = 1〉 within a few pumping cycles after
the coupling beam has been switched on. As the atoms are
at room temperature, the Doppler broadening in the cell
is WD/2π ≈ 1 GHz. We denote by �c ≡ ωc − ω0 the detuning
of the coupling frequency ωc with respect to the natural
frequency ω0/(2π ) ≈ 2.8 × 1014 Hz of the transition 2 3S1 ↔
2 3P1 at the center of the Doppler line.

Once optical pumping is achieved, a weak signal pulse is
sent through the atomic medium along the z axis. Its polariza-
tion is circular and orthogonal to that of the coupling beam:
the signal therefore couples state |1〉 to |e〉 ≡ |2 3P1,mJ = 0〉,
and we denote by �s ≡ ωs − ω0 the detuning of the signal
frequency ωs from the center of the Doppler profile. Both
signal and coupling beams are derived from the same laser
diode, and their frequencies and amplitudes are controlled by
two acousto-optic modulators. Due to the efficiency of optical
pumping through the coupling beam, we assume that the
state |2 3S1,mJ = 0〉 remains essentially unpopulated during
the whole process, and we accordingly neglect the driving
of the transition |2 3S1,mJ = 0〉 ↔ |2 3P1,mJ = −1〉 by the
signal field. Submitted to the coupling and signal fields, the
atoms therefore essentially evolve in the three-level � system
{| − 1〉 ≡ |2 3P1,mJ = −1〉,|e〉,|1〉} (see Fig. 2) as long as the
detunings �c,s = ωc,s − ω0 of the coupling and signal fields,
respectively, are small enough to avoid exciting neighboring
transitions. Thanks to the absence of hyperfine structure, the
range of allowed values for �c,s is, however, much larger than
in alkali vapor experiments: indeed, on the positive detuning
side the nearest state ( 3

P0) is 30 GHz away from optical
resonance �c,s = 0, while on the negative detuning side, the
nearest state ( 3

P2) is 2.29 GHz away.
Under EIT conditions, the coupling beam opens a trans-

parency window for the weak signal beam, which can
therefore propagate without absorption through the medium
if its spectrum is not too wide [10]. In the experimental
results we present hereafter, we used a signal pulse, which
consists of a smoothly increasing exponential followed by
an abruptly decaying exponential of respective characteristic
times 2 μs and 150 ns. Its maximum power is about 170 μW,
and the beam diameter is about 3 mm. Different dissipative
mechanisms influence the width of the EIT window besides
spontaneous emission, such as collisions and transit of the
atoms in and out of the beams. These phenomena result in the
decay of atomic coherences at the rates γ−11/2π ≈ 14 kHz
for the Raman coherence σ−11 and γe1/2π ≈ 22.8 MHz for
the optical coherence σe1. We have shown previously that
velocity-changing collisions redistribute the pumping of the
atoms over an effective width slightly smaller than the Doppler
linewidth [11]. Under our conditions, with a coupling power
of 18 mW, this effective width is experimentally estimated to
be 	D/2π ≈ 0.8 GHz. Due to power broadening, the width of
the transparency window is then of the order of 500 kHz.

The highly dispersive character of the medium under EIT
conditions can be used furthermore to store and retrieve a
weak signal pulse: due to EIT dispersion, the signal pulse
indeed travels with a reduced group velocity and is temporally
contracted. Once the pulse has entered the cell, the coupling
beam can be switched off: information about the signal pulse
is then stored in the Raman coherences. After a storage time T ,
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FIG. 3. (Color online) Experimental plots showing the data-
processing steps. The coupling beam is switched off between times
t = 0 and t = 0.6 μs. The optical detunings are set at �c,s = 1 GHz.
The same vertical scale is used in (a), (b), and (c). (a) Accumulated
plot of the interference signal I (t) between the probe and coupling
beams. Upper and lower envelopes I±(t) are shown in orange (light
gray) and red (medium gray), respectively. (b) Signal intensity Is(t)
at the exit of the cell, deduced from the previous accumulated plot (a)
and from a measurement of the coupling intensity Ic. (c) Interference
signal I (t) between the probe and coupling beams [blue (dark gray)
curve]. It is contained between the upper and lower envelopes I±(t),
shown in orange (light gray) and red (medium gray), respectively.
One can note the presence of spurious oscillations generated by the
acousto-optic modulators. (d) Relative phases �φ(l)(t) (black, left)
and �φ(r)(t) (purple, right) between the signal and coupling beams
on the writing and retrieval parts, respectively. Notice that �φ(l)(t) is
indeed constant.

the control beam is switched on again, which releases the signal
from the atomic coherence and ensures EIT absorption-free
propagation. Note that in our experimental setup, the optical
depth is only about 3.5, and the pulse can thus not be
fully compressed in the cell. Due to the finite width of the
transparency window and the finite length of the cell, a part,
typically 10% of the incoming signal energy, leaks out before
the coupling beam is turned off and the storage period begins
[5]. A typical experimental record is given in Fig. 3(b). The
first part of the detected signal is the leak, and after a storage
time T ≈ 0.6 μs, once the coupling beam is turned on again,
the retrieved signal is clearly visible.

B. Phase measurement setup

In [9], we investigated the relative phase �φ of the
signal with respect to the coupling beam and showed the
existence of an optical-detuning-dependent extra phase shift
ϕEIT between the incident and retrieved pulses. This quantity
can be measured through mixing the signal emerging from the
cell with a small fraction of the control beam via polarization
optics. The resulting intensity thus takes the form

I = Ic + Is + α
√

IcIs(t) cos [�φ]. (1)

In Eq. (1), the contrast factor α, which ideally equals
2, accounts for nonperfect alignment of the beams and is
measured for each set of data. Ic denotes the intensity of
the small fraction of the coupling field which is mixed and
interferes with the signal field. It takes the same constant value
Ic during the writing and retrieval periods, while it vanishes
during the storage time. The value Ic is measured in the absence
of the signal (one assumes that the introduction of the signal
pulse does not substantially affect the measurement of Ic).
The phase of the coupling beam is varied via a piezoelectric
actuator from one experimental run to another: the scan is
slow enough that it is assumed to be constant during both the
writing and retrieval steps. Is(t) is the time-dependent intensity
of the signal beam emerging from the cell. We denote by I (l)

s (t)
and I (r)

s (t) the intensities of the leak and retrieved pulses,
respectively. Accordingly, we introduce �φ(l)(t) and �φ(r)(t),
the relative phases of the leak and retrieved pulses with respect
to the coupling beam.

To obtain the extra phase shift ϕEIT between the incident
and retrieved pulses, we measure the relative phases �φ(l),
�φ(r) by homodyne detection. Repeating the same writing-
storage-retrieval sequence for many different positions of
the piezoelectric actuator, we obtain an accumulated plot
whose upper and lower envelopes correspond, respectively,
to I±(t) = Ic + Is(t) ± α

√
IcIs(t) [see Fig. 3(a)]. Given the

previously measured value of Ic, one can infer Is(t) from
(I+ + I−) and α from (I+ − I−) [see Fig. 3(b)]. For a given
position of the piezoactuator, one can then obtain �φ(l)(t)
and �φ(r)(t) through fitting the experimental record with
Eq. (1) at each time t [see Figs. 3(c) and 3(d)]. It was verified
both experimentally and numerically that the phase of the
leak is constant [�φ(l)(t) ≡ �φ(l)] and can therefore be taken
as a reference for the time-dependent relative phase of the
retrieved pulse �φ(r)(t). This time independence of the leak
phase is ensured by the fact that its spectral content is much
narrower than the EIT bandwidth. This is obtained thanks to
the shape of the signal pulse: a slow exponential increase,
followed by a sharp decrease. The part of the pulse which
contains only low frequencies enters first and gives form to
a leak, whose phase is constant. The “extra phase shift” is
then measured as [�φ(r)(t) − �φ(l)] ≡ ϕEIT (t). Let us stress
that in [9], we assumed that the relative phases �φ(l,r) of the
leak and retrieved pulses were time independent: therefore, we
directly extracted effective “averaged” values for α and ϕEIT

by performing a two-parameter fit of the data with Eq. (1).
Here, by contrast, we measure the time dependence of the
phases and provide experimental plots for ϕEIT (t) without
any assumption of its behavior.
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C. Numerical simulation principles

For numerical simulations, we described the system in the
one-dimensional approximation. On the dimensions of the
atomic sample, the coupling and probe transverse profiles are
assumed to remain constant. These fields can therefore be cast
under the form

Ec,s(z,t) = Re[Ec,s(z,t)e±e−i(ωc,s t−kc,s z)],

where Ec,s(z,t) denote the respective slowly varying ampli-
tudes of the control and signal fields, ωc,s and kc,s stand
for their respective frequencies and wave numbers, and e± ≡
(ex ± iey)/

√
2 (ex and ey define an arbitrary basis in the plane

perpendicular to the propagation direction ez).
Following, e.g., [12], we model the atomic sample as a

continuous medium of uniform linear density nat and define
the average density matrix of the slice [z,z + �z] by

σ̂ (z,t) ≡ 1

nat�z

∑
z�zi�z+�z

σ̂i(t).

We moreover define the density matrix elements σij =
〈i|σ̂ |j 〉, where i, j refer to the atomic levels and can take
the values −1, 1, or e (see Fig. 2). We introduce the slowly
varying coherences σ̃e1, σ̃e−1, and σ̃−11, defined by

σ̃e1 = eiωs (t− z
c

)σe1,

σ̃e−1 ≡ eiωc(t− z
c

)σe−1,

σ̃−11 ≡ ei�R (t− z
c

)σ−11,

and write the Bloch equations in the rotating-wave approxi-
mation for the class of velocity which is at the center of the
Doppler profile:

∂tσ−1−1 = γt

3
− γtσ−1−1 + 	0

2
σee + i(�∗

c σ̃e−1 − �cσ̃−1e),

(2)

∂tσee = −(	0 + γt )σee+i(�cσ̃−1e − �∗
c σ̃e−1+�sσ̃1e−�∗

s σ̃e1),

(3)

∂tσ11 = 2γt

3
− γtσ11 + 	0

2
σee + i(�∗

s σ̃e1 − �sσ̃1e), (4)

∂t σ̃−11 = −(γ−11 − i�R)σ̃−11 + i(�∗
c σ̃e1 − �sσ̃−1e), (5)

∂t σ̃−1e = −(γ−1e+i�c)σ̃−1e+i[�∗
c (σee − σ−1−1)−�∗

s σ̃−11],

(6)

∂t σ̃1e = −(γ1e + i�s)σ̃1e + i{�∗
s (σee − σ11) − �∗

c σ̃1−1}.
(7)

Here, 	0 is the population decay rate of state |e〉, and the Rabi
frequencies �c,s are defined by

��c,s ≡ 1
2dc,sEc,s(z,t),

where dc,s ≡ 〈e|d̂ · e±| ∓ 1〉 are the relevant matrix elements
of the dipole operator d̂.

To take into account all the atoms that are distributed
in different velocity classes over the Doppler linewidth, we
developed a simple model in which the optical coherence

decay rates γ1e = γ−1e are replaced by the effective Doppler
width 	D . This gives satisfactory results thanks to the
redistribution of the pumping by velocity-changing collisions
[13,14]. All our simulations were performed using this purely
homogeneous broadening model. Consequently, we call �c,s

the optical detuning, implicitly defined with respect to the
center of the Doppler profile.

To ensure that the full population remains constant, the
discharge-assisted ground-state feeding rate � has been set
to γt , the transit rate of the atoms through the laser beam.
Moreover, while state |−1〉 is fed with the rate �

3 = γt

3 ,

state |1〉 is effectively fed with the rate ≈ 2�
3 = 2γt

3 . As
can be checked by considering the full six-level system
including not only the � system of interest but also states
|2 3S1,mJ = 0〉,|2 3P1,mJ = ±1〉, state |1〉 is indeed directly
fed by the rf discharge with the rate �

3 and also indirectly via
state |2 3S1,mJ = 0〉, whose population is (almost) immedi-
ately transferred to |1〉 through optical pumping.

Finally, in the medium, the fields propagate according to
the Helmholtz equation, written in the slowly varying envelope
approximation(

∂

∂z
+ 1

c

∂

∂t

)
�c,s(z,t) = iηc,s σ̃e∓1(z,t), (8)

where ηc,s ≡ (natkc,s |dc,s |2)/(2�ε0).
The set of Maxwell-Bloch equations Eqs. (2)–(8) was

numerically solved in MATLAB using the Lax discretization
method [15]. The medium was split into 100 spatial steps of
0.6 mm, while the whole storage-retrieval sequence was split
into 6 × 106 time steps of 2 ps. We present and discuss our
numerical results in the following section.

III. RESULTS AND DISCUSSION

All the experimental results and simulations are performed
at two-photon resonance, which means that the coupling
and signal optical detunings are equal. Figure 4 shows

FIG. 4. (Color online) Temporal evolution of the extra phase shift
ϕEIT (t). Experimental data, recorded from bottom to top, for � =
0.2 GHz (blue, bottom), 0.6 GHz (red), 1 GHz (green), 1.3 GHz
(black), and 1.7 GHz (cyan, top). Corresponding simulations are
shown as solid lines. The time origin corresponds to the beginning
of the retrieval, when the coupling is switched on again. The storage
time is set at T = 0.6 μs .
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experimental records for the time-dependent extra phase shift
ϕEIT (t), achieved with different values of the optical detunings
� = �c = �s , between 0 and 2 GHz. The detunings are set
here on the positive side, where the nearest state ( 3

P0) is nearly
30 GHz away. Each curve is obtained after averaging over 15
sets of data, recorded at different times, for different positions
of the homodyne-detection piezoactuator. The traces recorded
on the oscilloscope present some spurious oscillations at a
period of about 90 ns. This noise is generated by the acousto-
optic modulators and could be removed by numerically
filtering the spurious frequencies during the data processing.
In Fig. 4, the time origin corresponds to the beginning of the
retrieval, when the coupling beam is turned on again. At that
time, the probe intensity starts increasing to form the retrieved
pulse. We plot only the evolution of the extra phase shift
ϕEIT (t) when the signal intensity is high enough, typically
from roughly 100 ns to 1 μs after the start of the retrieval. One
can see that ϕEIT (t) is not constant over the retrieval, and its
magnitude increases with the optical detuning �.

The experimental plots are compared with numerical
simulations of the full Maxwell-Bloch equations derived as
explained in the previous section. We first observe that both
the order of magnitude of ϕEIT and its variations with �

qualitatively agree. Discrepancies are, however, more visible in
the time dependence of ϕEIT (t), particularly for the three inter-
mediate curves (� = 0.6,1,1.3 GHz); however, as emphasized
above, the order of magnitude of the phase shift is good, and
its slope disagrees with theoretical predictions. One possible
source for the observed discrepancies is our oversimplified
treatment of the velocity distribution in the Doppler profile.
Here, we indeed assumed that velocity-changing collisions are
efficient enough to instantaneously and perfectly redistribute
atoms pumped in the probed level |1〉 over the effective
Doppler profile so that all these atoms contribute coherently to
the storage process as if the broadening were homogeneous.
Although this approximation is commonly used (see [13,14]),
it might be severely questioned here, especially in optically
detuned conditions that change the thermal equilibrium. In
particular, the absorption of the coupling beam measured ex-
perimentally could not be well reproduced by the simulations.
This should also have an effect on the storage efficiency
and on the temporal shape of the phase. Note that in the
simulation program, in order to “minimize” this problem, we
use an averaged coupling intensity over the length of the cell
as the input parameter, instead of the real coupling intensity
measured at the entrance of the cell. Note also that we have
checked that our numerical results agree with the analytic
approximate solutions presented in [12,16].

To understand better the physical origin of the extra phase
shift ϕEIT (t), we compared the time-dependent relative phase
�φ(t) between the signal and coupling beams at the exit
of the cell, obtained (i) during the storage and retrieval
of a weak signal pulse [�φ(t) = �φ(l)(t) before t = 0 and
�φ(t) = �φ(r)(t) after the storage time T = 0.6 μs) and (ii)
during the direct EIT propagation of the same weak pulse in
the medium, while the coupling amplitude remained constant.
To compute �φ(t) in case (i), we used the full simulation
of the Maxwell-Bloch set of equations, whereas in case (ii)
we simply propagated each spectral component ω of the
incoming pulse with the corresponding susceptibility χ (ω).

FIG. 5. (Color online) Temporal evolution of the relative phase
�φ(t) during the direct propagation of a weak signal pulse through
the medium under EIT conditions (“simple propagation”) and during
the storage and retrieval of the same pulse (“storage sequence”) for
two different optical detunings: (a) 1.7 GHz (green solid line and
red dash-dotted line) and (b) 0.2 GHz (orange dotted line and blue
dashed line). The time origin is arbitrarily chosen as the starting of
the storage period.

Figure 5 simultaneously displays the results we obtained in
both cases for two different values of the optical detuning,
� = 0.2, 1.7 GHz. The shape and order of magnitude for
�φ(t) are clearly the same in cases (i) and (ii): the main
effect of the storage is to introduce a delay corresponding
to the storage time T . Here, we chose T = 0.6 μs, but we
checked both experimentally and theoretically that this phase
shift does not depend on this storage time. This suggests
that the observed extra phase shift ϕEIT originates almost
exclusively from the asymmetric dispersion experienced by
the pulse when propagating in the atomic medium under
detuned EIT conditions. Indeed, the stored part presents a sharp
decrease associated with many frequency components and is

FIG. 6. (Color online) Temporal evolution of the phase shift
ϕEIT (t) for different optical detunings in the Raman regime: � =
10 GHz (blue solid line), � = 15 GHz (red dashed line), � = 20 GHz
(green dotted line). These curves are obtained with the full simulation
of the Maxwell-Bloch set of equations, for ten times more atoms than
in our experimental case, and for a coupling power of 200 mW. The
time origin is chosen as the starting of the retrieval period.
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thus very sensitive to dispersive effects. This problem should
be taken into account for high-speed information applications,
like experiments performed in the Raman configuration [6–8].
We have thus performed simulations in the far-detuned regime
as presented in Fig. 6. The simulation results shown here are
plotted for three different optical detunings, � = 10 GHz, � =
15 GHz, � = 20 GHz, much higher than the 	D ≈ 0.8 GHz
Doppler broadening. They were obtained for a number of
atoms nat which is ten times higher than in our experimental
case and for a coupling power of 200 mW. These simulation
results demonstrate a similar effect on the retrieved signal
pulse phase, even slightly stronger than in our experimental
conditions. We checked that our numerical results in the
Raman configuration agree with the analytic integral formula
derived in the adiabatic approximation by Gorshkov et al. [12],
which relates the outgoing field to the incoming one. Note that,
although analytic, this formula does not lend itself to simple
physical interpretations as far as the phase is concerned.

IV. CONCLUSION

In this paper, we have experimentally investigated a time-
dependent extra phase shift that appears in a storage-retrieval
experiment, performed in a room-temperature atomic cell in

optically detuned conditions. This phase shift varies with
time and does not depend on the storage time. We have
provided numerical simulations which qualitatively agree
with the experimental results: in particular, it appears that
the magnitude of the relative phase depends on the optical
detuning, while its temporal shape is mainly given by the
spectrum of the incoming pulse. We explain the existence of
this extra phase by propagation effects that can be understood
by a simple propagation model under EIT conditions with
optically detuned beams. Discrepancies may be due to an
approximate treatment of Doppler broadening in the cell.

The results presented here might be important, particularly
for light-storage experiments performed in the far-detuned
Raman regime, as reported in [7]. How these results translate
into the regime of quantum light is an intriguing feature that
we intend to address in a future work.
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