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Analytical study of quantum-feedback-enhanced Rabi oscillations
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We present an analytical solution of the single-photon quantum feedback in a cavity quantum electrodynamics
system based on a half-cavity setup coupled to a structured continuum. Our exact analytical expression constitutes
an important benchmark for quantum-feedback models and allows us to unravel the necessary conditions for
the previously reported numerical result that a single-emitter-cavity system, which is initially in the weak-
coupling regime, can be driven into the strong-coupling regime via the proposed quantum-feedback mechanism
[A. Carmele et al., Phys. Rev. Lett. 110, 013601 (2013)]. We specify the phase relations between the cavity mode
and the delay time and state explicitly the theoretical limit for a feedback effect in the single-photon regime. Via
the photon-path representation, we prove that the stabilization phenomenon relies on a destructive interference
effect and we discuss the stabilization time in the weak- and strong-coupling limits.
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I. INTRODUCTION

The basic phenomenon at the heart of any quantum
information processing network is the coherent exchange of
photonic and atomic excitations by means of a single emitter
in a microcavity. Advances in the design and fabrication
of microcavities allow very high quality factors and have
enabled multiple studies of cavity quantum electrodynamics
(CQED) in the strong-coupling limit [1–7]. Several applica-
tions have been proposed and already realized, such as single-
photon transistors, two-photon gateways, parametric down-
conversion, and the generation and detection of individual
microwave photons [8–11]. Furthermore, several quantum gate
proposals rely on a natural quantum interface between flying
qubits (photons) and stationary qubits (e.g., atoms). Here the
photons allow for secure quantum communication over long
distances, whereas atoms can be used for the manipulation and
storage of quantum information [11].

Application of CQED techniques requires that a single-
atom–single-photon coupling exceeds any photon loss and
radiative decay processes, such as spontaneous emission or
photon leakage. So, besides technological progress to increase
the quality factor of the cavities, a promising alternative
is to identify strategies to control and exploit potentially
advantageous properties of the environment coupling, which
go beyond the conventional effects of the environment such as
dissipation and undesired information loss.

A possible mechanism to stabilize qubits and desired quan-
tum states is quantum feedback based on the repeated action
of a sensor-controller-actuator loop. In such a case, a quantum
system is driven to a target state via the external control [12,13]
such that continuous measurements allow stabilization of the
target state, e.g., by a modification of the pumping strength. In
addition to these extrinsic control setups, experiments start
to explore a variety of intrinsic delayed feedback control
schemes, e.g., by using an external mirror in front of a
nanocavity [14]. Intrinsic quantum feedback is not based on
a continuous measurement process, but controls the quantum
state by shaping the environment appropriately [15–21].

Here we discuss how the initial weak atom-cavity coupling
is driven into the strong-coupling regime. In contrast to
Ref. [21], here we evaluate the quantum-feedback mechanism
analytically to specify the conditions for this stabilization
phenomenon, in particular the phase relation between the
cavity mode and the delay time imposed by the external mirror.
Furthermore, we state the theoretical limit for a feedback effect
on the single-excitation level and extend our investigation from
the weak- to the strong-coupling regime. By expanding our
solution with the von Neumann series, we can demonstrate
that the effect relies on a destructive interference effect of
incoming and outgoing photon wave packages and illustrate
this in a photon-path representation picture. Our proposed
control scheme has potential applications for quantum error
correction [22], quantum gate purifying [23], and quantum
feedback [13].

II. MODEL

The system consists of a microcavity system of length L′
with a two-level emitter coupled to a single-cavity mode (see
Fig. 1). Furthermore, the cavity exhibits photon loss due to
its coupling to external modes. An external mirror, placed
at a distance of L, introduces a boundary condition to the
external mode structure and causes a feedback of lost cavity
photons into the cavity. We assume that the microcavity length
L′ � L is very short in comparison to L to allow a single-
mode description for the emitter-cavity interaction. This kind
of quantum self-feedback can be realized via a shaped mode
continuum in a photonic waveguide. Due to the finite cavity-
mirror distance L and the quasicontinuous mode structure of
the semi-infinite lead, a delay mechanism is introduced into
the system at τ = 2L

c0
, with c0 being the speed of light in

vacuum. To describe the corresponding physics we work with
the following Hamiltonian within the rotating-wave and dipole
approximations [24]:

H/� = −γ (σ−a† + σ+a) −
∫

dkG(k,t)a†dk + G∗(k,t)d†
ka,

(1)

1050-2947/2015/92(5)/053801(6) 053801-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.013601
http://dx.doi.org/10.1103/PhysRevLett.110.013601
http://dx.doi.org/10.1103/PhysRevLett.110.013601
http://dx.doi.org/10.1103/PhysRevLett.110.013601
http://dx.doi.org/10.1103/PhysRevA.92.053801


JULIA KABUSS et al. PHYSICAL REVIEW A 92, 053801 (2015)

FIG. 1. (Color online) Implementation of an intrinsic quantum-
feedback mechanism via a quasicontinuum, realized by a photonic
crystal waveguide with length L, which is supposed to be considerably
larger than the cavity length L′. The waveguide is a half cavity and
allows the exchange of cavity photons with waveguide photons due
to the photon leakage G(k). The photons inside the cavity interact
with a single emitter (coupling strength γ ).

where a rotating frame is chosen in correspondence to the
free-energy contribution of the Hamiltonian. The emitter
is described via the Pauli matrices with σ+ (−) being the
raising and lowering operators of the two-level system (TLS),
respectively. In the following, the atomic energy is assumed
to be on resonance with the single-cavity mode. A photon
annihilation (creation) in the cavity is described with the
bosonic operator a† (a) and γ is the coupling between the
two-level system and the cavity mode. The coupling strength
between the emitter and the field mode is assumed to be
of the order of γ = 50 μeV [2,25,26]. The cavity photons
interact with the external modes d

(†)
k in front of the mirror

via the tunnel Hamiltonian coupling elements G(k,t). Due to
the rotating frame and the interference with the backreflected
signal from the mirror, these coupling elements depend both
on time t and on the wave number k, resulting in the
expression G(k,t) = G0 sin(kL) exp[i(ω0 − ωk)t], where G0

is the bare tunnel coupling strength and ω0 and ωk stand for
the frequencies of a single-cavity mode and half-cavity modes,
respectively. As we will see below, this specific form of G(k,t)
will determine the nature of the feedback on the cavity.

A. Single-photon limit

If no other pump mechanism or loss channels are intro-
duced, the system dynamics described by the Hamiltonian
(1) can be solved in the Schrödinger picture, following
Refs. [27,28]. In the single-photon limit, the total wave
function reads

|�〉 = ce|e,0,{0}〉 + cg|g,1,{0}〉

+
∫

dk cg,k|g,0,{k}〉, (2)

where |e,0,{0}〉 denotes the excited state of the two-level
system with the cavity and the waveguide being in the vacuum
state, |g,1,{0}〉 stands for a single photon residing in the
cavity and the two-level system as well as the radiation
field in the waveguide being in the ground state. Finally,
|g,0,{k}〉 describes the ground state of the two-level system
with exactly one photon in the waveguide of mode k. The
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FIG. 2. (Color online) Excited-state density |ce(t)|2 of the two-
level system (black dashed line) and the photon density inside the
cavity |cg(t)|2 (orange solid line) in the quasicontinuum model.
The quantum-feedback mechanism (κ/γ = 2) induces a regular
oscillation pattern at multiples of τ = 2π/γ .

variables ce,cg,cg,k denote the corresponding amplitudes of
the three different states above.

Applying the Schrödinger equation, we arrive at the
following set of linear partial differential equations:

∂tce = iγ cg, (3)

∂tcg = iγ ce + i

∫
dk G(k,t)cg,k, (4)

∂tcg,k = iG∗(k,t)cg. (5)

First, we numerically solve this coupled set of differential
equations assuming that initially at t0 = 0 the TLS is in the
excited state ce(t0) = 1 and there are no photons inside the
cavity cg(t0) = 0 or in the external region cg,k(t0) = 0. To
introduce a delay time corresponding to τ = 2L/c0 = 2π/γ ,
we choose a mirror resonator distance L = πc0/γ .

The results for the dynamics of the excited state and photon
density are shown in Fig. 2. In the time interval [0,τ ] we
find the conventional exponential decay as described by the
Wigner-Weisskopf model in the weak-coupling limit. After
the first round-trip τ = 2L/c0, the photon density and after
a small delay also the excited-state density are driven by the
quantum feedback. In this time interval [τ,2τ ], the amplitude
of the photon density is smaller than the amplitude of the
excited case, since the damping mechanism acts only on the
photons inside the cavity. However, for longer times, the
asymmetry between the amplitudes of the excited state and
the photon density vanishes, so the system sets into a state
of coherent Rabi oscillations characterized by approximately
equal maxima of both densities (see the asymptotic dynamics
for t/τ � 8 in Fig. 2). In this long-time limit, the amplitude for
the cavity photon population stabilizes at around 15% of the
maximum photon population in the first time interval [0,τ ].
This remarkable effect has been reported in Ref. [21] and
will now be analyzed analytically and thereby explained in
more detail. In particular, we will focus on the following two
specific questions: (i) How sensitive is this effect on the chosen
parameters, in particular on the choice of the time delay?
(ii) Can the oscillation amplitude be increased or is there an
intrinsic limit? To answer these questions, we will first derive
a simplified picture of the dynamics by solving Eqs. (3)–(5) in
the Markovian limit.
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B. Analytical quantum feedback

The initial decay and the subsequent oscillations observable
in Fig. 2 indicate that the underlying physical processes that
govern this system consist of both a typical (Markovian) cavity
loss and a (non-Markovian) memory kernel with significant
contributions around multiples of the delay time τ . Assuming
that the rotating-wave approximation and the quasicontinuum
assumption hold, the coupling to the external modes can
be eliminated from the problem. To achieve this, Eq. (5) is
integrated formally and inserted into Eq. (4), resulting in the
following expression:

∂tcg = iγ ce − κcg + κcg(t − τ )
(t − τ )eiω0τ , (6)

with κ = πG2
0/2c0. This reduced expression has the advan-

tages of being easily solvable numerically and being amenable
to an analytical solution through a Laplace transformation.
With the initial conditions that neither cavity nor continuum
photons are present in the beginning, i.e., ce(0) = 1, the
equations read after Laplace transformation

sce(s) = 1 + iγ cg(s), (7)

scg(s) = iγ ce(s) − κcg(s) + κcg(s)e−(s−iω0)τ , (8)

where s is the complex frequency parameter of the Laplace
transformation. As can be seen from Eq. (6), the solution
consists of a dynamical component without the mirror-induced
feedback t � τ and one with the feedback for t > τ .

We now derive a solution for the photon-assisted ground
state for t � τ , which is the cavity-damped Jaynes-Cummings
model [29]

cg(s) = iγ

s2 + γ 2 + κs
= iγ

(s + κ/2)2 + γ 2 − κ2/4
. (9)

This leads directly to the damped Jaynes-Cummings solutions
in the time domain as expected for times t � τ , when the
cavity system is not affected by the feedback mechanism:

cg(t) = i
sin[

√
1 − (κ/2γ )2γ t]√
1 − (κ/2γ )2

e−κ/2t . (10)

Note that, due to the cavity damping, not only is the amplitude
reduced but also the Rabi oscillation frequency is reduced by
a factor of

√
1 − (κ/2γ )2. The cavity loss leads inevitably to

an effectively reduced value for the coupling strength and as
a result, the frequency of damped Rabi oscillations decreases.
As we will see below, this restriction is lifted if a feedback
mechanism is present.

Now we solve the dynamics for times t > τ . This leads to an
additional term in the denominator. By using a geometric series
expansion, i.e., (1 − q)−1 = ∑

n qn for q < 1 and n → ∞,
Eq. (9) can be written as

cg(s) = iγ

(
1 − κs exp[−(s − iω0)τ ]

(s + κ/2)2 + γ 2 − κ2/4

)−1

× [(s + κ/2)2 + γ 2 − κ2/4]−1

= iγ
∑

n

(
κs exp[−(s − iω0)τ ]

(s + κ/2)2 + γ 2 − κ2/4

)n

× [(s + κ/2)2 + γ 2 − κ2/4]−1. (11)
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FIG. 3. (Color online) Comparison between numerical calcula-
tion and the Laplace transformed analytical solution valid until t = 3τ

with κ/γ = 2.

Due to the linearity of the Laplace transformation, the solution
in the time domain can be obtained via the method of partial
fraction expansion and the convolution property. However, the
expression is very lengthy and must be calculated for every
time interval [nτ,(n + 1)τ ], separately. Since we are interested
in the weak-coupling regime, we can choose the parameter to
be γ = κ/2 to simplify the expression into

cg(s) = iκ/2

(s + κ/2)2

∑
n

(
κse(iω0−s)τ

(s + κ/2)2

)n

. (12)

Using now the binomial series and Laplace transformation
n!/(s − a)n+1 → tn exp[at], we get an expression in the time
domain

cg(t) = i

2

∞∑
n=0

n!2n+1e−κ/2(t−nτ )+iω0nτ
(t − nτ )
n∑

k=0

× (−1)k

k!(n − k)!

[κ/2(t − nτ )]n+1+k

(n + 1 + k)!
. (13)

In Fig. 3 the numerical solution of Eq. (3) coupled with
Eq. (6) is compared with the analytical solution (13) for the
time interval [0,3τ ]. The excellent agreement found between
these two solutions confirms the validity of our calculations.
For longer times, more terms from the series expansion (13)
contribute to the solution via 
(t − nτ ), but the analytical
solution become very lengthy, i.e., for t ∈ [0,nτ ] up to
n(n − 1) terms contribute. As the next step, we derive the
long-time behavior using the residuum method.

C. Long-time solution

The long-time dynamics of the coupled system is directly
related to the singularities in the contour integral of the Laplace
transformed function [30]. To demonstrate this explicitly, we
need to find the singularities of the photon-assisted ground-
state amplitude

cg(s) = iγ

s2 + γ 2 + κs − κse−(s−iω0)τ
. (14)

The singularities are found by setting the denominator to zero.
We assume a pure oscillation behavior in the long-time limit,
i.e., where s is purely imaginary. We set s = ±iγ and get

− γ 2 + γ 2 ± iγ κ(1 − e∓iγ τ eiω0τ ) = 0, (15)
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from which it immediately follows that

ei(ω0∓γ )τ = 1. (16)

We now need to find a delay time τ in a way that for ±iγ this
equation is valid. As it turns out, the corresponding singularity
condition can be matched for the following two cases:

exp(iγ τ ) = exp(iω0τ ) = 1, (17)

exp(−iγ τ ) = exp(iω0τ ) = 1. (18)

In order to satisfy these conditions we observe that we can
freely choose the delay time with respect to the coupling
strength by adjusting the length L between the cavity and
mirror accordingly. For instance, if we choose γ τ = 2πm

and at the same time tune the resonance frequency such that
ω0τ = 2πl, where l,m are integer numbers, then the conditions
(17) and (18) are satisfied. [Note that there are also three other
obvious constraints on τ and γ to satisfy the conditions (17)
or (18), but they are not discussed below.] As a result, we
achieve a purely coherent asymptotic solution with a minimum
of dephasing and a maximum amplitude, corresponding to the
fact that the pole does not contain any decaying term. Indeed,
we derive the following expression for the asymptotic behavior
of the photon density inside the cavity:

c(i)
g (t) = 1

2πi

∮
ds cg(s)est ≈

∑
poles

Res[cg(s)est ]

=
∑
±

lim
s→±iγ

(s ± iγ ) exp(s2nπ/γ )iγ

(s+iγ )(s − iγ )+κs[1− exp(−s2mπ/γ )]
.

(19)

Using now L’Hôpital’s rule and taking the limits s → ±iγ ,
the solution for cg(t) reads

cg(t) = i sin[γ t]

1 + κmπ/γ
. (20)

In Fig. 4 the numerical solution and the analytical long-time
solution is plotted for τ = 2π/γ (i.e., when m = 1) up to
several τ . The agreement is excellent with the long-time so-
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FIG. 4. (Color online) Comparison between the numerics (or-
ange curve) and long-time solution determined by the residuum
contribution only (black curve) for an initially excited TLS ce(0) = 1
and κ/γ = 2. After several τ , the analytical long-time solution and the
numerics coincide. Note that the long-time solution is only valid for
t � 10τ . We plotted the solution for short times only for illustration
purposes.

lution accurately recovering the amplitude and the oscillation
frequency of the numerical solution. Interestingly, for κ = 0,
we recover the Jaynes-Cummings solution as in Eq. (10) with
κ = 0. In contrast to Eq. (10), we see, however, that the
cavity loss does not modify the frequency of vacuum Rabi
oscillations, which is now equal to the coupling strength γ ,
and only damps the corresponding amplitude. In this context,
we discover a maximum amplitude for the feedback effect via
this proposed mechanism. It is seen that Eq. (20) yields the
following amplitude of the quantum-feedback-induced Rabi
oscillations for τ = 2π/γ : 1/(1 + κπ/γ )2. Therefore, with
κ = 2γ , the maximum amplitude is approximately 0.02, in
correspondence with Fig. 4, which is 15% of the maximum
photon amplitude in the first time interval [0,τ ]. With these
results at hand, we can now also answer the questions raised
above.

(i) The effect of stabilized Rabi oscillations in the long-time
limit depends strongly on the chosen time delay τ , which has
to be chosen so as to satisfy one of the conditions (17) and
(18) that lead to asymptotically undamped Rabi oscillations.
Furthermore, the factor exp(iω0τ ) plays a crucial role to
decide whether quantum feedback leads to a stabilized Rabi
oscillation or to a damped feedback situation. However, the
effect depends only quantitatively (rather than qualitatively) on
the cavity loss κ and coupling strength γ , besides the obvious
restriction that both of them are unequal to zero.

(ii) For a given ratio between the coupling strength and the
cavity loss x = κ/γ , there is a maximum amplitude that is
given for the above case by (1 + xπ )−2.

D. Photon-path representation

To give an intuitive explanation for this effect of recovered
Rabi oscillations in the weak-coupling limit, we visualize the
resulting cavity dynamics in the framework of the photon-path
representation [31,32]. For this purpose we rewrite the system
of equations of motion (7) and (8) in the Laplace domain as(

ce(0)
cg(0)

)
= s(1 − L)

(
ce(s)
cg(s)

)
, (21)

with the scattering matrix

L =
(

0 i
γ

s

i
γ

s
− κ

s
(e−τs − 1)

)
. (22)

Due to the nonzero determinant, the matrix can be inverted
and using the Neumann expansion, we get, for ||L|| < 1,
(

ce(s)
cg(s)

)
= 1

s

∞∑
n=0

Ln

(
ce(0)
cg(0)

)

=
∞∑

n=0

[
(iγ )n

sn+1

(
0 1
1 κ

iγ
(e−τs − 1)

)n](
ce(0)
cg(0)

)
. (23)

Now the dynamics is written in a very complicated manner
but in a way that the photon path (represented by scattering
processes due to L) becomes visible. With this expansion,
one can represent the dynamics as a series of single-scattering
events by multiple application of the matrix, which swaps
the excitation from ce to cg and includes the cavity loss and
the gain from the feedback. This becomes especially apparent
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FIG. 5. (Color online) Fast stabilization of Rabi oscillations of
the cavity photon number in the strong-coupling limit γ = 20κ after
only one round-trip τ , when the feedback from the waveguide is
present (orange curve). Initially, the excitation is stored in the TLS
[ce(0) = 1].

when writing down the single terms of the Laplace transform
and then transforming them back into the time domain. In
particular, for the ground-state probability such an expansion
reads (only terms up to t3 are kept)

cg(t) = (iγ )

1!
− (iγ )κ

2!
t2 + (iγ )3

3!
t3 + (iγ )κ2

3!
t3 + · · ·

+ (iγ )κ

2!
(t − τ )2θ (t − τ )

− (2iγ )κ2

3!
(t − τ )3θ (t − τ ) + · · · . (24)

From the structure of this expansion it follows that undamped
Rabi oscillations can be viewed as a result of an interference
between incoming and outgoing photonic paths provided τ =
2π/γ . In other words, the strong-coupling feature is produced
by a destructive interference effect of the photon paths at the
point within the waveguide, where the tunneling event between
the cavity and waveguide takes place. This expansion explains
furthermore that it takes a minimum time for this effect to
unfold, since at least two dissipatively interacting waves need
to be in the waveguide.

E. Strong-coupling limit

To complete the picture, we investigate the proposed
feedback mechanism via a quasicontinuum in the strong-
coupling limit. In Fig. 5 the dynamics with and without
feedback is plotted for a coupling strength γ = 20κ . Clearly,

Rabi oscillations are visible with and without feedback. If
no feedback is present, however, the amplitude of the Rabi
oscillations are damped fast without changing the frequency.
With a feedback and a chosen delay time of τ = π/2γ , on
the other hand, the amplitude loss is stopped at very early
times already: Already after one round-trip the amplitude
stays constant for all times, if no other loss mechanism inside
or between the mirror and cavity is present. We explain the
acceleration of the stabilization feature by the fact that for the
strong-coupling regime the incoming and outgoing photons
already interfere efficiently after one round-trip. In contrast,
in the weak-coupling limit the in and out tunneling does not
overlap for the first three round-trips and as a consequence
interference takes place at longer times only. If we choose a
larger round-trip time τ , also in the strong-coupling regime,
a higher number of round-trips nτ is necessary to reach the
point of stabilized Rabi oscillations.

III. CONCLUSION AND OUTLOOK

We have discussed an approach to stabilize single-emitter
CQED via a quantum feedback mechanism induced by an
external mirror. Our analytical solution shows that depending
on the chosen parameters, an intrinsic limit of the feedback
effects exists. For a system initially in the weak-coupling
regime (before the feedback modifies the system dynamics)
we demonstrate that the quantum feedback can at most recover
approximately 15% of the maximum cavity occupancy in
the first time interval. Our analytic calculations demonstrate
furthermore that the quantum-feedback-induced Rabi oscil-
lations are indeed coherent and follow a typical differential
delay equation with an appropriate inhomogeneity to drive the
system into the strong-coupling regime. Our results extend the
set of exact analytical solutions in the field of coherent atom
CQED and form a starting point to establish a framework for
a theoretical description of coherent quantum feedback.
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