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Absence of a four-body Efimov effect in the 2 + 2 fermionic problem
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In the free three-dimensional space, we consider a pair of identical ↑ fermions of some species or in some
internal state and a pair of identical ↓ fermions of another species or in another state. There is a resonant
s-wave interaction (that is, of zero range and infinite scattering length) between fermions in different pairs and
no interaction within the same pair. We study whether this 2 + 2 fermionic system can exhibit (as the 3 + 1
fermionic system) a four-body Efimov effect in the absence of three-body Efimov effect, that is, the mass ratio α

between ↑ and ↓ fermions and its inverse are both smaller than 13.6069 . . . . For this purpose, we investigate scale
invariant zero-energy solutions of the four-body Schrödinger equation, that is, positively homogeneous functions
of the coordinates of degree s − 7/2, where s is a generalized Efimov exponent that becomes purely imaginary
in the presence of a four-body Efimov effect. Using rotational invariance in momentum space, it is found that the
allowed values of s are such that M(s) has a zero eigenvalue; here the operator M(s), that depends on the total
angular momentum �, acts on functions of two real variables (the cosine of the angle between two wave vectors
and the logarithm of the ratio of their moduli), and we write it explicitly in terms of an integral matrix kernel.
We have performed a spectral analysis of M(s), analytical and for an arbitrary imaginary s for the continuous
spectrum and numerical and limited to s = 0 and � � 12 for the discrete spectrum. We conclude that no eigenvalue
of M(0) crosses zero over the mass ratio interval α ∈ [1; 13.6069 . . . ], even if, in the parity sector (−1)�, the
continuous spectrum of M(s) has everywhere a zero lower border. As a consequence, there is no possibility of a
four-body Efimov effect for the 2 + 2 fermions. We also enunciated a conjecture for the fourth virial coefficient
of the unitary spin-1/2 Fermi gas, inspired from the known analytical form of the third cluster coefficient and
involving the integral over the imaginary s axis of s times the logarithmic derivative of the determinant of M(s)
summed over all angular momenta. The conjectured value is in contradiction with the experimental results.
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I. INTRODUCTION

In three-dimensional cold atomic gases, thanks to magnetic
Feshbach resonances, it is now possible to induce resonant s-
wave interactions between the particles [1]. This means that the
s-wave scattering length a is in absolute value much larger than
the range (or the effective range) of the interaction. Essentially,
one can assume that 1/a = 0, and since the de Broglie
atomic wavelength is also much larger than the range of the
interaction, one can replace the interactions by scaling invari-
ant Wigner-Bethe-Peierls two-body contact conditions on the
wave function [2]: One realizes the long-sought unitary limit.

Perhaps the most striking phenomenon that can take place
in that regime is the Efimov effect, predicted for three
particles with appropriate statistics and mass ratios [3]. It
corresponds to the occurrence of an infinite number of bound
states, with an asymptotically geometric spectrum close to the
zero-energy accumulation point. The geometric part of the
spectrum is characterized by a ratio, predicted by Efimov’s
zero-range theory, and a global energy scale that depends on
the microscopic details of the interaction. The mere existence
of such an energy scale forces us to supplement the two-body
contact conditions by three-body ones that involve a length
scale, the so-called three-body parameter, and that break the
scale invariance at the three-body level. It is at this cost that
the zero-range model becomes well defined and leads to a
self-adjoint Hamiltonian. The Efimov effect is now observed
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experimentally with cold atoms [4], which gives access to the
value of the three-body parameter [5].

A natural question is to know whether a four-body Efimov
effect is possible [6,7], leading to an infinite, asymptotically
geometric, spectrum of tetramers, with an energy ratio pre-
dicted by a zero-range theory and a global energy scale fixed
by a four-body parameter appearing in four-body contact
conditions. It is now understood that a prerequisite to the
four-body Efimov effect is the absence of three-body Efimov
effect: It is indeed expected that the introduction of three-body
contact conditions (in terms of the three-body parameter)
imposed by the three-body Efimov effect is sufficient to also
render the four-body problem well defined, that is, without
the need for a four-body parameter. As predicted in Ref. [6],
no geometric sequence of tetramer states can then be found
but, as shown numerically for four bosons [8], sequences of
four-body complex energy resonances are expected in general,
with the same geometric ratio as the trimer Efimov spectrum
(see Refs. [9,10] for early studies not accessing the imaginary
part of the energy). This prerequisite rules out systems with
more than one boson [3] as possible candidates for a four-body
Efimov effect and suggests use of fermions to counterbalance
the Efimov effect by the Pauli exclusion principle, at least
in three dimensions (what happens in lower dimensions or
with resonant interactions in other channels than the s wave is
discussed in Refs. [11,12]).

Consider then the so-called p + q fermionic problem: p

identical fermions of the same species or spin state resonantly
interact in free space with q identical fermions of another
species or spin state. It is assumed that there is no interaction
between the identical fermions, since they cannot scatter in the
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s wave. It is convenient to adopt a pseudospin notation, with ↑
for the first species and ↓ for the second. The two species have
in general different masses m↑ and m↓, and the crucial idea is to
use their mass ratio as an adjustable parameter to search for the
four-body Efimov effect without triggering the three-body one.

The 3 + 1 or ↑↑↑↓ resonant fermionic problem was inves-
tigated in Ref. [13]. A four-body Efimov effect was predicted
for a mass ratio 13.384 < m↑/m↓ < 13.6069 . . .. Beyond
13.6069 . . . the three-body Efimov effect sets in as shown in
Refs. [3,14,15], which blocks the four-body Efimov effect as
discussed above: Apart from a finite number of tetramer states,
one expects an infinite number of four-body resonances with
the same geometric ratio as for the 2 + 1 problem.

The main motivation of the present work is to determine the
presence or the absence of a four-body Efimov effect in the 2 +
2 or ↑↑↓↓ fermionic problem. To our knowledge, no general
and rigorous answer was given to this problem. One may think
of attacking it with the Born-Oppenheimer approximation.
We indeed expect (as for the three-body case) that the only
possibility for a four-body Efimov effect is to have a large
mass imbalance between the two species, for example, the ↑
fermions are much heavier than the ↓ ones. It is found that,
in the presence of two ↑ fermions at fixed positions, there is a
single bound state for the ↓ particle, which creates an effective
∝ −�

2/(m↓r2) attraction between the ↑ fermions. For a large-
enough m↑/m↓ mass ratio, this indeed beats the centrifugal
barrier ∝�

2/(m↑r2) between the ↑ particles (they are fermions
and approach each other with a nonzero angular momentum),
which qualitatively explains the occurrence of a three-body
Efimov effect in the 2 + 1 problem, as pointed out in 1973 by
Efimov [3]. However, as there is a single bonding orbital, one
cannot put a second ↓ fermion in that orbital, but one can at
best put one in the ground, zero-energy scattering state, which
has two consequences: (i) the Born-Oppenheimer attractive
potential between the ↑ particles is not lowered by the second
↓ fermion, so no four-body Efimov effect is predicted at a mass
ratio strictly below the three-body Efimov effect threshold, and
(ii) as emphasized in Ref. [16], the second ↓ fermion, being
in a zero-energy eigenstate, does not have a fast motion as
compared to the one of the heavy particles, which sheds doubts
on the validity of the Born-Oppenheimer approximation.
Alternatively, one may expect that this 2 + 2 problem was
already solved numerically in the literature; however, no
convincingly dense coverage of the mass ratio interval between
1 and 13.6069 . . . seems to be available in the numerics [17]
considering the narrowness of the above-mentioned mass inter-
val. To obtain a firm answer to the question, we generalize the
method of Refs. [13,18], deriving from the zero-range model
momentum space integral equations for the 2 + 2 fermionic
problem at zero energy (see also the most general formulation
of reference [19]) and using rotational symmetry and scale
invariance to reduce them to a numerically tractable form.

Another motivation is to pave the way for the calculation
of the fourth virial coefficient of a two-component unitary
Fermi gas: This would make an interesting bridge between
few-body and many-body physics. For a unit mass ratio
m↑/m↓ = 1, the value of this virial coefficient was already
obtained experimentally from a measurement of the equation
of state of a gas of ultracold atoms [20,21]. On the theory
side, there exist two main techniques. First, there is the

diagrammatic technique, used exactly (all diagrams are kept)
for the third virial coefficient [22,23] and approximately (only
some diagrams are kept: those relevant in the perturbative
regime of a large effective range or a small scattering length)
for the fourth virial coefficient [24] leading to a value different
from but reasonably close to the experimental value. Second,
there is the harmonic regulator technique [25], used with
success for the third virial coefficient [26–29] and that requires
us to determine the spectrum of up to four particles in an
isotropic harmonic trap. A first, brute-force numerical solution
of this trapped four-body problem [30] was not able to recover
even the sign of the experimental value. In a more analytical
way, this spectrum can be deduced from the solutions of the
zero-energy free space problem [31,32], due to the SO(2,1)
dynamical symmetry of the unitary Fermi gas [32–34], so the
four-body integral equations written here may also be useful
for the solution of the virial problem.

Our article is organized as follows. In Sec. II we derive the
zero-energy momentum-space integral equations in general
form. In Sec. III we successively use the rotational invariance,
the scale invariance, and the parity invariance to put the integral
equations in a maximally reduced form. This reduced form,
written in Sec. IV A, exactly expresses the fact that some
operator M , depending on the angular momentum � and the
scaling exponent s, has a zero eigenvalue, which motivates its
spectral analysis; it allows us to show that two components
of the continuous spectrum of M can be expressed exactly
in terms of the Efimov transcendental functions appearing
in the ↑↑↓ and ↑↓↓ three-body problems (see Sec. IV B)
and that there is a third, unexpected continuum due to a term
with no equivalent in the 3 + 1 problem (see Sec. IV C). The
question of the existence of the four-body Efimov effect in the
2 + 2 fermionic problem is the subject of Sect. V, whereas
the secondary motivation of this work, i.e., the fourth virial
coefficient of the spin-1/2 unitary Fermi gas, is relegated
to the Appendix B, where its expression in terms of the
operator M is conjectured from a transposition of the known
analytic expression of the third virial coefficient [28,29], and
the conjectured value is compared to the experimental [20,21]
and theoretical [24,30] values. We conclude in Sec. VI.

II. DERIVATION OF THE GENERAL FOUR-BODY
INTEGRAL EQUATIONS

Particles 1 and 2, of positions r1 and r2, belong to
species ↑. Particles 3 and 4, of positions r3 and r4, belong
to species ↓. The four-body wave function ψ is subjected
to the usual Wigner-Bethe-Peierls contact conditions, for a
zero-range interaction of s-wave scattering length a between
opposite-spin particles. For all i ∈ {1,2} and all j ∈ {3,4},
when the distance rij between particles i and j tends to zero,
at fixed position Rij = (m↑ri + m↓rj )/(m↑ + m↓) of their
center of mass (different from the positions of the remaining
two particles), one imposes

ψ↑↑↓↓(r1,r2,r3,r4) =
rij →0

(
1

rij

− 1

a

)
μ↑↓

2π�2

×Aij ((rk − Rij )k �=i,j ) + O(rij ),

(1)
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where the form of the regular part Aij supposes that the center
of mass of the four particles is at rest, and where μ↑↓ =
m↑m↓/(m↑ + m↓) is the reduced mass of two opposite-spin
particles. Due to the fermionic antisymmetry, the regular parts
are not independent functions:

A13 = A24 = −A14 = −A23 ≡ A. (2)

Schrödinger’s equation at zero eigenenergy E = 0, written in
the language of distributions, is then

Hψ↑↑↓↓ = A(r2 − R13,r4 − R13)δ(r1 − r3)

−A(r2 − R14,r3 − R14)δ(r1 − r4)

−A(r1 − R23,r4 − R23)δ(r2 − r3)

+A(r1 − R24,r3 − R24)δ(r2 − r4) (3)

with the kinetic energy Hamiltonian

H =
4∑

n=1

− �
2

2mn

�rn
(4)

and δ(r) is the Dirac distribution in three dimensions, stem-
ming from the identity �r(1/r) = −4πδ(r).

We now go to momentum space and we take the Fourier
transform of Schrödinger’s equation. In the left-hand side, each
Laplace operator gives rise to a factor −k2

n, where kn is the
wave vector of particle number n. In the right-hand side, one
obtains, for example, for the first term:∫ 4∏

n=1

d3rne
−i

∑4
n=1 kn·rnA(r2 − R13,r4 − R13)δ(r1 − r3)

= (2π )3Ã(k2,k4)δ

(
4∑

n=1

kn

)
, (5)

where the tilde indicates the Fourier transform. Introducing the
function D ≡ (2π )3Ã, we obtain the four-body momentum
space ansatz generalizing to the 2+2 fermionic problem the
one of the 3+1 fermionic problem [13,18]:

ψ̃↑↑↓↓(k1,k2,k3,k4) = δ
( ∑4

n=1 kn

)
∑4

n=1
�2k2

n

2mn

[D(k2,k4)

−D(k2,k3) − D(k1,k4) + D(k1,k3)].

(6)

The ansatz obeys fermionic antisymmetry and
Schrödinger’s equation, not yet the contact condition (1),
that it suffices to implement for (i,j ) = (1,3). One thus takes
the inverse Fourier transform of ψ̃ at (r1,r2,r3,r4), with the
parametrization:

r1 = R13 + m3

m1 + m3
r13, (7)

r3 = R13 − m1

m1 + m3
r13. (8)

Only the contribution ψ24 of D(k2,k4) to ψ diverges for
r13 → 0; in that inverse Fourier transform, we then take
K13 = k1 + k3, k13 = μ13(k1/m1 − k3/m3), and k2,k4 as
integration variables (clearly μ13 = μ↑↓), so k1 · r1 + k3 ·
r3 = K13 · R13 + k13 · r13 and �

2k2
1

2m1
+ �

2k2
3

2m3
= �

2k2
13

2μ13
+ �

2K2
13

2(m1+m3) ;

integration over K13 is straightforward, due to the momentum
conservation, and integration over k13 also can be done using

u(r) =
∫

d3k13

(2π )3

eik13·r

k2
13 + q2

13

= e−q13r

4πr
. (9)

One obtains

ψ24(r1,r2,r3,r4) =
∫

d3k2d
3k4

(2π )9

2μ13

�2
u(r13)

× ei[k2·(r2−R13)+k4·(r4−R13)]D(k2,k4) (10)

with q13 � 0 such that

�
2q2

13

2μ13
= �

2(k2 + k4)2

2(m1 + m3)
+ �

2k2
2

2m2
+ �

2k2
4

2m4
. (11)

Taking r13 → 0 in ψ24 is then elementary. In the contribution
to ψ of D(k2,k3), D(k1,k4), and D(k1,k3), noted as ψ�=24, one
can directly take r13 = 0. Thanks to momentum conservation
one can replace k1 + k3 by −(k2 + k4) within the position-
dependent phase factor, so the positions r2 − R13 and r4 − R13

appear as in Eq. (10):

ψ�=24(r1 = R13,r2,r3 = R13,r4)

=
∫

d3k2d
3k4

(2π )9
ei[k2·(r2−R13)+k4·(r4−R13)]

∫
d3k1d

3k3

(2π )3

× δ
( ∑4

n=1 kn

)
∑4

n=1
�2k2

n

2mn

[−D(k2,k3) − D(k1,k4) + D(k1,k3)].

(12)

Finally, the contact condition at the unitary limit, that is, for
1/a = 0, leads to the following integral equation for D:

0 = μ
3/2
↑↓

2π�2

[
(k2 + k4)2

m↑ + m↓
+ k2

2

m↑
+ k2

4

m↓

]1/2

D(k2,k4)

+
∫

d3k1d
3k3

(2π )3

δ
( ∑4

n=1 kn

)
∑4

n=1
�2k2

n

2mn

× [D(k2,k3) + D(k1,k4) − D(k1,k3)], (13)

where the first term is simply q13μ13

2π�2 D(k2,k4). Contrarily to
the 3 + 1 fermionic case [13,18], D is not subjected to any
condition of exchange symmetry.

III. TAKING ADVANTAGE OF SYMMETRIES

A. Overview

The unknown function D(k2,k4) in the integral equa-
tion (13) depends on six real variables. This is already a strong
reduction, as compared to the 12 real variables of the original
four-body wave function, but this still makes a numerical
solution challenging.

Fortunately, one can use rotational invariance as in
Sec. III B: the unknown function D can be considered, for
example, as being the mz = 0 component of a spinor of
angular momentum �. Then it is known how the various
2� + 1 components of the spinor transform under an arbitrary
common rotation of k2 and k4, in terms of rotation matrices
having spherical harmonics as matrix elements, so it suffices
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to know the value of the 2� + 1 component of the spinor in the
particular configuration where vector k2 points along the x axis
in the positive direction and k4 lies in the xy upper half-plane
y � 0, at an angle θ24 ∈ [0,π ] with respect to k2. As this
particular configuration is characterized by the cosine of the
angle θ24 and the two moduli k2 and k4, the unknown function
D(k2,k4) can be represented in terms of 2� + 1 unknown
functions f (�)

mz
of these three real variables [18]:

D(k2,k4) =
�∑

mz=−�

[
Y

mz

� (e2 · ez,e4⊥2 · ez,e24 · ez)
]∗

× f (�)
mz

(k2,k4,u24). (14)

In this expression we have introduced the unit vectors

e2 = k2

k2
, (15)

e4⊥2 = 1

v24

(
k4

k4
− u24e2

)
, (16)

e24 = k2 ∧ k4

|k2 ∧ k4| . (17)

Here θ24 ∈ [0,π ] is the angle between k2 and k4, and the
notations

u24 ≡ cos θ24 and v24 ≡ sin θ24 (18)

will be used throughout the paper. It is apparent that e4⊥2 is
obtained by projecting e4 = k4/k4 orthogonally to e2 and by
renormalizing the result to unity. Then (e2,e4⊥2,e24) forms a
direct orthonormal basis. In that basis, an arbitrary (unit) vector
n has uniquely defined spherical coordinates, that is, polar
angle θn ∈ [0,π ] with respect to the axis e24 and the azimuthal
angle φn ∈ [0,2π [ in the e2 − e4⊥2 plane with respect to axis
e2. Then

Y
mz

� (e2 · n,e4⊥2 · n,e24 · n) ≡ Y
mz

� (θn,φn), (19)

where the right-hand side is the standard notation for the
spherical harmonics [35]. Integral equations can then be
obtained for the f (�)

mz
, see Sec. III B.

For an infinite s-wave scattering length the Wigner-Bethe-
Peierls contact conditions (1) are scale invariant. As the
integral equation (13) was further specialized to the zero-
energy case, its solution can be taken as scale invariant, which
allows one to eliminate one more variable [13]:

f (�)
mz

(k2,k4,u24) = (
k2

2 + k2
4

)−(s+7/2)/2
(ch x)s+3/2

×eimzθ24/2
(�)
mz

(x,u24) (20)

with

x ≡ ln
k4

k2
. (21)

The first factor contains the scaling exponent of the solution,
which involves the unknown quantity s. By inserting the
ansatz (20) into the linear integral equations of Sec. III B, one
obtains linear integral equations for the unknown functions

(�)

mz
(x,u), represented by a matrix M (�)(s) that depends

parametrically on s, see Sec. III C; requiring that the functions

(�)

mz
(x,u) are not identically zero, one gets an implicit equation

for s, in the form [36]

det M (�)(s) = 0. (22)

The way the first factor in Eq. (20) is parametrized by the
quantity s ensures compatibility with the notation used by
Efimov for the three-body problem [3]. In the three-body
problem, the Efimov effect takes place if and only if one of
the scaling exponents s is purely imaginary, and the geometric
trimer energy spectrum has then a ratio exp(−2π/|s|). In the
four-body problem, with our definition of s, the four-body
Efimov effect occurs if and only if there is a purely imaginary
s solving Eq. (22), in which case there exists a geometric
sequence of tetramer eigenenergies with a ratio exp(−2π/|s|).
A justification is given in Ref. [13]. The second factor in
the ansatz (20) ensures that the matrix M(s) is Hermitian for
purely imaginary s, with bounded diagonal matrix elements,
which is both mathematically and numerically advantageous.
As compared to Ref. [13] it contains an additional term
s in the exponent that for purely imaginary s suppresses
phase oscillations in the matrix elements of M(s) at large
|x| [37]. The third factor in Eq. (20) is a phase factor taking
into account the fact that exchanging k2 and k4 in Eq. (14)
transforms the spherical harmonics Y

mz

� into (−1)�eimzθ24Y
−mz

�

with the same values of the variables [18]; it ensures that
the matrix M(s) transforms in the simplest way under the
exchange of m↑ and m↓, which must leave our 2 + 2 problem
invariant.

A last reduction of the problem can be obtained from
parity invariance. It turns out that, under the transformation
(k2,k4) → (−k2, − k4), the term of index mz in the sum (14)
acquires a factor (−1)mz [18]. This shows that the odd-parity
functions 
(�)

mz
(that is with mz odd) are decoupled from the

even-parity functions 
(�)
mz

(that is with mz even) in the integral
equations, and that M (�)(s) has zero matrix elements between
the odd and the even channels.

B. Rotational invariance

To obtain the integral equations for the unknown functions
f (�)

mz
in Eq. (14) we use a variational formulation: The integral

equation (13) is equivalent to

∂D∗(k2,k4)E[D,D∗] = 0, (23)

where D and its complex conjugate D∗ are taken as indepen-
dent variables, ∂D∗ is the functional derivative with respect to
D∗, and the functional E is given by

E = Ediag + E24,23 + E24,14 − E24,13 (24)

with the diagonal part

Ediag =
∫

d3k2d
3k4D

∗(k2,k4)D(k2,k4)

× μ
3/2
↑↓

2π�2

[
(k2 + k4)2

m↑ + m↓
+ k2

2

m↑
+ k2

4

m↓

]1/2

(25)
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and the generic off-diagonal part

E24,ij =
∫

d3k2d
3k4d

3k1d
3k3

(2π )3
D∗(k2,k4)D(ki ,kj )

× δ(k1 + k2 + k3 + k4)
�2

2m↑

(
k2

1 + k2
2

) + �2

2m↓

(
k2

3 + k2
4

) . (26)

Then one inserts the ansatz (14) into these functionals.
Assuming that one is able to integrate over all variables other
than k2,k4,θ24 and ki,kj ,θij , one obtains a functional of the
f (�)

mz
and f (�)∗

mz
, which it remains to differentiate with respect to

f (�)∗
mz

to obtain the integral equations for the f (�)
mz

.
Integration is simplified as follows: The final integral

equations and their solutions f (�)
mz

cannot depend on the specific
vector ez introduced in Eq. (14). One can then replace ez by an
arbitrary unit vector n in the ansatz (14), and one can average
the resulting functional E over n uniformly on the unit sphere
for fixed f (�)

mz
. The result of this average is particularly simple

when the orthonormal basis of Eqs. (15)–(17) reduces to the
usual Cartesian basis:

(e2,e4⊥2,e24) = (ex,ey,ez). (27)

Then [38]〈
Y

mz

� (e2 · n,e4⊥2 · n,e24 · n)
[
Y

m′
z

� (ei · n,ej⊥i · n,eij · n)
]∗〉

n

= 1

4π
(〈�,mz|R(ij )|�,m′

z〉)∗, (28)

where 〈. . .〉n indicates the average over the direction of n and
the quantum operator R(ij ) represents (in the usual spin-�
irreducible representation, with vectors |�,mz〉 of angular
momentum mz� along z) the unique real space rotation R(ij )

that maps the Cartesian basis onto the basis (ei ,ej⊥i ,eij ):

(ei ,ej⊥i ,eij ) = R(ij )(ex,ey,ez). (29)

After average over n, and integration over k1 and k3 in E24,ij , it
remains an integral over k2 and k4, with an integrand invariant
by common rotation of k2 and k4. To evaluate that integrand,
one can then indeed assume that k2 is along x (in the positive
direction) and that k4 lies in the plane xy in the upper half
y � 0:

k2 = k2ex, (30)

k4 = k4(cos θ24ex + sin θ24ey) with θ24 ∈ [0,π ], (31)

so

(e2,e4⊥2,e24) = (ex,ey,ez) (32)

and one can use Eqs. (28) and (29). Then one pulls out a
factor 4π (resulting from integration over the solid angle of
k2) compensated by the 4π denominator in Eq. (28), and an
uncompensated factor 2π (resulting from the integration over
the azimuthal angle of k4 for the spherical coordinates of polar
axis k2/k2 = ex for k4), and one is left with an integration over
the moduli k2 and k4 and over the angle θ24.

For the functional Ediag, this gives a simple result: Since
i = 2 and j = 4, the matrix R(ij ) is the identity matrix, R(ij )

reduces to the identity operator; also, there is no k1 or k3

integration. One obtains

Ediag =
�∑

mz=−�

2π

∫ ∞

0
dk2k

2
2dk4k

2
4

∫ 1

−1
du24|fmz

(k2,k4,u24)|2

× μ
3/2
↑↓

2π�2

(
k2

2 + k2
4 + 2k2k4u24

m↑ + m↓
+ k2

2

m↑
+ k2

4

m↓

)1/2

(33)

with the same notation as in Eq. (18). For the generic off-
diagonal part this leads to

E24,ij =
�∑

mz,m′
z=−�

2π

∫ ∞

0
dk2k

2
2dk4k

2
4

∫ 1

−1
du24

∫
d3k1d

3k3

(2π )3

× (〈�,mz|R(ij )|�,m′
z〉)∗f (�)∗

mz
(k2,k4,u24)f (�)

m′
z
(ki,kj ,uij )

× δ(k1 + k2 + k3 + k4)
�2(k2

1+k2
2 )

2m↑
+ �2(k2

3+k2
4 )

2m↓

. (34)

The way to proceed with the integration over the directions of
k1 and k3 depends on the indices i and j .

1. Case (i, j ) = (2,3)

For (i,j ) = (2,3), one trivially integrates over k1 using the
Dirac distribution that imposes k1 = −(k2 + k3 + k4), and
one integrates over k3 using spherical coordinates of polar
axis ex and of azimuthal axis ey ; the azimuthal angle is called
φ, and the polar angle is called θ23 since it is the angle between
k2 and k3 [see Fig. 1(a)]. Then R(ij ) in Eq. (29) is the rotation
of axis x and of angle φ:

R(23) = Rx(φ) and R(23) = e−iφLx/�, (35)

where Lx is the angular-momentum operator along x. Also

k2
1 = k2

2 + k2
3 + k2

4 + 2k2k3u23 + 2k2k4u24

+ 2k3k4(u23u24 + v23v24 cos φ) (36)

with u23 = cos θ23 and v23 = sin θ23 as in Eq. (18). This gives

E24,23 =
�∑

mz,m′
z=−�

2π

∫ ∞

0
dk2dk3dk4k

2
2k

2
3k

2
4

×
∫ 1

−1
du23du24

∫ 2π

0
dφ

×
〈�,mz|eiφLx/�|�,m′

z〉f (�)∗
mz

(k2,k4,u24)f (�)
m′

z
(k2,k3,u23)

(2π )3
[

�2(k2
1+k2

2 )
2m↑

+ �2(k2
3+k2

4 )
2m↓

] ,

(37)

where k1 is given by Eq. (36) and we used the fact that Lx has
real matrix elements in the standard |�,mz〉 basis.

2. Case (i, j ) = (1,4)

For (i,j ) = (1,4), one integrates over k3 using the Dirac
distribution that imposes k3 = −(k1 + k2 + k4) and one inte-
grates over k1 using spherical coordinates in a rotated basis

(eX,eY ,eZ) = (ez,e4 ∧ ez,e4) with e4 = k4

k4
. (38)
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x

y

z

k3k2

k4

e3⊥2

θ24 θ23

(a)

φ

x

y

z=X

k1k2
k4

θ24

(b)

Z

e1

Y

θ14

φ
e1

XY

x

y

z=Y

k1
fix

k2

k4

k2+k4

(c)

Z

k3
fix

k1
fix+k3

fix

X

τ13

β0

τ24

FIG. 1. (Color online) Positions and parametrizations of the
wave vectors appearing in the angular integration in the functionals
E24,ij . The vectors k2 and k4 are given by Eqs. (30) and (31). (a)
For (i,j ) = (2,3), k1 = −(k2 + k3 + k4) and one integrates over k3

using spherical coordinates of polar axis x and azimuthal axis y. (b)
For (i,j ) = (1,4), k3 = −(k1 + k2 + k4) and one integrates over k1

using the polar axis Z (direction of k4) and the azimuthal axis X

(direction of ez) as defined by Eq. (38), leading to the polar angle θ14

and the azimuthal angle φ (<0 in the figure). The dashed line gives
the direction of the component eXY

1 of e1 = k1/k1 in the XY plane. (c)
For (i,j ) = (1,3), one integrates over the rotation R, such that k1 and
k3 are given by the action of R on vectors kfix

1 and kfix
3 in the xy plane

as in Eqs. (43) and (44), using the parametrization in terms of Euler
angles associated to the convenient axes X, Y , and Z of Eq. (48).

The direction eZ of k4 is taken as the polar axis, so the
polar angle is θ14; eX is taken as the azimuthal axis, with
the azimuthal angle called φ, see Fig. 1(b). Then the real space
rotation R(ij ) in Eq. (29) is

R(14) = RZ

(
φ − π

2

)
Rz(θ24 − θ14)

= Rz(θ24)Rx

(
φ − π

2

)
Rz(−θ14) (39)

and the corresponding operator has matrix elements

〈�,mz|R(14)|�,m′
z〉 = e−imzθ24

× 〈�,mz|e−i(φ− π
2 )Lx/�|�,m′

z〉eim′
zθ14 .

(40)

Using ex = [R(14)]−1e1 = u24eZ + v24eY and e1 = u14eZ +
v14(cos φ eX + sin φ eY ) we get

k2
3 = k2

1 + k2
2 + k2

4 + 2k1k2[u14u24 + v14v24 cos(φ − π/2)]

+ 2k1k4u14 + 2k2k4u24. (41)

This gives:

E24,14 =
�∑

mz,m′
z=−�

2π

∫ ∞

0
dk1dk2dk4k

2
1k

2
2k

2
4

×
∫ 1

−1
du14du24

∫ 2π

0
dφ

×eimzθ24〈�,mz|ei(φ−π/2)Lx/�|�,m′
z〉e−im′

zθ14

(2π )3
[

�2(k2
1+k2

2 )
2m↑

+ �2(k2
3+k2

4 )
2m↓

]
×f (�)∗

mz
(k2,k4,u24)f (�)

m′
z
(k1,k4,u14), (42)

where k3 is given by Eq. (41).

3. Case (i, j ) = (1,3)

For (i,j ) = (1,3), we find it convenient to replace the
integration over k1 and k3 by an integration over the moduli k1

and k3, over the angle θ13 ∈ [0,π ] and over a rotation matrix
R uniformly distributed over the rotation group SO(3), the
vectors k1 and k3 being given by the action of R on vectors
fixed in the xy plane:

k1 = Rkfix
1 with kfix

1 = k1ex, (43)

k3 = Rkfix
3 with kfix

3 = k3(u13ex + v13ey). (44)

Then R is precisely the rotation matrix R(ij ) of Eq. (29) and

E24,13 =
�∑

mz,m′
z=−�

2
∫ ∞

0

(
4∏

n=1

dknk
2
n

) ∫ 1

−1
du13du24

∫
SO(3)

dR

× (〈�,mz|R|�,m′
z〉)∗f (�)∗

mz
(k2,k4,u24)f (�)

m′
z
(k1,k3,u13)

× δ
[
k2 + k4 + R

(
kfix

1 + kfix
3

)]
�2(k2

1+k2
2 )

2m↑
+ �2(k2

3+k2
4 )

2m↓

, (45)

where the factor 2 originates from (4π × 2π )2/[4π (2π )3],
R is the operator representing R, and dR is the invariant
measure over the group SO(3) normalized to unity (see Sec. 8.2
of Ref. [35]) [39]. To integrate over R, we use the Euler
parametrization as in Eq. (7.1-12) of Ref. [35]:

R = RZ(α)RY (β)RZ(γ ), (46)

where the Euler angles α and γ run over an interval of length
2π and the Euler angle β runs over [0,π ], so the invariant
measure is (see Sec. 8.2 of Ref. [35])

dR = dα sin βdβdγ

8π2
. (47)

Due to the occurrence of k2 + k4 in the argument of the Dirac
distribution in Eq. (45), the convenient direct orthonormal
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basis defining the rotation axes X, Y , and Z is now [see
Fig. 1(c)]

(eX,eY ,eZ) =
(

ez ∧ k2 + k4

|k2 + k4| ,ez,
k2 + k4

|k2 + k4|
)

. (48)

Then the Dirac distribution can be written as [40]

δ
[
k2 + k4 + R

(
kfix

1 + kfix
3

)]
= δ(sin γ )δ[sin(β0 − β cos γ )]

×δ
(|k2 + k4| cos(β0 − β cos γ ) + ∣∣kfix

1 + kfix
3

∣∣)
| sin β0|

∣∣kfix
1 + kfix

3

∣∣ |k2 + k4|
, (49)

where we have introduced the oriented angle β0 between kfix
1 +

kfix
3 and k2 + k4 such that [see Fig. 1(c)]

kfix
1 + kfix

3 = ∣∣kfix
1 + kfix

3

∣∣(− sin β0 eX + cos β0 eZ). (50)

There is no dependence on α in the right-hand side of Eq. (49):
In the argument of δ, one can write k2 + k4 as RZ(α)(k2 + k4)
and, due to the rotational invariance of the three-dimensional
Dirac distribution, one can factor out and remove the rotation
RZ(α). The integration over α in Eq. (45) then pulls out
in the matrix element of R the orthogonal projector on the
state of total angular momentum � and of vanishing angular
momentum along Z:

∫ 2π

0
dα e−iαLZ/� = 2π |�,mZ = 0〉〈�,mZ = 0|. (51)

In the integral over γ , for example, over the interval
[−π/2,3π/2], only the points γ = 0 and γ = π contribute.
The contribution of γ = π can be deduced from the one of
γ = 0 by changing β into −β, due to RZ(π )RY (β)RZ(π ) =
RY (−β) and to the invariance of kfix

1 + kfix
3 and |mZ = 0〉 by

rotation of axis Z. In the integral over β ∈ [0,π ], the γ = π

contribution can then be taken into account by extending the
integration of the γ = 0 contribution to β ∈ [−π,0]: One can
take γ = 0 in Eq. (49) and one faces∫ π

−π

dβ| sin β|eiβm′
z δ[sin(β0 − β)]δ

(|k2 + k4| cos(β0 − β)

+ ∣∣kfix
1 + kfix

3

∣∣) = δ
(|k2 + k4| − ∣∣kfix

1 + kfix
3

∣∣)
×

∫ π

−π

dβ| sin β|eiβm′
z

∑
n∈Z

δ(β − β0 − π − 2πn)

= δ
(|k2 + k4| − ∣∣kfix

1 + kfix
3

∣∣)| sin β0|(−1)m
′
z eiβ0m

′
z . (52)

Due to the 2π periodicity of the integrand we have shifted
the domain of integration to only keep, for example, the term
n = 0 of the Dirac comb. Finally, using β0 = τ24 − τ13, where
τ24 is the angle ∈ [0,π ] between k2 and k2 + k4 and τ13 is the
angle ∈ [0,π ] between kfix

1 and kfix
1 + kfix

3 so (up to a phase
factor)

|�,mZ = 0〉 = e−iτ24Lz/�|�,mx = 0〉, (53)

and using the property that [41]

〈�,mx = 0|�,m′
z〉 = 0 if � + m′

z is odd, (54)

allowing one to replace (−1)m
′
z with (−1)�, we obtain

E24,13 =
�∑

mz,m′
z=−�

(−1)�

2π

∫ ∞

0

(
4∏

n=1

dknk
2
n

)∫ 1

−1
du13du24

×eimzτ24〈�,mz|�,mx = 0〉〈�,mx = 0|�,m′
z〉e−im′

zτ13

|k2 + k4|
[

�2(k2
1+k2

2 )
2m↑

+ �2(k2
3+k2

4 )
2m↓

]∣∣kfix
1 + kfix

3

∣∣
×δ

(|k2 + k4| − ∣∣kfix
1 + kfix

3

∣∣)f (�)∗
mz

(k2,k4,u24)

× f
(�)
m′

z
(k1,k3,u13), (55)

knowing that |�,mx = 0〉 has real components in the basis
|�,mz〉 up to a global phase and that k2 and k4 are given by
Eqs. (30) and (31) and kfix

1 and kfix
3 by Eqs. (43) and (44).

C. Scale invariance

To take advantage of the scale invariance of the zero-energy
solution, one uses the ansatz (20) with s ∈ iR, as physically
explained in Sec. III A, and one inserts it in the various
terms (33), (37), (42), and (55) of the functional (24). In
Eq. (33) one performs in the integral over k4 the change of
variable k4 = exk2, where x ranges from −∞ to +∞, and
one sets u24 = u for conciseness, also introducing the mass
ratio

α ≡ m↑
m↓

. (56)

One pulls out a constant factor F , which will be given and
discussed later, to obtain

Ediag = F
�∑

mz=−�

∫
R

dx

∫ 1

−1
du

[
α

(1 + α)2

(
1 + u

ch x

)

+ e−x + αex

2(α + 1) ch x

]1/2∣∣
(�)
mz

(x,u)
∣∣2

. (57)

In Eq. (37) one performs the change of variable k4 = exk2

and k3 = ex ′
k2 in the integrals over k4 and k3, also setting

θ24 = θ , u24 = u, v24 = v and θ23 = θ ′, u23 = u′, v23 = v′ for
concision. One then pulls out the same factor F to obtain

E24,23 = F
�∑

mz,m′
z=−�

∫
R

dxdx ′
∫ 1

−1
dudu′

(
ex ch x ′

ex ′ ch x

)s/2

×
(

ex+x ′

4 ch x ch x ′

)1/4


(�)∗
mz

(x,u)
(�)
m′

z
(x ′,u′)

×
∫ 2π

0

dφ

(2π )2

e−imzθ/2〈l,mz|eiφLx/�|l,m′
z〉eim′

zθ
′/2

D24,23(φ; x,u; x ′,u′; α)
.

(58)

In the denominator, we have introduced the notation

D24,23 =
�

2
(
k2

1+k2
2

)
2m↑

+ �
2
(
k2

3+k2
4

)
2m↓

�2k3k4
μ↑↓

, (59)
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where k1 is given by Eq. (36) so

D24,23(φ; x,u; x ′,u′; α)

= ch(x − x ′) + 1

1 + α
(e−x−x ′ + e−x ′

u + e−xu′ + uu′

+ vv′ cos φ). (60)

In Eq. (42) one performs the change of variables k4 = exk2

and k1 = ex−x ′
k2 (so k4/k1 = ex ′

) in the integrals over k4 and
k1, and the change of variable φ = π

2 + φ′ in the integral over
φ [42], also setting θ24 = θ , u24 = u, v24 = v and θ14 = θ ′,
u14 = u′, v14 = v′. Again pulling out the factor F one gets

E24,14 = F
�∑

mz,m′
z=−�

∫
R

dxdx ′
∫ 1

−1
dudu′

(
e−x ch x ′

e−x ′ ch x

)s/2

×
(

e−(x+x ′)

4 ch x ch x ′

)1/4


(�)∗
mz

(x,u)
(�)
m′

z
(x ′,u′)

×
∫ 2π

0

dφ′

(2π )2

eimzθ/2〈l,mz|eiφ′Lx/�|l,m′
z〉e−im′

zθ
′/2

D24,14(φ′; x,u; x ′,u′; α)
.

(61)

In the denominator we have introduced the notation

D24,14 =
�

2
(
k2

1+k2
2

)
2m↑

+ �
2
(
k2

3+k2
4

)
2m↓

�2k1k2
μ↑↓

(62)

with k3 given by Eq. (41) so

D24,14(φ′; x,u; x ′,u′; α)

= ch(x − x ′) + α

1 + α
(ex+x ′ + ex ′

u + exu′ + uu′

+ vv′ cos φ′). (63)

Finally, in Eq. (55), one performs the change of variables k4 =
exk2 and k3 = ex ′

k1 in the integrals over k4 and k3, also setting
θ24 = θ , u24 = u, τ24 = τ and θ13 = θ ′, u13 = u′, τ13 = τ ′.
The integration over k1 is straightforward due to the occurrence
of a Dirac distribution in Eq. (55). Due to the phase factor in the
ansatz (20), there naturally appear the angles γ ≡ τ − θ/2 and
γ ′ = τ ′ − θ ′/2. Since τ is the angle between k2 and k2 + k4

[see Fig. 1(c)], one has according to Eqs. (30) and (31) and
using the usual representation of vectors in the xy plane by
complex numbers:

eiγ = 1 + exeiθ

|1 + exeiθ |e
−iθ/2 = e(x+iθ)/2 + e−(x+iθ)/2

|e(x+iθ)/2 + e−(x+iθ)/2| . (64)

As θ ∈ [0,π ], the real part cos γ of this expression is non-
negative so one can choose γ ∈ [−π

2 , π
2 ]. Then forming the

ratio of the imaginary part to the real part of the same
expression gives the value of tan γ and

γ = atan

[
th

(x

2

)
tan

(
θ

2

)]
with tan

(
θ

2

)
=

(
1 − u

1 + u

)1/2

.

(65)

One has the same expressions for γ ′, replacing the variables
x, θ , and u with x ′, θ ′, and u′. This leads to

E24,13 = F
�∑

mz,m′
z=−�

∫
R
dxdx ′

∫ 1

−1
dudu′

[
(u′+ ch x ′) ch x ′

(u+ ch x) ch x

]s/2

×
(−1)�
(�)∗

mz
(x,u)
(�)

m′
z
(x ′,u′)

4π [(u + ch x)(u′ + ch x ′) ch x ch x ′]1/4

×eimzγ 〈�,mz|�,mx = 0〉〈�,mx = 0|�,m′
z〉e−im′

zγ
′(

e−x′ +αex′

1+α

)
(u + ch x) + (

e−x+αex

1+α

)
(u′ + ch x ′)

.

(66)

In all the results (57), (58), (61), and (66) there appears a
factor

F = μ↑↓
8�2

∫ +∞

0

dk2

k2
. (67)

This factor contains a diverging integral, making these last
calculations not entirely rigorous. We have checked, however,
that always the same diverging integral is pulled out, even if
one singles out a wave number other than k2 [performing, for
example, the change of variables k2 = e−xk4 and k1 = e−x ′

k4

in the integrals over k2 and k1 in Eq. (42)]. This is certainly
due to the scale invariance of dk2/k2 = d(ln k2). Alternatively,
one can write the integral equation for the f (�)

mz
deduced from

the functional derivatives of Eqs. (33), (37), (42), and (55) of
the functional Eq. (24) with respect to f (�)∗

mz
; at this stage, one

has only used rotational invariance. Then one inserts the scale
invariant ansatz (20), and one obtains exactly the same integral
equations for the 
(�)

mz
as those derived from the functional

derivatives of Eqs. (57), (58), (61), and (66) with respect to

(�)∗

mz
.

D. Parity invariance

The term of index mz in the ansatz (14) is simply multi-
plied by (−1)mz under the action of parity (k2,k4) → (−k2,

−k4) [18]. This means that the odd-mz components of 
(�)
mz

are decoupled from the even-mz components of 
(�)
mz

in the
integral equation. This property can also be obtained by an
explicit calculation: first, for mz and m′

z of different parities,
the coupling amplitude between |�,mz〉 and |�,m′

z〉 must vanish
in Eq. (55); this can be seen from Eq. (54). Second, it also
vanishes in Eqs. (58) and (61) after integration over φ or φ′:
Lx obeys the selection rule �mz = ±1, and, in an expansion of
eiφLx in powers of φ, only even powers of φ and Lx survive due
to the parity of the denominator D. In what follows, at a given
angular momentum �, we shall distinguish the manifold of
parity (−1)�+1, where E24,13 and the contribution of D(k1,k3)
in Eq. (13) are zero, and the manifold of parity (−1)� where
they are a priori nonzero. Note that, in the particular case
� = 0, there exists only the manifold of parity (−1)�.

IV. FINAL FORM AND ASYMPTOTIC ANALYSIS

A. Explicit form of the integral equation

By taking the functional derivative of E of Eq. (24) with
respect to 
(�)

mz
, using the forms (57), (58), (61), and (66) of

the various terms and not forgetting the minus sign in front

053624-8



ABSENCE OF A FOUR-BODY EFIMOV EFFECT IN THE . . . PHYSICAL REVIEW A 92, 053624 (2015)

of the last contribution in Eq. (24), we obtain the form of the integral equation (13) maximally reduced by use of the rotational
symmetry and of the scale invariance:

0 =
[

α

(1 + α)2

(
1 + u

ch x

)
+ e−x + αex

2(α + 1) ch x

]1/2


(�)
mz

(x,u) +
∫
R

dx ′
∫ 1

−1
du′

�∑
m′

z=−�

K
(�)
mz,m′

z
(x,u; x ′,u′; α)
(�)

m′
z
(x ′,u′),

(68)

with the following expression for the matrix kernel K (�):

K
(�)
mz,m′

z
(x,u; x ′,u′; α)

=
(

ex ch x ′

ex ′ ch x

)s/2
(

ex+x ′

4 ch x ch x ′

)1/4 ∫ 2π

0

dφ

(2π )2

e−imzθ/2〈�,mz|eiφLx/�|�,m′
z〉eim′

zθ
′/2

ch(x − x ′) + 1
1+α

[(u + e−x)(u′ + e−x ′ ) + vv′ cos φ]

+
(

e−x ch x ′

e−x ′ ch x

)s/2
(

e−x−x ′

4 ch x ch x ′

)1/4 ∫ 2π

0

dφ

(2π )2

eimzθ/2〈�,mz|eiφLx/�|�,m′
z〉e−im′

zθ
′/2

ch(x − x ′) + α
1+α

[(u + ex)(u′ + ex ′ ) + vv′ cos φ]

− (−1)�

4π [(u + ch x)(u′ + ch x ′) ch x ch x ′]1/4

[
(u′ + ch x ′) ch x ′

(u + ch x) ch x

]s/2 eimzγ 〈�,mz|�,mx = 0〉〈�,mx = 0|�,m′
z〉e−im′

zγ
′(

e−x′+αex′

1+α

)
(u + ch x) + (

e−x+αex

1+α

)
(u′ + ch x ′)

. (69)

Here the scaling exponent s is purely imaginary, so a four-body
Efimov takes place in our 2 + 2 fermionic problem if Eq. (68)
has a nonidentically zero solution 
(�) for some nonzero s. We
recall that the angle θ ∈ [0,π ] is such that u = cos θ and v =
(1 − u2)1/2 = sin θ , and that the angle γ is given by Eq. (65);
the same relations hold among the primed variables.

The first, second, and third contributions in Eq. (69)
originate, respectively, from the terms D(k2,k3), D(k1,k4),
and D(k1,k3) in the unreduced integral equation (13); the
diagonal term in Eq. (68) emanates from the diagonal term
of that equation. The integrals over φ can be evaluated after
insertion of a closure relation in the eigenbasis of Lx [43].
Importantly, the third contribution in Eq. (69) vanishes when
� + mz or � + m′

z are odd, i.e., in the parity channel (−1)�+1,
as shown by the property (54) and as already pointed out in
Sec. III D.

It is interesting to note the decoupled form of the
prefactors in each contribution of Eq. (69) of the form
[f (x,u)]s/2+1/4[f (x ′,u′)]−s/2+1/4 with a function f given
by ex/(2 ch x), e−x/(2 ch x), and 1/[(u + ch x) ch x], respec-
tively. The fact that this function f (x,u) is not common to all
contributions prevents one from suppressing the s dependence
of the matrix kernel K (�) by a simple gauge transform on

(�): As expected, the s dependence of the problem (68) is
nontrivial.

Our results (68) and (69) must obey the symmetry of the
2 + 2 problem under the exchange of ↑ and ↓. First, this
exchange has the effect of changing the mass ratio α into its
inverse 1/α, see Eq. (56). Second, the momenta k2 and k4 in
D(k2,k4) are exchanged, so x of Eq. (21) is changed into its
opposite; this also reverts the direction of the quantization axis
k2 ∧ k4 along which the angular momentum mz is measured in
Eq. (14): It changes mz into −mz according to the identity [18]

e−iπLx/�|�,mz〉 = (−1)�|�, − mz〉; (70)

on the contrary, the nonoriented angle θ24 ∈ [0,π ] between k2

and k4 is unchanged, so the variable u is unaffected. Hence,

one must have

K
(�)
mz,m′

z
(x,u; x ′,u′; α) = K

(�)
−mz,−m′

z
(−x,u; −x ′,u′; α−1) (71)

for all values of the argument and of the indices of the
kernel. It is clear that Eq. (69) indeed obeys the symmetry
requirement (71): The first and second contributions are
interchanged, whereas the third one is invariant since γ is
changed into −γ , see Eq. (65). Note that our results also
respect the parity invariance, see Sec. III D, and that the matrix
kernel is Hermitian as our variational derivation guarantees:

K
(�)
mz,m′

z
(x,u; x ′,u′; α) = [

K
(�)
m′

z,mz
(x ′,u′; x,u; α)

]∗
. (72)

B. Recovering the three-body problem from
four-body asymptotics

The right-hand side of the integral equation (68) defines an
operator M (�)(s) acting on the spinor functions 
(�)

mz
(x,u).

The spectrum of this operator is physically relevant, since
a four-body Efimov effect takes place with an Efimov scaling
exponent s ∈ iR if and only if one of the eigenvalue � of
M (�)(s) is zero. As M (�)(s) is a Hermitian operator, since s

is here purely imaginary, its spectrum is real and in general
includes a discrete part and a continuous part. The discrete
spectrum corresponds to localized, square integrable eigen-
functions; we are able to determine it only numerically. The
expected contribution to the continuous spectrum corresponds
to extended functions that explore arbitrarily large values of
|x|; as we now explain, it can be determined analytically from
the asymptotic analysis of the kernel (69) when x and x ′ tend
to ±∞ by a generalization of the discussion of reference [13].
There is also an unexpected contribution to the continuous
spectrum, whose analysis is deferred to Sec. IV C.

1. Sector x → +∞,x′ → +∞
Clearly, the diagonal part of M (�)(s) in Eq. (68) tends

exponentially rapidly to a finite and nonzero value, and the
second and third contributions to the kernel in Eq. (69)
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tend exponentially fast to zero. In the first contribution in
Eq. (69), the prefactor tends exponentially to unity since
ex/(2 ch x) → 1, and in the denominator of the integrand, all
the x- or x ′-dependent terms are exponentially suppressed,
except the first one, ch(x − x ′), since no hypothesis must
be made on the magnitude of the difference x − x ′. The
eigenvalue problem then asymptotically reduces to

�→(�)
̃(�)
mz

(x,u)

=
[
α(2 + α)

(1 + α)2

]1/2


̃(�)
mz

(x,u) +
∫
R

dx ′
�∑

m′
z=−�

∫ 1

−1
du′

×
∫ 2π

0

dφ′

(2π )2

〈�,mz|eiφ′Lx/�|�,m′
z〉

ch(x − x ′) + uu′+vv′ cos φ′
1+α


̃
(�)
m′

z
(x ′,u′), (73)

where the arrow in the exponent of � indicates that x and
x ′ tend to positive infinity and the phase factors e−imzθ/2 and
eim′

zθ
′/2 have been eliminated by a gauge transform on the

spinor, 
(�)
mz

(x,u) = e−imzθ/2
̃(�)
mz

(x,u). Then one performs a
spin rotation by moving to the internal basis of the eigenstates
|�,mx〉 of Lx , in which eiφLx/� is diagonal: The components

̃(�)

mx
(x,u) are all decoupled. For a given mx , with |mx | � �, the

trick is to extend 
̃(�)
mx

(x,u) into a function of the real variable
x and of the vector n on the two-dimensional unit sphere:

F (�)
mx

(x,n) ≡ 
̃(�)
mx

(x, cos θ )eimxφ, (74)

where θ ∈ [0,π ] and φ ∈ [0,2π ] are the polar and azimuthal
angles of n in spherical coordinates, e.g., with respect to x

and y axes, n = (cos θ, sin θ cos φ, sin θ sin φ). In the phase
factor eimxφ

′
in the numerator and in cos φ′ in the denominator,

one can then replace φ′ by φ′ − φ: The integrand is a periodic
function of φ′ of period 2π and its integral has the same value
whatever the interval of length 2π over which φ′ runs. Then one
recognizes the scalar product n · n′ = uu′ + vv′ cos(φ − φ′),
where n′ = (cos θ ′, sin θ ′ cos φ′, sin θ ′ sin φ′). The eigenvalue
problem is now

�→(�)
mx

F (�)
mx

(x,n) = [α(2 + α)]1/2

1 + α
F (�)

mx
(x,n)

+
∫
R

dx ′
∫

|n|=1

d2n

(2π )2

F (�)
mx

(x ′,n′)

ch(x − x ′) + n·n′
1+α

.

(75)

The corresponding operator is invariant by translation along
x and by rotation of n over the unit sphere. Its eigenfunctions
F (�)

mx
(x,n) can therefore be taken as plane waves of the variable

x and spherical harmonics of the variables (θ,φ), with the
same quantum number mx [this is imposed by the form (74)]
but with any integer quantum number L � |mx | for the total
angular momentum:

F (�)
mx

(x,n) = eikxY
mx

L (θ,φ). (76)

As usual for a rotationally invariant operator, the eigenvalue
does not depend on mx . It only depends on L, so it suffices
to specialize to mx = 0, where Y 0

L(θ,φ) ∝ PL(cos θ ), where
PL(X) is the Legendre polynomial of degree L. Then one gets
the continuous spectrum “to the right” (x,x ′ → +∞):

�→(�)
mx

(α) ∈ {�L(ik,α−1),∀k ∈ R,∀L � |mx |}. (77)

The function �L of s ∈ iR and of the mass ratio was intro-
duced and analytically calculated in Refs. [44,45], generalizing
previous results [46,47]:

�L(s,β) ≡ (1 + 2β)1/2

1 + β
+

∫ 1

−1
du

∫
R

dx

2π

e−sxPL(u)

ch x + β

1+β
u

= cos ν(β) + 1

sin ν(β)

∫ π
2 +ν(β)

π
2 −ν(β)

dθ

× PL

[
cos θ

sin ν(β)

]
sin(sθ )

sin(sπ )
, (78)

where, in the second expression obtained after integration over
x [45],

ν(β) = asin
β

1 + β
(79)

is a mass angle. For all β > 0, it is found numerically for even
L that the maximal value of �L(s,β) over s ∈ iR+ is reached at
s = 0, and the minimal value is reached for |s| → +∞ [where
�L(s,β) tends to cos ν(β)] . For odd L, the situation is found
to be reversed: �L(s,β) is minimal at s = 0 and maximal at
infinity. To summarize, we expect that

cos ν(β) � �L(s,β) � �L(0,β) ∀s ∈ iR,L even,

�L(0,β) � �L(s,β) � cos ν(β) ∀s ∈ iR,L odd. (80)

This allows to determine the borders of the continuous
component of quantum number L in Eq. (77), see Fig. 2.
A physical explanation for the emergence of the function �L

is postponed to the end of the section.

2. Sector x → −∞,x′ → −∞
The calculation closely resembles the previous one, except

that it is now the second contribution in the right-hand side of
Eq. (69) that survives. This was expected from the symmetry
relation (71). We arrive at the continuous spectrum “to the left”
(x,x ′ → −∞):

�←(�)
mx

(α) ∈ {�L(ik,α),∀k ∈ R,∀L � |mx |} (81)

that differs from (77) by the occurrence of α (rather than 1/α)
in the argument of the �L function [48]. The borders of the L

components of that continuum are plotted in Fig. 2 for the first
few values of L, using the numerically checked property (80).

3. Parity considerations

At fixed �, the results (77) and (81) are expressed in terms
of the quantum number mx , whereas the original problem
only distinguishes between an even-parity manifold (mz is
even) and an odd-parity manifold (mz is odd). In practice, due
to the property (54), the continua (77) and (81) with L = 0
can be realized only in the manifold of parity (−1)� at any
considered total angular momentum � (obviously one must
then take mx = 0). The other continua (with L � 1) can all
be realized, in both odd and even manifolds, for all values of
� � 0 [49].

4. Physical discussion

The function �L(s,β) appears in the unitary three-body
problem of two fermionic particles interacting with a single
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FIG. 2. (Color online) Analytically obtained borders of the con-
tinuous spectrum of M(s) (s ∈ iR+) corresponding to the limits
x → ±∞. It is a collection of components characterized by an
angular-momentum quantum number L of a three-body asymptotic
problem (not to be confused with the total angular momentum �

of the four-body states), leading to a continuous set of eigenvalues
ranging from �L(0,α) to cos[ν(α)] for x → −∞ and ranging from
�L(0,1/α) to cos[ν(1/α)] for x → +∞, where α is the mass ratio
given by Eq. (56), the �L function is given by Eq. (78), and the mass
angle ν is given by Eq. (79). We plot cos[ν(α)] (black solid line) and
�L(0,α) (colored dashed lines, with L = 0,2,4 from top to bottom
above the solid line and L = 1,3 from bottom to top below the solid
line) as functions of α ∈ [0,αc(2; 1)], where αc(2; 1) is the critical
mass ratio (83) for the Efimov effect in the ↑↑↓ three-body problem.
Due to the α ↔ 1/α symmetry of the 2 + 2 fermionic problem, one
can restrict to α � 1 (that is, to the right of the vertical dotted line);
the borders of the x → −∞ continuum can then be directly read on
the figure, and the ones of the x → +∞ continuum can be obtained
by mentally folding back the α � 1 part of the figure into the α � 1
part.

distinguishable particle, β being the mass ratio of the majority-
to-minority species. For s ∈ iR this function is given by the
first form in Eq. (78); it can be analytically extended to real
values of s using, e.g., the second form in Eq. (78) [45].
The zero-energy solutions of this three-body problem have
an Efimov scaling exponent s: The three-body wave function
scales as Rs−2, with R being the three-particle hyperradius,
and the allowed values of s at total angular momentum L must
solve

�L(s,β) = 0. (82)

This three-body system exhibits an Efimov effect if and only
if this equation has a purely imaginary solution s ∈ iR∗. This
occurs only at odd L, starting from a mass ratio [14]

β > αc(2; 1) = 13.60696 . . . (83)

for L = 1 and at increasingly larger critical mass ratios for
L = 3,5, . . . [45,50].

It is thus apparent that the asymptotic analysis of the 2 + 2
fermionic problem brings up the three-body problem. This
is intuitive in position space: Imagine that at fixed position
r4 �= 0 of the fourth particle (of spin ↓), the positions (ri)1�i�3

of the other particles (of spin ↑↑↓) simultaneously tend to

zero; then the four-body wave function ψ(r1,r2,r3,r4) must
reproduce the behavior of the zero-energy scattering state
of two ↑ particles and one ↓ particle, characterized by a
mass ratio β = m↑/m↓ = α; in particular, it must exhibit
the same scaling exponents s as the 2 + 1 problem (see
Sec. 5.3.6 in Ref. [34]). As these scaling exponents solve
Eq. (82) with β = α, this explains the occurrence of �L(s,α)
in the spectrum (81) [51]. Even if � = 0 for the four-body
system, L can take any value, as the angular momentum can
be distributed among particle 4 and the first three particles.
The equivalent in momentum space of the considered limit is
to have divergent (ki)1�i�3 at fixed k4, which, due to scale
invariance, is equivalent to having k4 → 0 at fixed (ki)1�i�3,
that is, x → −∞ according to Eq. (21). This is why β = α

corresponds to the spectrum (81). A similar reasoning with
r2 fixed with (ri)i �=2 tending to zero leads to β = 1/α and
x → +∞, as for the spectrum (77).

C. A third, unexpected continuum

The first two contributions in Eq. (69) are innocuous: The
denominator in their integrands cannot vanish, see Eqs. (59)
and (60) and Eqs. (62) and (63), and, as we have seen, they
have a short range in the (x,x ′) space. On the contrary, the third
contribution in Eq. (69), which is nonzero only in the (−1)�

parity sector, diverges when (x,u) → (0, − 1) or (x ′,u′) →
(0, − 1). This creates doubt about the bounded nature of the
eigenvalues of M(s), s ∈ iR, for that parity. We investigate
this problem mathematically in Appendix A and we conclude
that M(s) is bounded.

Physically, this divergence of the kernel leads to a quite
interesting effect: the emergence of a third component of the
continuous spectrum of M(s), differing from the previously
discussed x → ±∞ continua. The intuitive idea is that one
can turn the eigenvalue problem �
 = M(s)
 into an integral
equation with a bounded kernel through an appropriate change
of variables, with the consequence that one of the new
variables, which we shall call t , can tend to −∞, in which
case the eigenvector 
 takes a plane wave structure ∝ exp(ikt),
k ∈ R, with a spectrum:

��(�) ∈
{

1√
2

[
1 − (−1)�

ch(kπ/2)

]
,∀k ∈ R

}
[parity(−1)�].

(84)
This is an unexpected feature of the 2 + 2 fermionic problem,
absent in the 3 + 1 fermionic case [13].

To obtain this result, we construct a local approximation
to the integral equation in the vicinity of (x,u) = (0, −
1),(x ′,u′) = (0, − 1), keeping only the leading diverging
contributions. We use

y ≡ π − θ (85)

rather than u = cos θ as integration variable, so y,y ′ → 0
when u,u′ → −1. This pulls out a Jacobian sin y ′ that we ab-
sorb (in a way preserving the Hermiticity of the problem) with
a change of function. We also take into account the fact that the
third, diverging contribution in Eq. (69) involves a projector
onto the |�,mx = 0〉 state and that the phase factors eimzγ and
e−im′

zγ
′
, [(u + ch x) ch x]−s/2 and [(u′ + ch x ′) ch x ′]s/2, can be
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eliminated by a change of gauge. Hence the ansatz


(�)
mz

(x,u) = (x2 + y2)−s/2

y1/2
eimzγ 〈�,mz|�,mx = 0〉
(x,y),

(86)
where sin y was linearized and u + ch x was quadratized. The
resulting local eigenvalue problem is(

� − 1√
2

)

(x,y) = − (−1)�

21/2π

∫
D

dx ′dy ′(yy ′)1/2

[(x2+y2)(x ′2+y ′2)]1/4

× 
(x ′,y ′)
x2 + y2 + x ′2 + y ′2 , (87)

where we have conveniently restricted the integration to the
upper half (y > 0) of the disk D of radius ρ0 � 1 centered in
(0,0). In polar coordinates

(x,y) = (ρ cos ψ,ρ sin ψ) (88)

only (yy ′)1/2 depends on ψ in the kernel. It depends on ψ in a
factorized way so 
 is also factorized:


(x,y) = ρ−1/2
(ρ)(sin ψ)1/2 (89)

and, since
∫ π

0 dψ ′ sin ψ ′ = 2,(
� − 1√

2

)

(ρ) = − (−1)�21/2

π

∫ ρ0

0
dρ ′ (ρρ ′)1/2

ρ2 + ρ ′2 
(ρ ′).

(90)
The scale invariance of this kernel motivates the logarithmic
change of variable

t = ln
ρ

ρ0
and φ(t) =

(
ρ

ρ0

)1/2


(ρ). (91)

The resulting eigenvalue problem

�φ(t) = 1

21/2
φ(t) − (−1)�

21/2π

∫ 0

−∞

dt ′φ(t ′)
ch(t − t ′)

(92)

admits Eq. (84) as a continuous spectrum with eigenfunctions
φ(t) that are for t → −∞ linear superpositions of eikt and
e−ikt , since

∫
R dteikt / ch t = π/ ch(kπ/2); we have checked

numerically that it has no discrete eigenvalue [52].

1. Physical interpretation

We collect Eqs. (86), (89), and (91), taking as a particular
solution of Eq. (92) at t large and negative the function φ(t) =
1, which corresponds to an asymptotic plane wave in t space
with a vanishing wave vector, that is, to k = 0 in Eq. (84) [53].
Restricting for simplicity to a zero total angular momentum
� = 0 [54], we then find that



(0)
0 (x,u) ∝

(x,u)→(0,−1)

1

ρs+3/2
. (93)

A more inspiring writing is obtained in terms of the center-
of-mass and relative wave vectors K24 = k2 + k4 and k24 =
(k2 − αk4)/(1 + α) of particles 2 and 4:


(0)(x,u) ∝
K24/k24→0

(
k24

K24

)s+3/2

. (94)

One has indeed ρ2 � 2(u + ch x) and K2
24 = 2k2

2e
x(u + ch x),

so K24 and ρ vanish in the same way when (x,u) → (0, − 1);

also the ratio K24/k24 tends to zero if and only if u + ch x →
0 [55]. Restricting to a small neighborhood of the singularity,
K24 < εk24, where ε � 1, we can in the ansatz (20) approx-
imate the factor (ch x)s+3/2 by one and, in the denominator,
approximate k2

2 + k2
4 = 2k2

24 + 2α−1
α+1 k24 · K24 + 1+α2

(1+α)2 K
2
24 by

its leading-order approximation 2k2
24 to isolate the singular

behavior of D(k2,k4):

Dsing(k2,k4) ∝ 1

k
s+7/2
24

(
k24

K24

)s+3/2

. (95)

The key idea is then to see how this translates into a
singularity of the regular part A13 of the four-body wave
function that appears in the Wigner-Bethe-Peierls contact
condition (1). As we have seen below Eq. (5), A13 = A is
related to D(k2,k4) by a Fourier transform; using (k24,K24)
rather than (k2,k4) as integration variables, and the fact that
k2 · r2 + k4 · r4 = k24 · r24 + K24 · R24, where r24 = r2 − r4

and R24 = (m2r2 + m4r4)/(m2 + m4) are the relative and
center-of-mass coordinates of the particles 2 and 4, we obtain
for the contribution to A of the singularity of D:

Asing(r2 − R13,r4 − R13)

∝
∫

K24<εk24

d3k24d
3K24e

iK24·(R24−R13) e
ik24·r24

k
s+7/2
24

(
k24

K24

)s+3/2

.

(96)

Integrating over the solid angles for k24 and K24, performing
the change of variable K24 = qk24r24/|R24 − R13| at fixed k24,
changing the order of integration over k24 and q, and, finally,
integrating over k24 [56] we obtain

Asing(r2 − R13,r4 − R13) ∝ |R24 − R13|s−3/2

r24

×
∫ ε|R24−R13|/r24

0

dq

qs+1/2
[|q − 1|s−1/2 − (q + 1)s−1/2].

(97)

It then becomes obvious that the singularity in D(k2,k4) at
k2 + k4 = 0 is linked to a 1/r24 divergence of the regular
part A13 of the four-body wave function at r24 = 0 [57,58].
This was physically expected: A13(r2 − R13,r4 − R13) is
essentially the wave function of particles 2 and 4 knowing
that particles 1 and 3 have converged to the same location
in the s wave; since 2 and 4 are in different spin states,
they interact in the s wave and must be sensitive to the
2-4 Wigner-Bethe-Peierls contact conditions, which implies
a 1/r24 divergence when r24 → 0. Such a divergence of A13

was already pointed out in the scattering problem of two ↑↓
dimers in Ref. [59] and in the general N↑ + N↓ fermionic
problem when N↑ � 2 and N↓ � 2 in Ref. [60] (see footnote
20 of that reference) [61].

This interpretation of the matrix kernel singularity at
(x,u) = (0, − 1) has a simple, though illuminating, implica-
tion: The 1/r24 divergence in A13 can take place only when the
particles 2 and 4 converge to the same location in the relative
partial wave of zero angular momentum, since ↑ and ↓ particles
resonantly interact only in the s wave. In such a configuration
the angular momentum � of the function A13 (that is of the
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whole system) is carried out by the center-of-mass motion of
particles 2 and 4 with respect to R13; in this case there is a
univocal link between the angular momentum � and the parity,
as for single particle systems, and the parity of A13 must be
(−1)�. This explains why the singularity at (x,u) = (0, − 1),
and, ultimately, the third continuum (84), can appear only in
that parity channel [62].

V. SEARCH FOR THE FOUR-BODY EFIMOV EFFECT

In the 3 + 1 fermionic problem, the signature of a four-
body Efimov effect was that an eigenvalue of the corre-
sponding M(s = 0) operator crosses zero for some value of
α below αc(2; 1) � 13.6069, specifically for α = αc(3; 1) �
13.384 [13]. The question here is to know whether such a
crossing can occur for the 2 + 2 fermionic problem, that is,
for M(s = 0) corresponding to Eqs. (68) and (69). We answer
this question by a numerical calculation of the eigenvalues of
M(s = 0).

A. Numerical implementation

In the (−1)�+1 parity sector, we truncate the x variable
in a symmetric way, that is, to [xmin = −xmax,xmax], and we
discretize it with a uniform step dx according to the usual
midpoint integration method. We use θ rather than u = cos θ

as integration variable, so we use 
̌(x,θ ) = (sin θ )1/2
(x,u)
rather than 
(x,u) as the unknown function. Multiplying the
eigenvalue problem �
 = M(s = 0)
 by (sin θ )1/2, we get
a Hermitian eigenvalue problem with the same eigenvalues,
the same diagonal part, and a kernel Ǩ

(�)
mz,m′

z
(x,θ ; x ′,θ ′) =

(sin θ sin θ ′)1/2K
(�)
mz,m′

z
(x,u; x ′,u′) with u = cos θ , u′ = cos θ ′.

For better accuracy, we use the Gauss-Legendre integration
scheme [63] for θ ′ as this angular variable is naturally bounded
to [0,π ] [64]. In the (−1)� parity sector, there is the additional
complication that the kernel diverges at the point (x,θ ) =
(0,π ), making the previous (x,θ ) discretization inefficient. At a
small distance from this point, say, less than ρ0, the optimal set
of variables is (t,ψ), where ψ ∈ [0,π ] is defined by Eq. (88)
and t ∈ R− is given by Eq. (91), since the resulting kernel is
bounded after a convenient change of the unknown function

̃(�)

mz
(t,ψ) = ρ 
̌(�)

mz
(x,θ ), see Eq. (92). So we resort to a mixed

scheme: For ρ = [x2 + (π − θ )2]1/2 > ρ0, we use the (x,θ )
set of variables, with x uniformly discretized with a step dx

submultiple of ρ0 and θ discretized according to a Gauss-
Legendre scheme over the interval [0,θmax] where θmax = π

for |x| > ρ0 and θmax = π − (ρ2
0 − x2)1/2 for |x| � ρ0, the

number of angular points being scaled linearly with θmax. For
ρ < ρ0, we use the (t,ψ) set of variables, with t truncated to
[tmin,0] and discretized with a uniform step dt according to
the midpoint integration method, and ψ ∈ [0,π ] discretized
according to the Gauss-Legendre scheme [65].

B. Results

The numerically obtained spectrum of M(s = 0) for the 2 +
2 fermionic problem is plotted in Fig. 3 [left half for the (−1)�

parity channels and right half for the (−1)�+1 parity channels]
for the first values 0 � � � 3 of the four-body internal angular-
momentum quantum number �, as a function of the mass ratio
α = m↑

m↓
. It is a symmetric function under the exchange α ↔

1/α so the figure is restricted to α � 1; as the starting integral
equation (13) assumes scale invariance, which is broken by

FIG. 3. (Color online) Eigenvalues of M(s = 0) as functions of the mass ratio α ∈ [1,13.6] for various values of the angular momentum �

and the parity [left half for the parity (−1)�, right half for the parity (−1)�+1], obtained numerically after discretization and truncation of the
variables x and θ in the zone ρ ≡ [x2 + (π − θ )2]1/2 > ρ0 and of their log-polar versions t ≡ ln(ρ/ρ0) and ψ in the zone ρ < ρ0 (see text):
xmax = −xmin = 12, dx = 1/5, dθ � π/15, ρ0 = 2/5, tmin = −12, dt = 1/5, dψ = π/15, with the Gauss-Legendre integration scheme for the
integrals over θ and ψ , and the midpoint integration formula for the integrals over x and t . For the (−1)�+1 parity channels the ρ < ρ0 zone is
not useful and is not included in the numerics. The boundaries of the continuous spectrum of M(s) are given by black thick dashed curves: For
the (−1)�+1 parity channels, this corresponds to the x → + ± ∞ continua of Eqs. (77) and (81) with all L � 1; for the (−1)� parity channels,
this corresponds to the x → + ± ∞ continua of Eqs. (77) and (81) with all L � 0 and to the (x,θ ) → (0,π ) (that is, t → −∞) continuum of
Eq. (84). In contrast to the 3 + 1 case, no eigenvalue of M(s = 0) is found to cross zero for α < αc(2; 1) = 13.6069 . . .: No four-body Efimov
effect is found for the 2 + 2 fermionic problem.
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the three-body Efimov effect beyond the threshold αc(2; 1) =
13.6069 . . ., the figure is also restricted to α < αc(2; 1).

For the (−1)� parity channels, the spectrum is entirely
within the limits of the analytically predicted continuous
spectrum, which are shown as dashed lines, except for even
� in a barely visible small triangle [66] close to � = 0.75
with 1 � α � 1.2: This means that the necessarily discrete
numerical spectrum must tend to a continuum when the
truncations xmax = −xmin and tmin tend to +∞ and −∞,
respectively. The lower border of the continuum corresponds
for even � to the k → 0 limit in Eq. (84), that is, zero, and
for odd � to the smallest of the two quantities, 1/

√
2 [this

is the k → +∞ limit of Eq. (84)] and �L=1(0,α) [this is
the minimal value of Eq. (81), see Fig. 2]. The upper border
of the continuum corresponds, whatever the parity of �, to
�L=0(0,1/α) [this is the maximal value of Eq. (77), see
Fig. 2].

For the (−1)�+1 parity channels, there are three differences.
First, the continuum (84) cannot be realized, so the lower
border of the continuous spectrum of M(s = 0), now given by
�L=1(0,α), reaches zero only at α = αc(2; 1). Second, the L =
0 continua in Eqs. (77) and (81) cannot be realized so the upper
border of the continuum of M(s = 0), given by �L=2(0,1/α),
is everywhere below 1 = limα→+∞ �L=2(0,1/α). Third, the
continuum presents, in the α − � plane for 1.53 � α, a
large void internal area, corresponding to �L=2(0,α) < � <

�L=1(0,1/α). Still, many numerically found eigenvalues lay
in this internal area: These eigenvalues must correspond to
the discrete spectrum of M(s = 0), with localized (square-
integrable) eigenfunctions [67]. We checked this numerically
by calculating the density of states of M(s = 0), in practice
the histogram of its eigenvalues, for increasing values of the
numerical truncation xmax = −xmin: By doubling the values
of xmax and xmin, the spacing ≈ π/xmax between successive
k in Eqs. (77) and (81) is approximately divided by 2 so
the density of states of the numerical quasicontinuum is
approximately multiplied by 2, whereas the density of states
of the discrete spectrum is essentially not (only exponentially
weakly) affected as soon as xmax is much larger than the
localized eigenfunctions width in x space. This is what is
observed in Fig. 4, knowing that the locations of the internal
and external borders of the continuum (corresponding to the
dashed lines in Fig. 3) are indicated by vertical dashed lines in
Fig. 4.

C. Synthesis

In contrast to the 3 + 1 case, no discrete eigenvalue of
M(s = 0) (necessarily discrete because it would be below
the lower border of the continuum) crosses zero for α <

αc(2; 1) = 13.6069 . . ., that is, below the three-body Efimov
effect threshold: No four-body Efimov effect is found for the
2 + 2 fermionic problem [68]. This conclusion is apparent
in Fig. 3, obtained for all the internal angular-momentum
quantum numbers 0 � � � 3. It extends to all the angular-
momentum values that we were able to numerically explore,
4 � � � 12, as we have shown with a dedicated careful
spectral analysis almost perfectly at the three-body critical
mass ratio, α = 13.6069, see Fig. 5.
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FIG. 4. (Color online) Histogram of the eigenvalues � of M(s =
0) for a mass ratio α = 10 and an angular momentum � = 1 in the
(−1)�+1 parity channels, obtained numerically after discretization and
truncation of the x and θ variables. The numerical grid is the same
as in Fig. 3, except that much larger values of xmax = −xmin are used
to reveal the emergence of the continuous part of the spectrum in
the xmax → +∞ limit: xmax = 48 (red bars in the foreground) and
xmax = 96 (blue bars in the background). The black vertical dashed
lines indicate the analytically predicted borders of the continuous
spectrum (as in Fig. 3); between the first two ones and between the
last two ones, it is indeed observed that the number of eigenvalues
per bin is approximately multiplied by 2 when xmax is doubled. On
the contrary, the histogram is unaffected by the change of xmax in the
bins strictly in between the second and third dashed lines, indicating
that the corresponding eigenvalues belong to the discrete spectrum of
M(s = 0), with localized eigenfunctions in x space.

FIG. 5. (Color online) Numerically determined minimal eigen-
value �min of M (�)(s = 0) almost at the three-body critical mass
ratio, α = 13.6069 � αc(2; 1), as a function of the numerical cutoff
tmin = −xmax. For each given cut-off value, each angular momentum
� from 0 to 12 and parity sector (−1)� and (−1)�+1 contributes as a
point in the figure: The fact that the points (in red) are superimposed
and cannot be distinguished shows that �min does not depend on �

nor on the parity. Furthermore, �min is always positive; it is linear
in 1/x2

max and extrapolates to zero for infinite cutoff (see the blue
line): This is perfectly consistent with the fact that �min corresponds
to the lower border of the 2 + 1 continuum �L=1(ik,α), where k

has a minimal, discrete value scaling as 1/xmax in the presence of
the numerical cutoff, and �L=1(ik,αc(2; 1)) vanishes quadratically at
k = 0. In other words, there is no negative �min and no four-body
Efimov effect for 2 + 2 fermions.
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VI. CONCLUSION

We have studied in three dimensions a four-body 2 + 2
fermionic system with resonant interactions and we have
derived its momentum space integral equations at zero energy.
By using rotational invariance and scale invariance, we have
reduced them to a numerically tractable two-dimensional form
(the unknown function depends on two variables only). With
these equations we have numerically shown that no four-body
Efimov effect occurs for the 2 + 2 fermionic system in angular-
momentum channels 0 � � � 12. The 3 + 1 fermionic system
thus remains the only known one exhibiting a four-body
Efimov effect [13].

A detailed treatment of the second motivation for deriving
these integral equations, that is, a calculation of the already-
measured [20,21] fourth cluster coefficient b4 of the spin-1/2
unitary Fermi gas, is beyond the scope of this paper. Still
we have numerically calculated an educated guess for b4

inspired from the analytical form of the third cluster coefficient
b3 [28,29]: It is found that this guess does not reproduce the
experimental value (see Appendix B) so a dedicated work is
needed and left for the future.
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APPENDIX A: IS THE SPECTRUM OF M(s) BOUNDED?

In the parity sector (−1)�, the third contribution in Eq. (69)
diverges when (x,u) → (0, − 1) or (x ′,u′) → (0, − 1). The
question is to know if this makes the operator M(s) unbounded,
for a purely imaginary s = iS.

To investigate this problem, we construct a simplified
functional that focuses on the diverging part of the matrix
kernel (69), replacing each nonzero limit expression by its limit
and replacing the vanishing expressions by their leading-order
(here quadratic) approximations:

u + ch x � 1
2 (x2 + y2) with y ≡ π − θ. (A1)

Dropping numerical factors and other bounded pieces (for
example, the bit raised to the power s, of modulus one), we
obtain the mean-� functional

〈�〉 =
∫

dxdu
∫

dx ′du′ 
∗(x,u)
(x ′,u′)
[(x2+y2)(x ′2+y

′2)]1/4(x2+y2+x ′2+y ′2)∫
dxdu|
(x,u)|2 ,

(A2)
where the integrals are taken over some convenient neighbor-
hood of (x,u) = (0, − 1). It is convenient to use the angle
θ rather than u = cos θ as integration variable, which pulls
out a Jacobian sin θ � y; we absorb it in the integral in the
denominator of Eq. (A2) with the change of function


̌ = (sin θ )1/2
(x,u). (A3)

A factor (sin θ sin θ ′)1/2 � (yy ′)1/2 remains in the integrand
in the numerator. We restrict the integration over (x,y) to the
upper half y > 0 of the disk x2 + y2 < 1. Then it is natural to
move to polar coordinates:

(x,y) = (ρ cos φ,ρ sin φ) (A4)

so x2 + y2 = ρ2, x ′2 + y ′2 = ρ ′2, and (yy ′)1/2 =
(ρρ ′)1/2(sin φ sin φ′)1/2. The occurrence of the Jacobians
ρ and ρ ′ in the elements ρdρ and ρ ′dρ ′ motivates the change
of variable in the radial integration:

X = ρ2 and X′ = ρ ′2. (A5)

Then, considering 
̌ as a function of X and φ, we obtain

〈�〉 =
∫ 1

0
dXdX′
X+X′

∫ π

0 dφdφ′(sin φ sin φ′)1/2
̌∗(X,φ)
̌(X′,φ′)

2
∫ 1

0 dX
∫ π

0 dφ |
̌(X,φ)|2
.

(A6)
To get rid of the polar angle φ, we introduce


a(X) ≡
∫ π

0
dφ (sin φ)1/2
̌(X,φ) (A7)

so the integral over φ and φ′ in the numerator of Eq. (A6)
reduces to the product 
∗

a(X)
a(X′). In that numerator, we use
the fact that the modulus of the integral over X and X′ is less
than the integral of the modulus and that 1

X+X′ � 1
(X2+X′2)1/2 .

In the denominator of Eq. (A6), at fixed X, we apply over the
interval φ ∈ [0,π ] the Cauchy-Schwarz inequality |〈f |g〉|2 �
〈f |f 〉 〈g|g〉 (in Dirac’s notation) with f (φ) = (sin φ)1/2 and
g(φ) = 
̌(X,φ); after integration of the resulting inequality
over X, we get:∫ 1

0
dX |
a(X)|2 � 2

∫ 1

0
dX

∫ π

0
dφ |
̌(X,φ)|2, (A8)

whose right-hand side is the denominator of Eq. (A6). We
arrive at

|〈�〉| �
∫ 1

0 dX
∫ 1

0 dX′ |
a (X)| |
a (X′)|
(X2+X′2)1/2∫ 1

0 dX |
a(X)|2
. (A9)

We again move to polar coordinates

(X,X′) = (r cos ψ,r sin ψ) (A10)

to simplify the factor 1
(X2+X′2)1/2 = 1

r
with the Jacobian and to

obtain

|〈�〉| �
∫ π/2

0 dψ
∫ R(ψ)

0 dr|
a(r cos ψ)||
a(r sin ψ)|∫ 1
0 dX |
a(X)|2

.

(A11)
Since the domain of integration over (X,X′) is the square
[0,1]2, ψ runs over [0,π/2] and, at fixed ψ , r runs over
[0,R(ψ)] with

R(ψ) = min

(
1

cos ψ
,

1

sin ψ

)
. (A12)

In the integral over r at fixed ψ , we again use the Cauchy-
Schwarz inequality over the interval r ∈ [0,R(ψ)] with f (r) =
|
a(r cos ψ)| and g(r) = |
a(r sin ψ)|:∫ R(ψ)

0
dr|
a(r cos ψ)||
a(r sin ψ)|

�
[∫ R(ψ)

0
dr|
a(r cos ψ)|2

]1/2[∫ R(ψ)

0
dr|
a(r sin ψ)|2

]1/2

.

(A13)

053624-15



SHIMPEI ENDO AND YVAN CASTIN PHYSICAL REVIEW A 92, 053624 (2015)

In the first factor in the right-hand side of Eq. (A13), we
perform the change of variable X = r cos ψ , so∫ R(ψ)

0
dr|
a(r cos ψ)|2 = 1

cos ψ

∫ R(ψ) cos ψ

0
dX|
a(X)|2

� 1

cos ψ

∫ 1

0
dX|
a(X)|2, (A14)

where we used R(ψ) cos ψ � 1 and the non-negativeness of
|
a|2. The last integral in Eq. (A14) is the denominator in
the right-hand side of Eq. (A11). We proceed similarly in
the second factor in the right-hand side of Eq. (A13), except
that cos ψ is replaced with sin ψ . Finally, the denominator in
Eq. (A11) cancels out, so

|〈�〉| �
∫ π/2

0

dψ

(cos ψ sin ψ)1/2
< +∞ (A15)

and the spectrum of M(s) is bounded, when s ∈ iR.

APPENDIX B: ENUNCIATING AND TESTING
A CONJECTURE FOR b4

1. The cluster expansion

Consider a spatially uniform spin-1/2 Fermi gas at thermal
equilibrium in the grand-canonical ensemble in the thermo-
dynamic limit, with a temperature T , and a single chemical
potential μ since the gas is unpolarized. The well-known
cluster expansion is a series expansion of its pressure in
powers of the fugacity z = exp(βμ) in the nondegenerate limit
μ → −∞ for a fixed temperature T , with β = 1/(kBT ) [70].
For our gas, it is generally written as

Pλ3

kBT
= 2

∑
n�1

bnz
n, (B1)

where the overall factor 2 accounts for the number of spin
components and λ is the thermal de Broglie wavelength

λ =
(

2π�
2

mkBT

)1/2

. (B2)

When reexpanded in terms of the small degeneracy parameter
ρλ3, where ρ is the total density, the cluster expansion gives
rise to the virial expansion with virial coefficients an [70]. In
practice, one rather considers the deviation �bn of bn from its
ideal Fermi gas value, that is (for n > 1), from the mere effect
of Fermi statistics:

bn = (−1)n+1

n5/2
+ �bn. (B3)

While the cluster expansion has been studied for a long time
and the second cluster coefficient b2 was obtained analytically
in Ref. [71] (note that b1 = 1 according to the ideal gas law),
there is a renewed interest in the cluster coefficients for n > 2.
First, the new challenge is to calculate the bn for resonant
s-wave interactions (with a scattering length a much larger in
absolute value than the interaction range), whereas previous
studies concentrated on the hard-sphere model [72]. Second,
the bn have been extracted up to n = 4 in the unitary limit
from a measurement of the equation of state of ultracold

atomic Fermi gases [20,21]. The two independent groups have
reported consistent values of the fourth cluster coefficient:

�bENS
4 = 0.096(15) and �bMIT

4 = 0.096(10). (B4)

2. In the unitary limit

For zero-range interactions with infinite s-wave scattering
length a−1 = 0, i.e., in the unitary limit, the harmonic regulator
method used in Ref. [25], which introduces an isotropic
harmonic trapping potential, is quite efficient, due to the
SO(2,1) dynamical symmetry resulting from the scale invari-
ance [33,73] and the subsequent separability of Schrödinger’s
equation in hyperspherical coordinates [32,46] in the trap.
The value of bn can be deduced from the canonical partition
functions, that is, from the energy spectra, of all the possible
k-body problems in the trap, with k � n. One has the following
expansion of the grand potential � of the thermal equilibrium
gas in the trap:

−�

kBT Z1
=

∑
(n↑,n↓)∈N2∗

Bn↑,n↓ (ω)z
n↑
↑ z

n↓
↓ , (B5)

where Z1 is the canonical partition function for one particle
in the trap, and it is convenient at this stage to be general
and introduce independent chemical potentials μσ for the
various spin components σ , so zσ = exp(βμσ ). Then, from
the asymptotically exact local density approximation [26] (see
also Ref. [25]), and introducing also the deviations �Bn↑,n↓ (ω)
of Bn↑,n↓ (ω) from the ideal Fermi gas value [74], one has

2�bn = n3/2
n−1∑
n↑=1

�Bn↑,n↓=n−n↑ (0+), (B6)

where �B(0+) = limω→0+ �B(ω) and where we could restrict
the sum to nσ �= 0, σ =↑ , ↓, since the fully polarized
configurations are noninteracting and have zero deviations
from the ideal gas.

For n = 3, extending to fermions the technique initially
developed for bosons [28], the following analytical expression
was obtained [29,75]:

�B2,1(0+) =
∑
�∈N

(
� + 1

2

) ∫ +∞

0

dS

π
S

d

dS
[ln �l(iS,α)],

(B7)
where the function �l is given by Eq. (78), and the mass
ratio between the opposite spin component α is equal to 1 (so
�B2,1 = �B1,2). It gives

�b3 � −0.355103, (B8)

in agreement with previous numerical studies [26,27] and with
the experimental values [20].

For n = 4, the problem is still open. A numerical at-
tempt [30], with brute-force calculation of the four-body
unitary spectrum in the trap, has produced the value

�bBlume
4 = −0.016(4). (B9)

The disagreement with the experimental results (B4) is
attributed to uncertainties in extrapolating to ω → 0 the
numerical values of �Bn↑,n↓ (ω), in practice obtainable only
for �ω � kBT . An approximate diagrammatic theory [24]
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(keeping even in the unitary limit only the diagrams that
have leading contribution in the perturbative regime of a large
effective range or a small scattering length) gives an estimate
closer to the experimental values (B4),

�bLevinsen
4 ≈ 0.06. (B10)

Extending the analytical method of Ref. [28] to the fermionic
four-body problem is technically challenging and goes beyond
the scope of the present work. On the contrary, it is reasonable
here to propose and test a guess by direct transposition of
Eq. (B7): The transcendental function �l(s) of the three-body
problem is formally replaced by det M (�)(s) for the four-body
problem, where det is the determinant and the operator M (�)(s),
acting on the spinor functions 
(�)

mz
(x,u) as in the right-hand

side of Eq. (68), was introduced and spectrally discussed in
Sec. IV B for the 2 + 2 fermionic problem and has a known
equivalent for the 3 + 1 fermionic problem, see Eq. (14) of
Ref. [13]. Indeed, in both cases, the scaling exponents s (purely
imaginary in the efimovian channels, real otherwise) allowed
by Schrödinger’s equation in the unitary Wigner-Bethe-Peierls
model are such that �l(s) = 0 for n = 3 or such that Eq. (68)
has a nonzero solution 
(�)

mz
(x,u), that is, M (�)(s) admits a zero

eigenvalue. Hence our conjecture:

�Bconj
n↑,n↓ (0+) =

∑
�∈N

(
� + 1

2

) ∫ +∞

0

dS

π
S

d

dS

× [
ln det M (�)

n↑,n↓ (iS)
]

(B11)

with (n↑,n↓) ∈ {(1,3),(2,2),(3,1)} and M (�)
n↑,n↓ is the operator

M (�) for the four-body problem with nσ particles in each spin
component σ .

3. Existence of the logarithmic derivative of the determinant

The conjecture (B11) is not as innocent as it may look at
first sight. The difficulty is that M (�) is actually an operator
and not a finite size matrix: It has a continuous spectrum,
constituting an infinite, dense set of “eigenvalues”; even its
discrete spectrum may present accumulation points, leading
to an infinite but countable number of eigenvalues. In other
words, the determinant of M (�)(iS) is not finite. Numerically,
as we have already done in Sec. V, one of course truncates the
unbounded variable x to the compact interval [−xmax,xmax],
which amounts to imposing the boundary conditions to the
spinor:


(�)
mz

(x = ±xmax,u) = 0 ∀u ∈ [−1,1],∀mz ∈ {−�, . . . ,�}.
(B12)

After discretization of the x and u variables, M (�)(iS) is then
replaced by a matrix, with a well-defined determinant; it is still
unknown if there is convergence of the integrand in Eq. (B11)
when xmax → +∞. As we now see, the answer is positive.

The key point is that what appears in the integrand of
Eq. (B11) is not the determinant itself but rather its logarithmic
derivative, which can be written as

d

dS
ln det M (�)(iS) = Tr

{
[M (�)(iS)]−1 d

dS
M (�)(iS)

}
,

(B13)
where Tr is the trace and M−1 the inverse of M .

a. Parity (−1)�+1. In the parity sector (−1)�+1, the spectrum
of M (�)(iS) is at nonzero distance from 0 for a mass ratio α = 1,
as there is no four-body Efimov effect, see Fig. 3. So the inverse
of M (�)(iS) is well defined. Also the operator M (�)(iS) is local
in the x basis, meaning that the off-diagonal matrix elements of
the operator D−1/2K (�)D−1/2 are rapidly decreasing functions
of |x − x ′|, for example, there exists a constant A(�) such that

|〈x,u,�,mz|K (�)(iS)|x ′,u′,�,m′
z〉|

[d(x,u)d(x ′,u′)]1/2
� A(�)

ch(x − x ′)
(B14)

for all x,x ′,u,u′ and all mz,m
′
z of parity opposite to � and for

all S ∈ R. Here we have used Dirac’s notation and singled out
as in Eq. (68) a diagonal part and a kernel part,

M (�)(iS) = D + K (�)(iS), (B15)

where the operator D is positive and defined by the diagonal-
element function d(x,u),

D|x,u,�,mz〉 = d(x,u)|x,u,�,mz〉 with

d(x,u) =
[

α

(1 + α)2

(
1 + u

ch x

)
+ e−x + αex

2(α + 1) ch x

]1/2

.

(B16)

This locality is apparent for the first two contributions in the
right-hand side of Eq. (69): Each contribution is bounded and
is consistent with Eq. (B14) at the four infinities (x,x ′) =
(±∞, ± ∞) (see reasoning in Sec. IV B). We then expect that
the inverse of M (�)(iS), which can be written as

[M (�)(iS)]−1 = D−1 + K (�)
inv(iS), (B17)

is also local from the geometric series expansion:

(D + K)−1 = D−1/2(1 + D−1/2KD−1/2)−1D−1/2

= D−1 + D−1/2
∑
n�1

(−1)n(D−1/2KD−1/2)nD−1/2

(B18)

each term of the series being local [for simplicity, we omit the
exponent (�) and the argument iS]. This holds, of course, if
the operator D−1/2KD−1/2 is small enough. For � = 1 in the
2 + 2 fermionic problem, this can be made rigorous: The best
constant in Eq. (B14) is

A = 2(2 − √
3)

3π
� 0.05686. (B19)

Then [76]∣∣〈x,u,� = 1,mz = 0
∣∣K (�=1)

inv (iS)
∣∣x ′,u′,� = 1,m′

z = 0
〉∣∣

[d(x,u)d(x ′,u′)]−1/2

� 2A√
1 − (2πA)2

sh
(

2δ
π

|x − x ′|)
sh(2|x − x ′|) (B20)

with δ = arccos(−2πA) ∈]π/2,π [.
This locality per se is not enough to ensure the conver-

gence of the trace in Eq. (B13). Making the trace explicit
in that equation and injecting a closure relation leads to
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writing

d

dS
ln det M (�)(iS)

=
∫
R

dxdx ′
∫ 1

−1
dudu′

×
∑
mz,m′

z

(−1)�+1

〈x,u,�,mz|[M (�)(iS)]−1|x ′,u′,�,m′
z〉

× 〈x ′,u′,�,m′
z|

d

dS
M (�)(iS)|x,u,�,mz〉, (B21)

where the sum is restricted to mz and m′
z of parity opposite

to that of � as the exponent (−1)�+1 indicates. The locality
of M(iS)−1, and even of d

dS
M(iS), exponentially bounds the

excursion of |x − x ′| in the integral over x ′, but still there
remains the integral over the unbounded variable x. One must
take advantage of the structure of K(iS) and of its derivative:
splitting

K(iS) = K1(iS) + K2(iS), (B22)

where K1 and K2 respectively correspond to the first term and
the second term in the right-hand side of Eq. (69), one finds

d

dS
K(iS) = i[D1,K1(iS)] + i[D2,K2(iS)], (B23)

where [A,B] = AB − BA is the commutator of two operators
and the diagonal operators Dj are defined by the following
diagonal functions:

d1(x) = 1

2
ln

e+x

2 ch x
, (B24)

d2(x) = 1

2
ln

e−x

2 ch x
, (B25)

such that

Dj |x,u,�,mz〉 = dj (x)|x,u,�,mz〉. (B26)

Clearly the diagonal term D−1 in M−1, see Eq. (B17), has a
zero contribution to the trace, as [D,Dj ] = 0. Equation (B21)
is correspondingly rewritten as

d

dS
ln det M (�)(iS) =

∫
R

dxdx ′
∫ 1

−1
dudu′

×
∑
mz,m′

z

(−1)�+1 2∑
j=1

i[dj (x ′) − dj (x)]

×〈x,u,�,mz|K (�)
inv(iS)|x ′,u′,�,m′

z〉
× 〈x ′,u′,�,m′

z|K (�)
j (iS)|x,u,�,mz〉. (B27)

Then d1(x) tends exponentially rapidly to 0 when x → +∞,
whereas it diverges linearly with x when x → −∞; the
contrary holds for d2(x). A second property is that there exists
a constant B such that

|〈x,u,�,mz|K1(iS)|x ′,u′,�,m′
z〉|

�
(

e+x+x ′

4 ch x ch x ′

)1/4
B

ch(x − x ′)
, (B28)

|〈x,u,�,mz|K2(iS)|x ′,u′,�,m′
z〉|

�
(

e−x−x ′

4 ch x ch x ′

)1/4
B

ch(x − x ′)
. (B29)

This is due to the fact, evident from Eqs. (59) and (60), that
the denominator in the integral over φ in Eq. (69) is always
larger than (μ↑↓/m↑) ch(x − x ′). Then, for |x − x ′| = O(1),
the upper bound for the matrix elements of K1 (respectively,
K2) tends exponentially fast to 0 when x → −∞ (respectively,
x → +∞), due to the first factor in Eqs. (B28) and (B29),
which suppresses the linear divergence in d1(x) [respectively,
in d2(x)]. Then the integral over x and x ′ in the trace converges
exponentially rapidly at infinity, and the logarithmic derivative
of the determinant of M (�)(iS) in the (−1)�+1 parity channel
is well defined [77] and its value can be calculated with a
rapidly vanishing error in the truncation xmax when xmax →
+∞. The numerics agree with this conclusion and indicate
that the surprisingly low value xmax = 5 is sufficient.

b. Parity (−1)�. The situation differs physically for the
(−1)� parity sector, at least for even �: The third contribution
in Eq. (69) is nonzero, and it leads to a continuous part in
the spectrum of M (�)(iS) that reaches zero for even �, see
Eq. (84). Then the spectrum of the inverse [M (�)(iS)]−1 is
no longer bounded, and its matrix elements are not bounded
even if one uses the optimal (t,ψ) representation in which the
matrix elements of M (�)(iS) are bounded, see Eq. (92), when
the lower cut-off tmin on the t variable tends to −∞. Then, as
we shall see, there is no exponential locality in the t basis but
still the logarithmic derivative of the determinant of M (�)(iS)
has a finite limit when tmin → −∞, which is approached with
an error vanishing linearly with 1/tmin.

To derive this property, a spectral or “Fourier-space”
analysis is more appropriate than the “real”-space analysis
of the previous parity case. After the gauge transform and the
change of functions performed in Eqs. (86), (89), and (91),
the asymptotic t → −∞ part of the eigenstates of M (�)(iS) of
the continuum (84) can be written as

φk(t) = eikt − eiθ(k,S)e−ikt , k > 0, (B30)

see Fig. 6. The plane waves eikt and e−ikt are indeed two
linearly independent solutions of the eigenvalue problem (92)

t

g δ(t)

t=0t=tmin
t=L

exp(ikt)

-eiθ(k,S)exp(-ikt)

FIG. 6. Diagram giving the structure of the eigenstates of the
third continuum (84), in terms of the variable t of Eq. (91): k > 0 is
the wave vector of the incoming wave and −k that of the reflected
wave with a phase shift θ (k,S). The reflection due to the physics at
t = O(1) is, in a toy model, represented by a Dirac scattering potential
at t = 0 and a hard wall acting as a mirror at t = L; the toy model
exemplifies the expected low-k behavior (B32) of θ (k,S).
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with

� = �k = 1√
2

[
1 − 1

ch(kπ/2)

]
(B31)

[see Eq. (84), here � is even]. The right solution is some specific
superposition of these two degenerate solutions, with a relative
amplitude determined by the physics at t = O(1), that is, for
(x,u) not extremely close to (0, − 1). Analytically, the value
of this relative amplitude is an unknown function of k and S,
but we know that it must be of modulus one, so we can express
it as in Eq. (B30) in terms of a mere phase shift θ (k,S) ∈ R:
(i) the “Hamiltonian” M (�)(iS) for the spinor is Hermitian, so
the corresponding evolution operator is unitary and conserves
probability, and (ii) the third continuum (84) is not degenerate
with the other continua for the considered mass ratio α = 1,
so the wave eikt incoming from t = −∞ has no channel to
escape and must fully get out by the incoming channel.

The key property that we shall use is that, as is common in
one-dimensional scattering problems, the phase shift θ (k,S)
vanishes linearly at low k:

θ (k,S) =
k→0

kb(S) + o(k), (B32)

where b(S) is a S-dependent effective scattering length. We
present two plausible arguments to establish this. The first
argument results from the assumption that the writing (B30)
can be smoothly extended from k > 0 to k < 0: This implies
that if one directly replaces k by −k in Eq. (B30), the resulting
wave t �→ e−ikt − eiθ(−k,S)eikt must reproduce the physical
solution eikt − eiθ(k,S)e−ikt up to a global phase factor, so
eiθ(k,S) = e−iθ(−k,S) and there exists an integer q such that

−θ (−k,S) = θ (k,S) + 2qπ. (B33)

The fact that, in one dimension, the arbitrarily low energy
waves are generically fully retroreflected (no matter how small,
but nonzero, the scattering potential is) leads to θ (k,S) → 0
for k → 0 and to q = 0 in Eq. (B33); then, if θ (k,S) is a
smooth function of k, Eq. (B32) holds. The second argument
utilizes some model for the scattering potential in the region
t = O(1), introducing on purpose most singular potentials, see
Fig. 6: a pointlike fixed scattering center of coupling constant
g = �

2/(2meffa) placed at t = 0 at a distance L from a hard
wall (the second element acts as a mirror and ensures that
the wave is fully reflected at all energies). At low k, the
dispersion relation �k can be quadratized, �k ≈ �

2k2/(2meff)
with meff > 0, leading to an effective Schrödinger equation
and scattering problem, so at fixed S

eiθ(k) = (ka)−1 + (tan kL)−1 + i

(ka)−1 + (tan kL)−1 − i
. (B34)

The phase shift θ (k,S) is indeed an odd function of k, and at
low k one indeed obtains the linear law (B32) with 2/b(S) =
1/a(S) + 1/L(S).

Then the property (B32) leads to the conclusion that the
logarithmic derivative of the determinant of M (�)(iS) has a
finite limit when the lower cut-off value tmin tends to −∞, as we
now see. Similarly to Eq. (B12), this lower cutoff corresponds
to the boundary condition

φ(tmin) = 0, (B35)

which, considering (B30), leads to the quantization condition
for k [78]:

2k|tmin| + θ (k,S) = 2nπ, ∀n ∈ N∗. (B36)

Then the contribution of the corresponding eigenvalues to the
logarithmic derivative of the determinant is

d

dS
ln det M (�)(iS)|� =

∑
n>0

d

dS
ln �k =

∑
n>0

�−1
k

d�k

dk

dk

dS
.

(B37)

Taking the derivative of Eq. (B36) with respect to S at fixed n

we obtain

dk

dS
= − ∂Sθ (k,S)

2|tmin| + ∂kθ (k,S)
. (B38)

In the large-|tmin| limit, one can neglect ∂kθ (k,S) in the
denominator and one can replace in Eq. (B37) the sum over n

by an integral
∫

dn. According to Eq. (B36),

2
dk

dn
|tmin| →

tmin→−∞ 2π (B39)

so

d

dS
ln det M (�)(iS)|� →

tmin→−∞ −
∫ +∞

0

dk

2π

1

�k

d�k

dk
∂Sθ (k,S).

(B40)

This is finite even if �k vanishes quadratically in k = 0, i.e.,
it is saved from a naı̈vely expected logarithmic divergence,
because the phase shift θ (k,S) vanishes linearly with k and so
does its derivative with respect to S.

This main point being established, there remains a problem
of practical interest, the speed of the convergence with |tmin|.
The answer is provided by Poisson’s summing formula:∑

n∈Z
f (λn) = 1

λ

∑
n∈Z

f̂ (2πn/λ) (B41)

for any λ > 0 and for an arbitrary function f (k), f̂ (x) =∫
R dk exp(−ikx)f (k) being its Fourier transform. For simplic-

ity, we give details in the case where θ (k,S) is linear in k at all k,
that is θ (k,S) = kb(S). From the quantization condition (B36)
one has

k = λn with λ = 2π

2|tmin| + b(S)
(B42)

so

dk

dS
= −db(S)

dS

λ

2π
k. (B43)

This, together with Eqs. (B37), leads to a function f given by

f (k) = k db(S)
dS

�k

d�k

dk
(B44)

such that

d

dS
ln det M (�)(iS)|� = − λ

2π

∑
n>0

f (λn). (B45)

Then using the fact that the function f is even, one can express
the sum over N∗ in terms of the sum over Z and then in terms
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of f (0) and f̂ :∑
n>0

f (λn) =−1

2
f (0) + 1

2

∑
n∈Z

f (λn)

=−1

2
f (0) + 1

2λ

∑
n∈Z

f̂ (2πn/λ). (B46)

The function f is a smooth function of k, in particular in
k = 0, that rapidly decreases at infinity, so its Fourier transform
f̂ (q) is also rapidly decreasing when |q| → +∞. In the large-
|tmin| limit, 1/λ diverges linearly in |tmin| and one commits
an exponentially small error O[exp(−C|tmin|)] (C is some
constant) in neglecting the n �= 0 terms in the last sum over n

in Eq. (B46). As a consequence,

d

dS
ln det M (�)(iS)|�

=
tmin→−∞ − 1

2π

∫ +∞

0
dk

k db(S)
dS

�k

d�k

dk

+
db(S)
dS

2|tmin| + b(S)
+ O[exp(−C|tmin|)], (B47)

where we have replaced λ, f (0), and f̂ (0) by their values.
When θ (k,S) is not a linear function of k, we obtain the general
result

d

dS
ln det M (�)(iS)|�

=
tmin→−∞ − 1

2π

∫ +∞

0
dk

∂Sθ (k,S)

�k

d�k

dk

+ lim
k→0

1
2

d�k

dk
∂Sθ (k,S)

�k[2|tmin| + ∂kθ (k,S)]
+ O[exp(−C|tmin|)].

(B48)

In any case, when tmin → −∞, the limiting value of the
logarithmic derivative of the determinant of M (�)(iS) is
approached with an error that vanishes only polynomially with
1/tmin [79].

On the contrary, if the dispersion relation �k nowhere
approaches zero, as for an odd � in the parity sector (−1)�, the
limk→0 term in the right-hand side of Eq. (B48) is zero and the
convergence of the logarithmic derivative of the determinant
is exponentially fast with |tmin|, as also observed numerically;
this last situation is then similar to the exponentially fast
convergence of d

dS
ln det M (�)(iS) when xmax → +∞, which

is always achieved for the continua (77) and (81), even when
the third term in Eq. (69) is active.

4. Other convergence issues

To show that the conjectured values (B11) are finite, one
must also check that the integral over S is convergent at infinity
and that the sum over the angular momenta � is convergent.
This we have initially explored numerically. First, at a given
�, we found that the logarithmic derivative of the determinant
of M (�)(iS) rapidly decreases when S → +∞, presumably
exponentially fast, see Fig. 7(a). Second, after the integration
over S is taken, one observes also a rapid convergence of the
series over �, see Fig. 7(b), if one takes the precaution to

be accurate enough in the discretization of the integral over
u [80].

These numerical results suggest that the contribution of
angular momentum � to �B

conj
2,2 (0+) and to �B

conj
3,1 (0+) can

be obtained, when � is large enough, from a perturbative
calculation in Eq. (B13), limited to leading order in the
operators K

(�)
j defined by Eqs. (B15) and (B22), at least for

the 2 + 2 problem in the parity channel (−1)�+1 where Kinv

in Eq. (B17) has a chance of being bounded. This idea was
implemented with success at the three-body level in Ref. [28],
treating the integral term in Eq. (78) as a perturbation of the
constant term [81].

Let us implement the idea for the 2 + 2 problem in the
parity sector (−1)�+1 of the subspace of angular momentum
�. We truncate Eq. (B18) to order one included in the operator
K , to obtain

d

dS
ln det M � Tr

[
(D−1 − D−1KD−1)

d

dS
K

]
. (B49)

Then we split K as in Eq. (B22) and we use the commutator
structure (B23). Using the invariance of the trace in a cyclic
permutation and the fact that the diagonal operators D of
Eq. (B16) and Dj of Eq. (B26) commute, we find that only
the crossed quadratic contributions in K1 and K2 survive,
so

d

dS
ln det M � Tr

[
− D−1K1D−1 d

dS
K2 − (1 ↔ 2)

]

= d

dS
Tr(−D−1K1D−1K2). (B50)

Integrating by parts in Eq. (B11) and using the fact that
the integrand is an even function of S we obtain the
approximation∫ +∞

0

dS

π
S

d

dS
ln det M �

∫
R

dS

2π
Tr(D−1K1D−1K2).

(B51)

Calculating the trace in the |x,u,�,mz〉 basis (with � + mz

odd) and injecting a closure relation in that basis as, e.g., in
Eq. (B21), we realize that the integrand has a very simple
dependence with S, due to simplifications as follows:(

ex ch x ′

ex ′ ch x

)s/2(
e−x ′

ch x

e−x ch x ′

)s/2

= ei(x−x ′)S, (B52)

where we wrote the phase factor of the first term as it is in
Eq. (69) and the phase factor of the second term of Eq. (69) with
x ↔ x ′, and used s = iS with S real. So the integral over x or
x ′ takes the form of a Fourier transform with respect to x or x ′,
with S as the conjugate variable; this is the Fourier transform
of a smooth rapidly decreasing function of x or x ′, so, as a
function of S, it is a rapidly decreasing function. This gives a
reason for the numerically observed fast decay of d

dS
ln det M

at large S. Also, integration over S is straightforward due
to ∫

R

dS

2π
ei(x−x ′)S = δ(x − x ′). (B53)
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FIG. 7. (Color online) Convergence in the integration over S and summation over � in Eq. (B11) (we recall that the mass ratio is α = 1).
(a) The logarithmic derivative of the determinant of M (�)(iS) is a rapidly decreasing function of S; the figure takes as an example (a1) the
� = 0 channel of the 2 + 2 fermionic problem (for a numerical cutoff tmin = −9, thus without extrapolation; note the minus sign in the vertical
axis) and (a2) the � = 0 channel of the 3 + 1 fermionic problem. (b) The sum over � also seems to converge well, see the contribution of each
angular-momentum channel to the result (B11) for (b1) the 2 + 2 problem and (b2) the 3 + 1 problem: black disks for the parity sector (−1)�

and red disks for the parity sector (−1)�+1. The plus signs indicate the corresponding cumulative sums. Convincing evidence is even shown in
(b3) for the 2 + 2 problem in the (−1)�+1 parity sector and in (b4) for the 3 + 1 problem in both parity sectors, where the numerical results
[black disks for parity (−1)� and red disks for parity (−1)�+1] are compared to the perturbative results (B54) and (B60) [red asterisks for parity
(−1)� and black asterisks for parity (−1)�+1] that extend to four bodies a technique developed for three bodies in Ref. [28] and are expected
to be exact asymptotic equivalents for � → +∞ [what is actually plotted is the absolute value of the results to allow for a log scale, but their
sign is indicated with the label “< 0” of the same color as the corresponding disks when they are negative: The negative black (red) disks are
indicated with a black (red) “< 0” label. Note that the black (red) asterisks always have the same sign as the corresponding red (black) disks].

We finally obtain the leading-order approximation

�B
conj
2,2 (0+)|(�)

parity(−1)�+1 � 2� + 1

(4π )2

∫
R

dx

∫ π

0
dθ

∫ π

0
dθ ′

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

vv′

d(x,u)d(x,u′) ch x

×
1
4

∑1
n=0

∑1
n′=0(−1)(�+1)(n+n′)T�(θ + nπ,θ ′ + n′π,φ,φ′){

1 + 1
1+α

[(u + e−x)(u′ + e−x) + vv′ cos φ]
}{

1 + α
1+α

[(u + ex)(u′ + ex) + vv′ cos φ′]
} . (B54)

In the integrand of Eq. (B54), d(x,u) is given by Eq. (B16), we
again use the notations u = cos θ and v = sin θ and the same
for θ ′, and we introduced the function

T�(θ,θ ′,φ,φ′) ≡
�∑

mz,m′
z=−�

e−imzθ 〈�,mz|eiφLx/�|�,m′
z〉eim′

zθ
′

× 〈�,m′
z|eiφ′Lx/�|�,mz〉 (B55)

= Tr�[e−iθLz/�eiφLx/�eiθ ′Lz/�eiφ′Lx/�]

= sin[(2� + 1)δ/2]

sin(δ/2)
, (B56)

where the trace is taken over the whole subspace {|�,mz〉,
−� � mz � �} of angular momentum � without any parity

restriction and the angle δ ∈ [0,π ] is such that [82]

1 + 2 cos δ = uu′(1 + cos φ cos φ′) − (u + u′) sin φ sin φ′

+ vv′(cos φ + cos φ′) + cos φ cos φ′. (B57)

The sum over n and n′ in the numerator of the integrand of
Eq. (B54) suppresses the contribution to T� of the states |�,mz〉
and |�,m′

z〉 of the wrong parity, (−1)mz = (−1)m
′
z = (−1)�.

We expect the approximation (B54) to be an exact asymptotic
equivalent for � → +∞, and this is also what the comparison
to the numerical results in Fig. 7(b3) indicates. Amazingly it
is already good for � = 1, as it deviates from the numerical
value by about 9% only.

This perturbative treatment can also be applied to the 3 + 1
problem, using the integral equations of Ref. [13]. The main
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difference is that the spinor 
(�)
mz

(x,u) is now subjected to
a condition reflecting the fermionic exchange symmetry of
the two ↓ particles that are spectators of the interacting ↑↓
pair [18],



(�)
−mz

(−x,u) = (−1)�+1
(�)
mz

(x,u). (B58)

This means that the kernel K (�) must be restricted to the
corresponding subspace, hence the occurrence of a projector
P = (1 + U )/2 on that subspace, where the unitary operator

U such that in Dirac’s notation

U |x,u,�,mz〉 = (−1)�+1| − x,u,�, − mz〉
=−eiπLx/�| − x,u,�,mz〉 (B59)

is an involution (U 2 = 1) [83]. The interesting point is now
that, even if d

dS
K is a sum of commutators as in Eq. (B23), the

corresponding Dj do not commute with the projector P . As a
consequence, when one expands M−1 up to first order in K ,
d
dS

ln det M contains both a contribution of order one in K and
two contributions of order two in K . Here is the result in the
subspace of angular momentum � and parity ε [84]:

�B
conj
3,1 (0+)|(�)

parity ε � 2� + 1

2π
√

2

∫ π

0
dθ

∫ 2π

0

dφ

2π

v

d31(0,u)

1
2

∑1
n=0 εnT�(θ + nπ,0,φ + π,0)

3 + 2α
1+α

(2u + u2 + v2 cos φ)

+ 2� + 1

8π2

∫
R

dx

∫ π

0
dθ

∫ π

0
dθ ′

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

vv′

d3,1(x,u)d3,1(x,u′) ch x

×
1
4

∑1
n=0

∑1
n′=0 εn+n′T�(θ + nπ,θ ′ + n′π,φ,φ′){

2 + e−2x + 2α
1+α

[e−x(u + u′) + uu′ + vv′ cos φ]
}{

2 + e2x + 2α
1+α

[ex(u + u′) + uu′ + vv′ cos φ′]
}

− 2� + 1

4π2

∫
R

dx ′
∫ π

0
dθ

∫ π

0
dθ ′

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

(
ex ′

ch x ′

)1/2
vv′

d31(0,u)d31(x ′,u′)

×
1
4

∑1
n=0

∑1
n′=0 εn+n′T�(θ + nπ,n′π,φ,φ′ + π )[

2e−x ′ + ex ′ + 2α
1+α

(ue−x ′ + u′ + uu′ + vv′ cos φ)
][

2e−x ′ + ex ′ + 2α
1+α

(ue−x ′ + u′ + uu′ + vv′ cos φ′)
] ,

(B60)

where d31(x,u) defines the diagonal part D of the operator M

for the 3 + 1 problem [as d(x,u) did for the 2 + 2 problem],
see Ref. [13]:

d31(x,u) =
[

1 + 2α

(1 + α)2
+ αu

(1 + α)2 ch x

]1/2

. (B61)

As can be checked in Fig. 7(b4), this approximation is in
good agreement with the numerical results even for � = 0,
where it deviates from the exact result only by �13%. In
the large-� limit the first contribution in the right-hand side of
Eq. (B60) rapidly dominates over the other two; summing over
the two parity sectors ε = ±1 and restricting for simplicity to
a mass ratio α = 1, one can integrate it over θ and φ at fixed
δ ∈ [0,π ], where 1 + 2 cos δ = u + cos φ + u cos φ as shown
by Eq. (B57) taken with θ ′ = φ′ = 0, to obtain the rapidly
decreasing large-� equivalent [85]

�B
conj
3,1 (0+)|(�) ∼

�→+∞
2� + 1

2π2

∫ π

0
dδ sin[(� + 1/2)δ]

×
arccos 8 cos2 δ+5 cos δ−1

3(3+cos δ)

[(5 + 4 cos δ)(1 + cos δ + cos2 δ)]1/2
.

(B62)

5. The verdict

The numerical results for our conjecture (B11) are

�B
conj
2,2 (0+) = −0.0617(2), (B63)

�B
conj
3,1 (0+) = +0.02297(4), (B64)

leading, after use of Eq. (B6), to

�b
conj
4 = −0.063(1). (B65)

This clearly disagrees with the experimental values (B4).
Remarkably, for �B3,1(0+) our conjectured value is very close
to the approximate diagrammatic result 0.025 of Ref. [24],
whereas for �B2,2(0+) it widely differs from the (still
approximate) result −0.036 of Ref. [24] (these values were
communicated to us privately by Jesper Levinsen).

A useful complementary test is to compare to the theoretical
results of Ref. [30]. As mentioned above and in that reference,
these results, obtained with the harmonic regulator technique,
are trustable at nonzero values of β�ω without extrapolation to
β�ω = 0 [ω is the angular oscillation frequency in the trap and
β = 1/(kBT )]. It is actually straightforward to extend with the
same notations the conjecture (B11) to a nonzero value of ω,
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FIG. 8. (Color online) Fourth-order cluster coefficient (B67) for
a harmonically trapped unpolarized spin-1/2 unitary Fermi gas at
temperature T , as a function of β�ω, with β = 1/(kBT ), ω the angular
oscillation frequency of a fermion in the trap, and α = m↑/m↓ =
1. Blue line with symbols: results of Ref. [30] obtained by brute-
force numerical calculation of the up-to-four-body spectra in the trap
(disks: actually calculated values; circles: values resulting from an
extrapolation). Red lines: our conjecture (B66) (the values slightly
differ depending on the linear or cubic extrapolation to the numerical
cut-off limit 1/tmin → 0−).

see Eq. (38) of Ref. [28]:

�Bconj
n↑,n↓ (ω) =

∑
�∈N

(
� + 1

2

) ∫ +∞

0

dS

π

sin(Sβ�ω)

sh(β�ω)

× d

dS

[
ln det M (�)

n↑,n↓ (iS)
]
. (B66)

Since | sin(Sβ�ω)/ sh(β�ω)| � S, this does not raise new con-
vergence issues and the numerical evaluation of �B

conj
2,2 (ω) and

�B
conj
3,1 (ω) is straightforward once the logarithmic derivatives

of the determinant of M are known. The resulting value of the
fourth in-trap cluster coefficient

�B4(ω) ≡ 1
2 [�B3,1(ω) + �B2,2(ω) + �B1,3(ω)] (B67)

(with �B3,1 = �B1,3 for the mass ratio α = 1) is plotted as a
function of β�ω in Fig. 8. It clearly disagrees with the results
of Ref. [30], not only with the ones resulting from the extrap-
olation to β�ω = 0 but also with the actually calculated ones.

The conjecture is thus invalidated, and more theoretical
work is needed to derive the correct analytical expression for
�b4 of the unitary Fermi gas.
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∫

d2n

4π
Y

mz

� (n)[Y
m′

z

� (R−1n)]∗.

Since Y
m′

z

� (R−1n) = 〈n|R|�,m′
z〉 = ∑

m′′
z
Y

m′′
z

� (n)〈�,m′′
z |R|�,m′

z〉
and the spherical harmonics form an orthonormal basis,∫

d2n Y
mz

� (n)[Y
m′′

z

� (n)]∗ = δmz,m
′′
z
, we get (28). Here R is a

rotation in the three-dimensional space and the operator R is
its representation in the Hilbert space.

[39] For an arbitrary function φ, one defines I ≡∫
d3k1d

3k3φ(k1,k3). Then one has I = (4π ×
2π )

∫
SO(3) dR

∫ +∞
0 dk1dk3k

2
1k

2
3

∫ 1
−1 du13φ(Rkfix

1 ,Rkfix
3 ). To

show this one makes in the integral defining I the unit Jacobian
change of variable k1 → Rk1 and k3 → Rk3, where R is any
rotation: I = ∫

d3k1d
3k3φ(Rk1,Rk3). As the result does not

depend on R, we can average it over SO(3), with the normalized
invariant measure. Exchanging the order of integration over
R and over k1 and k3, we get I = ∫

d3k1d
3k3Jk1,k3 with

Jk1,k3 ≡ ∫
SO(3) dRφ(Rk1,Rk3). In Jk1,k3 one then performs the

change of variable R → Rρ, where ρ is any rotation. As the
measure is invariant, Jk1,k3 = ∫

SO(3) dRφ(Rρk1,Rρk3). Then
for any given k1 and k3, one chooses ρ such that ρk1 = kfix

1

and ρk3 = kfix
3 , so Jk1,k3 = ∫

SO(3) dRφ(Rkfix
1 ,Rkfix

3 ). Inserting
this expression of Jk1,k3 into I and exchanging again the order
of integration gives I = ∫

SO(3) dR
∫

d3k1d
3k3φ(Rkfix

1 ,Rkfix
3 ).

At fixed k1 one integrates over k3 in spherical coordinates of
polar axis k1; as the integrand does not depend on the azimuthal
angle, we pull out a factor 2π . The resulting integral over k3 and
θ13 does not depend on the direction of k1 so, after integration
over k1 in spherical coordinates of arbitrary polar axis, one
pulls out an additional factor 4π and gets the desired relation.

[40] A three-dimensional δ(k) is the product of three one-dimensional
δ(un · k), where (un) is an orthonormal basis. As explained in
the text one can take k = k2 + k4 + RY (β)RZ(γ )(kfix

1 + kfix
3 ).

We first take u1 = eY so u1 · k = (RZ(−γ )eY ) · (kfix
1 + kfix

3 ) =
sin γ eX · (kfix

1 + kfix
3 ) = − sin γ sin β0|kfix

1 + kfix
3 |, where we

used Eq. (50). This gives the factor δ(sin γ ) in Eq. (49). As
explained in the text we can restrict to the case γ = 0 (up to
a change β ↔ −β) and we are left with a two-dimensional
Dirac δ(k⊥) in the plane orthogonal to eY . In principle k⊥ =
k2 + k4 + RY (β)(kfix

1 + kfix
3 ) but we can equivalently take k⊥ =

RY (−β)(k2 + k4) + kfix
1 + kfix

3 due to the rotational invari-
ance of the Dirac distribution. Using RY (−β)eZ = cos β eZ −
sin β eX and taking u2 = kfix

1 +kfix
3

|kfix
1 +kfix

3 | = cos β0 eZ − sin β0 eX and

its orthogonal counterpart u3 = sin β0 eZ + cos β0 eX in the ZX

plane, we justify Eq. (49).
[41] Similarly to Eq. (53), |�,mx = 0〉 = s+e−i(π/2)Ly/�|�,mz = 0〉 =

s−e−i(−π/2)Ly/�|�,mz = 0〉, where s± are just signs since |�,mx =
0〉 can be taken with real components in the |�,mz〉 basis
(Ly has purely imaginary matrix elements). Then s−s+〈�,mz =
0|e−iπLy/�|�,mz = 0〉 = 1. The action of e−iπLy/� in Carte-
sian coordinates is (x,y,z) → (−x,y, − z); in spherical co-
ordinates of polar axis z it is (θ,φ) → (π − θ,π − φ). For
Y

mz=0
� (θ,φ), which does not depend on φ, this is equiva-

lent to the action of parity (θ,φ) → (π − θ,π + φ) and it
pulls out a factor (−1)l so s− = (−1)�s+ and |�,mx = 0〉 =
(s+/2)(e−i(π/2)Ly/� + (−1)�e−i(−π/2)Ly/�)|�,mz = 0〉. Series ex-
panding the exponentials in this last expression, and using the
fact that Ly only couples states of different mz parity, one gets
Eq. (54).

[42] One can keep [0,2π ] as the range of integration over φ′ since
the integrand is a periodic function of φ′ of period 2π .

[43] For b0 > b1 > 0,
∫ 2π

0
dφ

2π

eimxφ

b0+b1 cos φ
= z

|mx |
0 /[(b0 − b1)(b0 +

b1)]1/2 with z0 = −b1/{b0 + [(b0 − b1)(b0 + b1)]1/2}.
[44] Seth T. Rittenhouse, N. P. Mehta, and Chris H. Greene, Phys.

Rev. A 82, 022706 (2010).
[45] Y. Castin and E. Tignone, Phys. Rev. A 84, 062704 (2011).
[46] F. Werner and Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).
[47] G. Gasaneo and J. H. Macek, J. Phys. B 35, 2239 (2002); M.

Birse, J. Phys. A 39, L49 (2006).
[48] If x → −∞,x ′ → +∞ or x → +∞,x ′ → −∞, then the ma-

trix kernel (69) entirely tends exponentially to zero, which does
not bring any significant new information.

[49] This is trivial for � = 0. For � � 1, this results from the fact that,
for L � 1, one can take mx = 1. Then 〈�,mz|�,mx = 1〉 �= 0,
except if � is even and mz = 0 [in agreement with Eq. (54),
considering the x ↔ y symmetry], in which case one may return
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to the choice mx = 0 and use the fact that 〈�,mz = 0|�,mx =
0〉 �= 0 for even �.

[50] O. I. Kartavtsev and A. V. Malykh, Zh. Eksp. Teor. Phys. 86,
713 (2007).

[51] Let us explain more physically why the �L function appears
in the expression of the continuous spectrum. The idea is
to consider a physical state of the 2 + 2 fermionic system,
corresponding to a nonzero square integrable solution 
(�)

mz
(x,u)

of Eq. (68), and to see how the four-body wave function scales
when three particles, say, 1, 2, and 3, converge to the same
location, the fourth particle being at some other fixed location.
As we have seen, an extended eigenstate of the continuum
that varies for x → −∞ as eikxeimzθ/2〈�,mz|�,mx = 0〉PL(u),
k ∈ R, has an eigenvalue � = �L(ik,α). According to the
analytic continuation argument of Ref. [13], this implies that
the � = 0 localized eigenstate 
(�)

mz
(x,u) vanishes for x → −∞

as eκxeimzθ/2〈�,mz|�,mx = 0〉PL(u), where the real quantity κ is
the minimal positive root of

�L(κ,α) = 0

with L chosen to minimize κ (minimizing κ amounts to
selecting the most slowly decreasing exponential function eκx ,
that is, the leading contribution for x → −∞). This implies
that κ is one of the possible scaling exponents s3 of the
2 + 1 fermionic problem, see Eq. (82). In order to determine
the limit of Eq. (10) when r13 and |r2 − R13| → 0 tend to
zero with the same scaling law, that is, both are proportional
to the vanishing hyperradius R123 of particles 1, 2, and 3,
we determine the large-k2 limit of the integrand of ψ24 in
Eq. (10) at fixed k4: Omitting to write the angular part for
simplicity, we find that D(k2,k4) scales as k−2−κ

2 k
κ−s−3/2
4 , so its

Fourier transform, according to the usual power-law counting
argument, scales as |r2 − R13|κ−1|r4 − R13|s−κ−3/2. The same
reasoning applies to ψ14. At fixed |r4 − R13| > 0, the four-body
wave function therefore scales as Rκ−2

123 = R
s3−2
123 , exactly as

predicted by Eq. (5.179) of Ref. [34]. This whole discussion
is formal for the 2 + 2 fermionic problem since, as we shall
see, there is no four-body Efimov effect, but it explicitly
applies to the 3 + 1 fermionic problem and nicely completes
Ref. [13].

[52] The continuous spectrum ��(�) can be recovered by keeping
only but exactly the last contribution in Eq. (69) to the matrix
kernel K

(�)
mz,m

′
z

of Eq. (68), that is, without resorting to a local
approximation of this contribution around (x,u) = (0, − 1).
The explicit calculation remains simple for a unit mass ratio
α = 1. The eigenvectors of the resulting operator are then of the
form 
(�)

mz
(x,u) = eimzγ 〈�,mz|�,mx = 0〉
(x,u) with the ansatz


(x,u) = (ch x)−(s−1/2)/2(u + ch x)−(s+7/2)/2χ (
√

2k24/K24), k24

and K24 being the relative and center-of-mass wave numbers
of particles 2 and 4, so 2k24/K24 = ( ch x−u

ch x+u
)1/2. One then

obtains the integral equation for χ (k): �(2k2 + 1)1/2χ (k) =
(k2 + 1)1/2χ (k)− 2(−1)�

π

∫ +∞
0 dk′k′2χ (k′)/(1+k2 + k′2). Further

setting χ (k) = k−3/2(1 + 2k2)−1/4ψ(t) with k = exp(−t),

one obtains �ψ(t) = ( 1+e−2t

1+2e−2t )
1/2

ψ(t) − 2(−1)�

π

∫
R dt ′

ψ(t ′) exp[−3(t+t ′)/2]

(1+e−2t +e−2t ′ )[(1+2e−2t )(1+2e−2t ′ )]1/4 . The t → −∞ continuum

of that eigenvalue problem solves (
√

2� − 1)ψ∞(t) =
− (−1)�

π

∫
R dt ′ ψ∞(t ′)

ch(t−t ′) , with plane-wave solutions

ψ∞(t ′) = eikt reproducing (84). The ansatz for 
(x,u)

results from the fact that D(k2,k4) is of the form
K

−(s+7/2)
24 P�(ez · K24/K24)χ (

√
2k24/K24) (P� is a Legendre

polynomial), which is apparent if one turns back to Eq. (13)
and realizes that its last contribution conserves the total wave
vector K24 (up to a sign).

[53] In reality, the physical solution for the tensor 
(�)
mz

(x,u) must
correspond to a zero-eigenvalue of the matrix M (�)(s). In this
respect, k = 0 is acceptable only for � even. Furthermore,
as we shall see in Appendix B [see the note [78] called
above Eq. (B36)], when � = 0, φ(t) actually scales linearly
in t for t → −∞, so D(k2,k4) actually diverges as ln(|k2 +
k4|/k24)/(|k2 + k4|/k24)s+3/2 when k2 + k4 → 0. This would
result in a ln(r24/|R24 − R13|)/r24 divergence of the function
A13(r2 − R13,r4 − R13) at r24 = 0, which is physically opaque.
Let us keep in mind, however, that, according to Sec. V there
is no four-body Efimov effect in the 2 + 2 problem, so Eq. (68)
does not actually support any nonidentically zero solution 
(�)

if s ∈ iR.
[54] For � > 0, one can use the identity:

∑�

mz=−�[Y
mz

� (e · ez,e4⊥2 ·
ez,e24 · ez)]∗eimz(γ24+θ24/2)〈�,mz|�,mx = 0〉 = s+Y 0

� (K̂24), where
K̂24 = (k2 + k4)/|k2 + k4|, we recall that γ24 = τ24 − θ24/2 and
τ24 is the angle between k2 and k2 + k4, the spherical harmonics
notation is as in note [38] and the sign s+ is defined in note [41].
This identity is also useful for note [52].

[55] If k24 → +∞, then |x| necessarily tends to +∞ since |u| �
1, in which case K24 and k24 both diverge as e|x| and have a
nonvanishing ratio.

[56] We used
∫ +∞

0 dy sin(ay) sin(by)/ys+1/2 = 1
2 �( 1

2 −
s) sin[ π

4 (1 − 2s)][|a − b|s− 1
2 − |a + b|s− 1

2 ], for s ∈ iR, a

and b real numbers that differ in absolute value.
[57] The integrand in Eq. (97) is O(1/q2) when q → +∞, so the

integral converges when r24 → 0 at fixed nonzero R24 − R13.
Furthermore, it converges to a nonzero value (e.g., to π for
s = 0).

[58] If one takes a function D(k2,k4) with no singularity in k2 + k4 =
0, for example, 


(0)
0 (x,u) = exp(−κ|x|) in the ansatz (20) as in

note [51] for � = L = 0, one finds by an explicit calculation that
A(r2 − R13,r4 − R13) is finite for r2 = r4 = R24.

[59] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev.
Lett. 93, 090404 (2004).

[60] F. Werner and Y. Castin, Phys. Rev. A 86, 013626 (2012).
[61] There is a paradox here. As shown by Eq. (3), the action of

the Hamiltonian H on ψ24(r1,r2,r3,r4) leads to a δ(r1 − r3)
distribution, not to a δ(r2 − r4) distribution. This shows that ψ24

is the so-called 1-3 Faddeev component, and it cannot have any
1/r24 singularity. How canA13 then have such a singularity? The
answer as usual lies in the order of the limits. At fixed nonzero
r13, it is apparent that the function u(r13) in Eq. (10), through
its dependence on q13 given by Eq. (11), provides an ultraviolet
cutoff of order 1/r13 in the (k2,k4) wave-vector space, so ψ24

cannot diverge when r24 → 0. But if one first takes the r13 → 0
limit, the function u(r13) is replaced by its equivalent 1/(4πr13)
which has no momentum dependence: The wave-vector cutoff
is set to infinity and a 1/r24 divergence in limr13→0(r13ψ24) can
now take place at r24 = 0.

[62] This reasoning can be transposed to the case of four identical
bosons, when three of them converge to the same location in
the relative three-body channel where the Efimov effect takes
place. As this channel has a zero angular momentum and an even
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parity, this implies that, in such a configuration, the total internal
angular momentum � of the four-body system is carried by the
relative motion of the fourth boson with respect to the center
of mass of the first three bosons, leading to a global parity
(−1)�. This indicates that, for � �= 0, the four-boson unitary
system in an isotropic harmonic trap should have interacting
states in the (−1)�+1 parity sector that are immune to the three-
body Efimov effect. Such “universal” states have indeed been
observed numerically in Ref. [69] but for a total internal angular
momentum � = 0: This observation cannot be explained by our
reasoning.
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integral over θ ′, of the form

∫ π

0 dθ ′Ǩ(θ,θ ′)
̌(θ ′), is approx-
imated by

∑nθ

j=1 w(θj )Ǩ(θi,θj )
̌(θj ), where (θi)1�i�nθ
is the

set of (nonequispaced) discrete values of θ proposed by the
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from the x dependence of θmax.

[66] The triangle corresponds to the zone 1/
√
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the sum of the grand potential of each spin component, and no
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[75] It can be deduced from Eq. (7) of Ref. [29] by integration by
parts.

[76] For � = 1 within the even parity sector, the minimal value
of A given by Eq. (B19) corresponds to x = x ′ → +∞,
u = u′ = 0 in Eq. (B14). Let us use the notation
O = 〈� = 1,mz = 0|D−1/2K (�=1)D−1/2|� = 1,m′

z = 0〉 and
introduce the operator T in the space of functions of
the single variable x such that, in Dirac’s notation,
〈x|T |x ′〉 = A/ ch(x − x ′). Then Eq. (B14) can be
rewritten as |〈x,u|O|x ′,u′〉| � 〈x|T |x ′〉. For any integer
n greater than 1, we inject n − 1 closure relations and
use the triangular inequality to obtain |〈x,u|On|x ′,u′〉| �∫
R dx1 . . . dxn−1

∫ 1
−1 du1 . . . dun−1〈x|T |x1〉 . . . 〈xn−1|T |x ′〉 =

2n−1〈x|T n|x ′〉. Then |〈x,u|[(1 + O)−1 − 1]|x ′,u′〉| �
〈x| T

1−2T
|x ′〉 = ∫

R
dk

2π
eik(x−x′) tk

1−2tk
, where we have

used a series expansion in powers of O and where
tk = ∫

R dy A

ch y
eiky = πA/ ch(kπ/2) is the eigenspectrum

of T . Calculating the integral over k and combining the result
with the identity 〈� = 1,mz = 0|K (�=1)

inv |� = 1,m′
z = 0〉 =

D−1/2[(1 + O)−1 − 1]D−1/2 leads to Eq. (B20).
[77] To finish the calculation, one can use the mild hypothesis that the

matrix elements of Kinv are uniformly bounded, that |d1(x) −
d1(x ′)|( ex+x′

4 ch x ch x′ )
1/4

� |d1(x)|( ex

2 ch x
)
1/4 + |d1(x ′)|( ex′

2 ch x′ )
1/4

, due
to exp(x ′) � 2 ch x ′ or exp(x) � 2 ch x and to the triangu-
lar inequality |d1(x) − d1(x ′)| � |d1(x)| + |d1(x ′)|. Then one
can integrate over x ′ or over x (depending on the term),
using

∫
R

dx′
ch(x−x′) = π , and one finally faces the integral∫

R dx|d1(x)|( ex

2 ch x
)
1/4

< +∞.
[78] The value k = 0, that is, n = 0, should not be included. If one

directly takes the limit k → 0 in Eq. (B30) one gets the absurd
result φk=0(t) = 0. The correct way of taking the limit is to first
divide Eq. (B30) by ik. One then finds that φk=0(t) diverges as
2t − b(S) when t → −∞, so it does not satisfy the boundary
condition (B35).

[79] In the numerics, we extrapolate to 1/tmin = 0 using a cubic fit
in 1/tmin, with data down to minimal values 1/|tmin| = 1/200
for � = 0 and 1/|tmin| = 1/30 for � > 0. For � = 0, as a
test of the finite-tmin formalism, we have used Eq. (B48) to
predict the leading numerical error on �B

conj(�=0)
2,2 (0+) due to

the tmin truncation, that is, (8π |tmin|)−1
∫
R dS[b(∞) − b(S)] =

2.3(1)/(8π |tmin|), which agrees with the direct numerical calcu-
lation. To obtain b(S) at any given S, and hence the integral
of b(∞) − b(S), we calculated numerically the eigenvectors
corresponding to the first few eigenvalues �n (n � 1) of
M (�=0)(s = iS), and we fitted the corresponding functions φn(t)
[defined as in Eq. (91)] with a three-parameter sine function
t �→ An sin(knt − θn/2) as suggested by Eq. (B30), where An

is a complex amplitude, kn an effective wave number, and θn

a phase shift. The fits are very good, and the obtained values
of kn agree very well with the dispersion relation (84). Setting
θ (kn,S) = θn, we also find that the quantization condition (B36)
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is well obeyed. Finally, extrapolating θn/kn to n = 0 linearly in
k2

n gives b(S). To be complete, we note that b(S) looks like a
negative-amplitude Gaussian on a nonzero background b(∞),
that is, b(∞) − b(S) � 1.05 × exp(−0.668S2). As the variable
t in Eq. (91) depends on ρ0, so does b(∞). In our numerics,
ρ0 = 2/5 and we find b(∞) = 3.84(1). More analytically, one
expects at large S that the phase shift θ (k,S) is imposed by the
third contribution in Eq. (69), the first two ones becoming rapidly
oscillating and negligible. Then one can use the analytical
results of note [52]: introducing the phase shift θψ (k) such that
ψ(t) = sin[kt − θψ (k)/2] + o(1) for t → −∞, one expects that
θ (k,S) → θψ (k) − 2k ln(ρ0/

√
2) for S → ∞, so that b(∞) =

bψ − 2 ln(ρ0/
√

2) with bψ � 1.33. Our numerics fulfill these
expectations, which constitutes a good test.

[80] In practice, we used a Gauss-Legendre scheme with up to
59 points, using θ rather than u = cos θ as the integration
variable, with the change of function (A3) and the inclusion
of the extra Jacobian (sin θ sin θ ′)1/2 in the matrix kernel.

[81] The integration over S ∈ R of ��(iS)/ cos ν − 1 using the
first line of Eq. (78) leads to

∫ 1
−1 duP�(u)/(1 + u sin ν). The

large-� limit of that integral reproduces exactly Eq. (42) of
Ref. [28], as we have checked using P�(u) = (2��!)−1 d�

du� [(u2 −
1)�] and then integrating � times by parts then using Laplace’s
method.

[82] The product of the four unitary operators under the trace
represents in the single-particle Hilbert space a rotation of angle
δ around some axis. It is easy to explicitly evaluate this trace
as a function of the angles θ,θ ′,φ,φ′ in the case � = 1, where
each operator can be replaced by a well-known 3 × 3 rotation
matrix in the usual, three-dimensional space. This leads to the
expression (B57).

[83] Furthermore, the Hilbert space was limited in Ref. [13] to
the kets |x,u,�,mz〉 with x > 0, as the symmetry condition
(B58) allows, which amounts to adding an extra projector
Px>0. This complicates things because Px>0 and U do not
commute. Fortunately, in calculating operator traces, one can
use the properties UP = PU = P , Px<0 = UPx>0U , and
Px<0 + Px>0 = 1, as well as the invariance of the trace under
a cyclic permutation of the operators, so Tr(Px<0PAP )=
Tr(UPx>0UPAP )=Tr(Px>0PAP )= 1

2 Tr(PAP ) = 1
2 Tr(AP )

and Tr(APPx<0PB)=Tr(APPx>0PB)= 1
2 Tr(APB), where

A and B are arbitrary operators.
[84] If one writes the operator M of Ref. [13] before its restriction to

the subspace of symmetry (B58) asD + K0 + UK0U , then after
implementation of the symmetry and restriction to the Hilbert
space of kets |x,u,�,mz〉 with x > 0, it becomes Px>0[D + (1 +
U )K0(1 + U )]Px>0. The first, second, and third contributions
in the right-hand side of Eq. (B60) are, respectively, given by
−(� + 1/2)/(2π ) times the integral over S ∈ R of Tr�,ε(K̃0U ), of
− 1

2 Tr�,ε[K̃0(UK̃0U )], and of − Tr�,ε(K̃2
0 U ), where we have set

K̃0 ≡ D−1K0 and the index �,ε means that the trace is restricted
to the states |�,m〉 with (−1)m = ε. Note that UDU = D and
[Px>0,D] = 0.

[85] The � independent function in factor of the sine function in the
integrand of Eq. (B62) is a smooth function of δ over [0,π ],
with all its even order derivatives (including the zeroth order)
vanishing at δ = 0 and all its odd order derivatives vanishing at
δ = π . Under repeated integration by parts (always integrating
the sine function), the fully integrated term vanishes at the
boundaries and one pulls out at each step a factor (� + 1/2)−1.
So Eq. (B62) is O[(� + 1/2)−n] when � → +∞, for all
integers n.
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