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Phase diagram of the three-dimensional Anderson model for short-range speckle potentials
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1Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 and CNRS, UMR 7162, 75205 Paris Cedex 13, France
2Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France,
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We investigate the localization properties of atoms moving in a three-dimensional optical lattice in the presence
of a disorder potential having the same probability distribution P (V ) as laser speckles, and a spatial correlation
length much shorter than the lattice spacing. We find that the disorder-averaged (single-particle) Green’s function,
calculated via the coherent-potential approximation, is in very good agreement with exact numerics. Using the
transfer-matrix method, we compute the phase diagram in the energy-disorder plane and show that its peculiar
shape can be understood from the self-consistent theory of localization. In particular, we recover the large
asymmetry in the position of the mobility edge for blue and red speckles, which was recently observed numerically
for spatially correlated speckle potentials.
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I. INTRODUCTION AND MODEL HAMILTONIAN

Recently, there has been a growth of experimental and
theoretical studies [1] on Anderson localization of ultracold
atoms exposed to disordered optical potentials, including
quasiperiodic lattices and blue-detuned laser speckles. The
latter behave quite differently from typical models of random-
ness considered for condensed-matter systems. Indeed, the
potential distribution P (V ) of blue speckles is not Gaussian
but follows the exponential (Rayleigh) law [2,3]

P (V ) = �(V + V0)

V0
exp

(
−V + V0

V0

)
, (1)

where � is the Heaviside function and V0 is the disorder
strength. In Eq. (1), we have shifted the potential by its average
value so that V = 0. This distribution is bounded from below
by −V0 and is asymmetric, implying that odd moments of
the potential will be nonzero. The probability distribution of
red-detuned potentials, which have not yet been implemented
experimentally, is obtained by simply changing V to −V in
Eq. (1). A second fundamental aspect of optical speckles is
that they are spatially correlated, with a typical grain size of
the order of 1 μm.

Three different experiments [4–6] claimed the observation
of three-dimensional (3D) Anderson localization of atoms
exposed to blue speckles. However, the estimated mobility
edge—namely, the critical value E = Ec of the energy sepa-
rating localized (E < Ec) from extended (E > Ec) states—is
in all cases larger (and even much larger in Ref. [6]) than
the current theoretical and numerical predictions [7–11]. The
question arises whether the problem is due to inadequate
experimental measurements (it is, for example, very difficult
to correctly analyze the density profiles after a relatively short
time expansion in the presence of disorder [12]) or to incorrect
theoretical predictions for the mobility edge.

From the theory side, exact numerical calculations of
the mobility edge obtained via the transfer-matrix technique
[7] have revealed a discrepancy with previous estimates
based on the self-consistent theory of Anderson localization
(SCTL) [9–11]. In particular, it was found that the on-site
potential distribution is extremely important. Indeed, there
is a large difference between blue-detuned speckles, where

the mobility edge is systematically negative (i.e., below the
average potential), and red-detuned speckles, where it changes
from negative at low V0 to positive at large V0 [7]. On the other
hand, the details of the spatial correlation function—beyond
the correlation length which fixes the characteristic quantum
energy scale—do not play a major role. The aforementioned
discrepancy with SCTL predictions originates most prob-
ably from the lack of accuracy in the calculation of the
disorder-averaged single-particle Green’s function, which is
a fundamental ingredient of the SCTL approach. Indeed, in
Refs. [9–11], this quantity has been computed within the
self-consistent Born approximation (SCBA), which is by
construction insensitive to the color of the speckle, and can
only apply for a sufficiently weak disorder.

In this article we disentangle the role of the on-site potential
distribution from the effects of spatial correlations by studying
a spatially uncorrelated 3D Anderson model with a Rayleigh
potential distribution. Our results cannot be directly compared
to experiments which use a correlation length comparable
to the atomic de Broglie wavelength, but they pinpoint the
crucial importance of the asymmetric potential distribution
which simple approximations such as the Born approximation
(or its extension, the SCBA) are unable to capture.

We calculate the Green’s function numerically, and show
that the obtained results are well reproduced by the coherent-
potential approximation (CPA), which takes into account the
full statistical properties of the potential. The CPA self-energy
is then injected in the SCTL to estimate the position of the
mobility edge, which turns out to be in reasonably good
agreement with the exact transfer-matrix calculations. It is
worth mentioning that the CPA method has not yet been
generalized to spatially correlated speckle potentials, although
this generalization has been attempted for other types of
spatially correlated disorder [13,14].

In first quantization, the 3D Anderson model is given by

H =
∑
〈ij〉

− J |i〉〈j | +
∑

i

Vi |i〉〈i|, (2)

where indices i,j label the sites of the lattice, J is the hopping
term between nearest neighbors, and Vi is the random external
potential. We choose the correlation length of the speckle
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potential to be much shorter than the lattice spacing, so that we
can assume the Vi values to be uncorrelated ViVj = 〈V 2〉δij

and distributed according to Eq. (1). For larger values of the
correlation length, the resulting lattice model becomes signifi-
cantly more complicated than Eq. (2) (see Ref. [15]). For con-
venience, in the following we will use units J = 1 and � = 1.

For the specific case of the Anderson model, there is no
need to study separately the blue- and red-detuned speckles.
Indeed, the cubic lattice with nearest-neighbor coupling being
bipartite, the sign of J is irrelevant and does not affect
localization properties. As a consequence, the simultaneous
change of all Vi → −Vi is equivalent to reversing the sign
of the Hamiltonian H → −H . Since the former change
turns a given realization of a blue-detuned speckle into a
realization of a red-detuned speckle, all results obtained
here for the blue speckle with the Rayleigh distribution,
including the phase diagram, apply also to the red speckle
under the change E → −E, as shown in Fig. 2. In other
words, by studying the two mobility edges around E = −6
and E = +6, one covers both the blue- and red-detuned cases,
respectively.

The plan of the paper is as follows. In Sec. II we present
the exact phase diagram for the 3D Anderson model with the
Rayleigh potential distribution, Eq. (1), obtained numerically
via the transfer-matrix technique. In Sec. III we calculate
the disorder-averaged single-particle Green’s function numer-
ically, and analytically using the CPA and the SCBA. The
obtained results are then used in Sec. IV to estimate the position
of the mobility edge via the SCTL and to compare it with the
exact numerical results of Sec. II. Finally, we examine in Sec. V
how our findings help to interpret numerical and experimental
results for cold atoms in a continuous speckle potential.

II. EXACT PHASE DIAGRAM

The transfer-matrix method consists in computing recur-
sively the conductance of a bar with transverse section M × M

sites, and length L � M . The logarithm of the conductance
(averaged over disorder realizations) decays linearly with the
length of the bar, giving access to the quasi-one-dimensional
(1D) localization length λM . The scaling theory of localization
indicates that λM/M decreases with M in the localized regime,
increases in the diffusive regime, and is constant for large
M at the mobility edge [16]. The various λM/M versus
energy curves—for various M values—thus cross at the critical
energy, the mobility edge, as shown in Fig. 1. By gathering
results at various values of the disorder strength V0, we obtain
the phase diagram of the Anderson model, shown in Fig. 2 for
a blue-detuned speckle.

We note that the trajectory of the mobility edge behaves very
differently at the two band edges. Indeed, starting from the left
band edge of the clean model, E = −6, the mobility edge
shifts to lower and lower energy as V0 increases until V0 ≈ 10,
which is close to the critical disorder needed to localize all
states. Since the potential distribution has a sharp cutoff at
V = −V0, there are strictly no states below E = −6 − V0. In
contrast, the spectrum is not bounded from above. At the right
band edge, E = +6, however, the mobility edge moves only
slightly to the right for very weak disorder, reaching E = 6.15
at V0 = 1, and then moves backward in a monotonous way.

FIG. 1. (Color online) Transfer-matrix results for the 3D An-
derson model with a spatially uncorrelated, blue-detuned speckle
potential of strength V0 = 8. Each curve displays the ratio of the
localization length λM of a long bar with cross section M × M to the
bar transverse size M , as a function of energy. The various curves
from M = 16 (least steep curve) to M = 31 (steepest curve) cross at
the mobility edge Ec ≈ −9.93.

This means that even for moderate disorder, starting from
V0 ≈ 1, the asymmetry of the Rayleigh probability distribution
P (V ) becomes important and must be taken into account.
This rules out the use of the SCBA for the calculation of the
disorder-averaged Green’s function, as we will show below.

III. DISORDER-AVERAGED GREEN’S FUNCTION

In this section we calculate the disorder-averaged single-
particle Green’s function numerically, and analytically using
two different approximation schemes, namely, the SCBA
and the CPA. We also discuss two related quantities, the
(disorder-averaged) density of states and the effective band
edge (neglecting Lifshitz tails).

In the absence of disorder (V0 = 0), the Hamiltonian
H becomes diagonal in momentum space, H = H0 =

-12 -8 -4 0 4 8
E

0

4

8

12

V
0

0 10
E

0

5

10

V
0

extended
localized

no states 

FIG. 2. (Color online) Exact localization phase diagram for the
3D Anderson model with a spatially uncorrelated, blue-detuned
speckle potential obeying the Rayleigh distribution, Eq. (1), as
obtained from the transfer-matrix technique and finite-size scaling.
Notice that there are rigorously no states below the solid line
corresponding to E = −6 − V0. The phase diagram for red-detuned
speckles is simply obtained under the change E → −E, as shown in
the inset.
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∑
k ε(k)|k〉〈k|, where ε(k) = −2(cos kx + cos ky + cos kz) is

the energy dispersion of the atom in the cubic lattice.
Hence, the diagonal part of the free-particle Green’s function
in the configuration-space representation G0(E) ≡ 〈n|(E −
H0)−1|n〉 is translationally invariant and given by

G0(E) =
∫ π

−π

d3k

(2π )3

1

E − ε(k) + i0
. (3)

Following Joyce [17], we can express the unperturbed Green’s
function of a cubic lattice as G0(E) = P (6/E)/E, where

P (z) = 1 − 9ξ 4

(1 − ξ )3(1 + 3ξ )

[
2

π
K(k1)

]2

. (4)

Here, ξ and k1 are functions of z defined as

ξ (z) =
(

1 −
√

1 − z2/9

1 + √
1 − z2

)1/2

, (5)

k1(z)2 = 16ξ 3

(1 − ξ )3(1 + 3ξ )
, (6)

and K is the complete elliptic integral of the first kind.

A. Numerical computation and analytical estimates
of the self-energy

In the presence of a random potential, the translational
symmetry is restored only after averaging over different
realizations. The corresponding disorder-averaged Green’s
function is given by

G(E) =
∫ π

−π

d3k

(2π )3

1

E − ε(k) − �(E,k)
, (7)

where � = �′ + i�′′ is the self-energy. The real part of the
self-energy �′(E,k) represents how the energy of a plane
wave with wave vector k is shifted from ε(k) (“renormalized”)
under the influence of the disorder, while the imaginary part
�′′(E,k)—which is always negative—yields the broadening
of the energy distribution [18].

Numerically computing the self-energy is possible, but not
completely straightforward. The starting point is the temporal
representation of the Green’s function as

1

E − H + i0
= −i

∫ ∞

0
e−iH t eiEt dt. (8)

As mentioned previously, the average Green’s function in the
presence of disorder is invariant by translation, i.e., diagonal
in momentum space. Thus, one has

〈k|G(E)|k〉 = 1

E − ε(k) − �(E,k)

= −i

∫ ∞

0
〈k|e−iH t |k〉 eiEt dt.

(9)

The numerical calculation then amounts to propagating an ini-
tial plane wave |k〉 with the disordered Hamiltonian H during
time t (with periodic boundary conditions) and to computing
the overlap of the time-evolved state with 〈k|, followed by a
Fourier transform from time to energy; subtracting E − ε(k)
from the inverse of the result yields the self-energy. This
procedure is then repeated for several independent realizations
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FIG. 3. Energy dependence of the real (�′) and imaginary (�′′)
parts of the self-energy calculated using the coherent-potential
approximation [solid line, Eq. (12)] and the self-consistent Born
approximation [dotted line, Eq. (11)] for two values of the disorder
strength: V0 = 1 (left) and V0 = 5 (right). Also shown is the atomic
limit approximation [dashed line, from Eqs. (15) and (16)] for V0 = 5.
In both cases, the CPA is a truly excellent approximation to the exact
numerical results (for k = 0) plotted as circles, reproducing almost
all details of both the real and imaginary parts of the self-energy (note
that for the numerical computations, system sizes of M3 with M = 28
were used). In contrast, the SCBA is a rather poor approximation, even
at a moderate disorder strength V0 = 1 where it is supposed to work
best.

of the disorder to perform disorder averaging. In order to
obtain small statistical fluctuations, a rather large number
(of the order of 105) of disorder realizations is needed.
Moreover, a sufficiently large system—much larger than the
mean free path—has to be used to reduce finite-size effects.
In our numerical results, we found that the self-energy has
a very weak dependence on momentum, which is expected
for spatially uncorrelated potentials, ViVj = V 2

0 δij . In Fig. 3,
we plot our numerical results for the real (upper panel) and
imaginary (lower panel) parts of the self-energy, calculated at
k = 0 for two different values of the disorder strength.

In the following, we compare our exact numerics with
several approximate methods to calculate the self-energy.
By construction, these methods yield estimates which are
independent of momentum, �(E,k) = �(E). The simplest
one is the Born approximation, which is given by

�(E) = V 2
0 G0(E). (10)

A slight, but simple, improvement is the self-consistent
Born approximation (SCBA) where the disorder-free Green’s
function in Eq. (10) is modified self-consistently, leading to
the equation

�(E) = V 2
0 G0(E − �). (11)

This quantity can be easily calculated numerically by succes-
sive iterations, starting from the Born approximation, Eq. (10).
Since only the second moment of the potential distribution
appears in the right-hand side (rhs) of Eq. (11), the SCBA
self-energy does not depend on the details of the potential
distribution P (V ), which makes sense only for sufficiently
weak disorder.

053618-3



M. PASEK, Z. ZHAO, D. DELANDE, AND G. ORSO PHYSICAL REVIEW A 92, 053618 (2015)

A better approximation scheme at stronger disorder is
given by the CPA [19]. The basic idea of the CPA is as
follows (for a pedagogical discussion, see Ref. [20]): One
isolates a single site i where the potential is chosen randomly
according to P (V ), and replaces the surrounding sites by an
effective homogeneous medium characterized by a uniform
self-energy. One can then compute the single-site t matrix
of site i embedded in the surrounding effective medium.
The consistency condition is that the t matrix, averaged
over the potential distribution at site i, vanishes; this translates
into the self-consistent equation∫

P (V )
V − �(E)

1 − [V − �(E)]G0(E − �(E))
dV = 0, (12)

which clearly depends on the full probability distribution
of the potential. For weak disorder, the CPA reduces to the
SCBA, as is clear from Eq. (12) using the Taylor expansion
1/(1 − x) � 1 + x, with x = (V − �)G0(E − �). As the
disorder strength increases, however, higher-order terms in the
expansion become important and all moments of the potential
distribution (cubic, quartic, etc.) will start to play a role. Hence,
in general, the CPA yields more accurate results than the
SCBA, as previously known for the Anderson model with
a random-box potential [21,22]. By substituting the rhs of
Eq. (1) in Eq. (12) and performing the integration over V , we
obtain

e−u[Ei(u) − iπ ] = gV0, (13)

where g = G0(E − �), u = [1 + g(V0 + �)]/(gV0), and
Ei(u) is the exponential integral function defined as Ei(u) =
−P

∫ ∞
−u

dte−t /t , with P being the principal value. Equa-
tion (13) can be easily solved numerically by a root-searching
algorithm for the complex variable � or, again, by an iteration
scheme.

The SCBA and CPA results for the self-energy are shown in
Fig. 3 as dotted and solid lines, respectively. The most striking
observation is that the CPA gives excellent predictions, almost
in perfect agreement with our numerical results. Hence, this
approximation can be safely used in the SCTL to compute
the phase diagram of the Anderson model with a potential
distribution typical of optical speckles. In contrast, the SCBA
is a rather poor approximation, even at moderate disorder
strength.

By construction, in the SCBA the real (imaginary) part of
the self-energy is an odd (even) function of the energy and
of the potential strength. We see in Fig. 3 that this feature
disappears in the CPA, due to the asymmetry of the Rayleigh
distribution, Eq. (1). In particular, for a fixed disorder strength,
the imaginary part of the self-energy is much larger (in
modulus) around E = 6 as compared to E = −6, suggesting
that disorder scattering is much stronger in red speckles.

The dependence of the self-energy on the speckle color is
most evident in the atomic limit, either for V0 � 1 or E �
1, where all states are deeply localized. By neglecting the
tunneling term in the Hamiltonian, one is left with a single-site
problem. The disorder-averaged Green’s function then takes
the simple form

G(E) =
∫

P (V )
1

E − V + i0
dV. (14)
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FIG. 4. (Color online) Density of states as a function of energy
for three different values of the disorder strength V0 = 1 (black,
first from the top at E = 0), V0 = 5 (blue), and V0 = 10 (red).
Dots correspond to the exact numerical results for system sizes M3

with M = 28 (for V0 = 1), and M = 16 (for V0 = 5,10). The CPA
predictions, shown as solid lines, are in excellent agreement with the
numerical data, reproducing very well the existence of an effective
band edge at low energy. Only some tiny features above the band
edge are not correctly reproduced. The dashed lines correspond to
the strong disorder (atomic limit) approximation, Eq. (17), and are
reasonably accurate except near the low-energy effective band edge.
The dotted lines are the large-energy asymptotic limit, Eq. (18).

By substituting the rhs of Eq. (1) in Eq. (14) and performing
the integration over V , we find

G(E) = 1

eV0

[
f

(
E

V0

)
− iπe−E/V0�(E + V0)

]
, (15)

where

f (x) = P
∫ +∞

−1

e−z

x − z
dz. (16)

The self-energy, calculated from Eqs. (15) and (16), is shown
in Fig. 3 for V0 = 5 as a dashed line, and we see that it agrees
with the exact numerics at high energies.

We stress that the exact energy spectrum is bounded from
below by E = −6 − V0, which implies that the imaginary
part of the self-energy (�′′) is strictly zero below this value.
However, numerical results show that there are very few
states immediately above E = −6 − V0, in the so-called
Lifshitz tail, where �′′ is extremely small. It only raises at
a significantly larger energy E ≈ −8.4 for V0 = 5 (while
−6 − V0 = −11)—see Fig. 3 or Fig. 4 below. Thus, there
is an effective band edge which is higher than the rigorous
band edge. Both the SCBA and the CPA, being insensitive to
Lifshitz tails, have a band edge below which �′′ vanishes. We
see in Fig. 3 that the CPA band edge is in excellent agreement
with exact numerics, while the SCBA band edge is displaced
towards negative energies.

B. Density of states and band edge

In Fig. 4 we plot the averaged density of states (DOS)
ρ = −Im G(E)/π calculated within the CPA for increasing
values of the disorder strength, compared to exact numerical
values obtained from the self-energy using Eq. (7). Again, the
agreement between the CPA and exact numerics is very good.
As disorder increases, the peak in the DOS shifts towards
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negative energies and becomes strongly asymmetric [23]. In
particular, the DOS develops exponential tails [decaying as
exp(−E/V0)] at high energies, whereas at negative energies
it vanishes more and more sharply with increasing V0. In the
atomic limit V0 � 1, the density of states has been computed
in Ref. [23] [Eq. (19)] and is simply given by the convolution of
the disorder-free density of states ρ0(E) by the on-site potential
distribution, Eq. (1):

ρ(E) =
∫

ρ0(x)P (E − x)dx. (17)

For V0 � 1, the width of the disorder-free band (energy range
[−6,+6]) is negligibly small, and we obtain

ρ(E) = 1

eV0
e−E/V0�(E + V0), (18)

in agreement with Eq. (15). At high energy, the convolution,
Eq. (17), reduces to the simple exponential tail, Eq. (18). In
Fig. 4, we show the numerically computed density of states
compared to the prediction of Eq. (17), and its high-energy
asymptotic limit, Eq. (18). While the agreement is fair even
down to moderate values of the disorder strength (such as V0 =
5), some deviations exist near the low-energy effective band
edge, as discussed in Ref. [23]. We mention that the density
of states of atoms in spatially correlated speckle potentials
has been studied both numerically and analytically in one
dimension [24].

We now turn our attention to the effective band
edge and derive analytical formulas for the SCBA and
the CPA predictions for weak disorder. The unperturbed
Green’s function is first expanded around the unperturbed
band edge E = −6, yielding G0(E) = G0(−6 + Ẽ) � A + B√

−Ẽ, where A=G0(−6)=(14
√

6 + 20
√

3 − 24
√

2 − 36)K2

((2−√
3)(

√
3 − √

2))/π2 ≈ −0.252 731 and B = 1/(4π ) ≈
0.079 577. Substituting this expression in Eq. (11) gives the
self-consistent equation

� = V 2
0 (A + B

√
� − Ẽ). (19)

For weak disorder, we can replace the self-energy in the rhs
of Eq. (19) by its leading term, � = V 2

0 A, which is real. As a
consequence, the self-energy can only become complex if the
argument of the square root in Eq. (19) becomes negative, that
is, Ẽ = �. This means that the SCBA band edge is given by
ESCBA

BE = −6 + AV 2
0 + O(V 4

0 ). It is possible to get the next
order term—note that by construction of SCBA, only even
powers of V0 appear—by using Eq. (19). By bringing the term
proportional to A to the left-hand side (lhs) and taking the
square of both sides, we find that � satisfies the following
quadratic equation:

�2 − (
2AV 2

0 + B2V 4
0

)
� + A2V 4

0 + B2V 4
0 Ẽ = 0. (20)

The band edge then corresponds to the energy value at which
the discriminant vanishes. This gives

ESCBA
BE = −6 + AV 2

0 + B2

4
V 4

0 + O
(
V 6

0

)
, (21)

which is shown in Fig. 5 with the red solid line.
Let us now focus on the CPA band edge. By setting z = gV0,

y = g�, and x = V/V0, the self-consistent Eq. (12) for the

0 1 2 3 4
V

0

-10

-9

-8

-7

-6

E

FIG. 5. (Color online) Band edge EBE plotted as a function of
disorder strength, calculated within the SCBA (red squares) and
the CPA (black circles). Solid lines refer to the corresponding
approximate analytical expressions, Eqs. (21) and (26), obtained for
weak disorder. The exact transfer-matrix results for the mobility edge
are also shown (green diamonds).

CPA self-energy can be written as

y = z

e

∫ +∞

−1

e−xx

1 − xz + y
dx. (22)

The argument in the integral is expanded in powers of y up to
the quadratic term,

y � z

e

∫ +∞

−1
e−xx

(
1

1 − xz
− y

(1 − xz)2
+ y2

(1 − xz)3

)
dx

= f0(z) + f1(z)y + f2(z)y2, (23)

where fi(z) are functions of z defined in the interval [−1,0].
For small values of z, f2(z) � z2, implying that y = F (z) +
O(z6), where

F (z) = f0(z)

1 − f1(z)
. (24)

By inserting the asymptotic expansion of the Green’s func-
tion g � A + B

√
� − Ẽ in the formula � � F (gV0)/g and

Taylor-expanding the rhs, we find with the same level of
accuracy that

� � F (AV0) + F ′(AV0)BV0

√
� − Ẽ

A + B
√

� − Ẽ
. (25)

Repeating the same procedure as above, we obtain the
following approximate formula for the CPA band edge:

ECPA
BE = −6 + F (AV0)

A
+

[
F ′(AV0)V0

A
− F (AV0)

A2

]2
B2

4

+O
(
V 6

0

)
. (26)

This formula, shown in Fig. 5 with the black solid line,
reproduces very well the numerical results (open circles) for
the CPA band edge at small disorder. By using the Taylor
expansion F (z) = z2 + 2z3 + 7z4 + 34z5 + O(z6), one can
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obtain the expansion of the CPA band edge in powers of V0:

ECPA
BE = −6 + AV 2

0 + 2A2V 3
0 +

(
B2

4
+ 7A3

)
V 4

0

+ (2AB2 + 34A4)V 5
0 + O

(
V 6

0

)
. (27)

Note that odd-power terms, which are absent in the SCBA,
appear due to the asymmetry of the Rayleigh potential
distribution, and that the fourth-order term in Eq. (27) is
different from the SCBA result, Eq. (21).

IV. SELF-CONSISTENT THEORY OF ANDERSON
LOCALIZATION

Starting from the weak-localization corrections to the
conductivity (or to the diffusion constant), the SCTL provides
a useful microscopic justification of the Ioffe-Regel criterion
k
 ≈ C for the onset of localization in 3D continuous models,
C being a model-dependent constant of order unity. Both the
wave number k and mean free path 
 depend on the energy E,
but not in any simple way. Indeed, the usual relation—in the
absence of disorder—between k and E,E = ε(k) is no longer
correct in the vicinity of the mobility edge (strong-scattering
regime), and there is no unique way of defining k(E) and

(E). In the simplest approximation, one may assume that
the dominant effect of strong disorder is to shift the band
edge and dispersion relation by the real part of the self-energy
�′, so that, for example, k(E) is nothing but k0(E − �′(E)),
where the “0” subscript refers to disorder-free quantities. As
for the broadening of the spectral function (related to the
imaginary part �′′), it is approximately symmetric and thus
expected to have a negligible effect on averaged quantities. For
lattice models, which have an anisotropic dispersion relation,
k becomes a vector quantity so that the Ioffe-Regel criterion
cannot be used straightforwardly. A simple generalization has
been proposed in Ref. [25] that reads

S0(E − �′)
(E)2 = 4πC2, (28)

where S0(E) is the area of the surface ε(k) = E in momentum
space,

S0(E) =
∫

|∇kε|δ(E − ε(k))d3k. (29)

The mean free path can be written as 
(E) ∼ v(E)τ (E), where
v(E) = v0(E − �′) is the average modulus of the particle
velocity, defined as

v0(E) = 1

S0(E)

∫
|∇kε|2δ(E − ε(k))d3k, (30)

and τ (E) is the relaxation time due to disorder, which is related
to the imaginary part of the self-energy as

τ = − 1

2�′′ . (31)

Then Eq. (28) reduces to

S0(E − �′)v0(E − �′)2

�′′2 = 16πC2. (32)

Note that for continuous systems with a “massive” dispersion
relation, E = k2/2m, one has S0(E) = 8πmE and v0(E) =

-10 -5 0 5
E

0
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0

FIG. 6. Prediction of the self-consistent theory of localization—
see Eq. (32)—for the mobility edge of the Anderson model with
a Rayleigh potential distribution, using the CPA self-energy (solid
line). The open circles correspond to the transfer-matrix results of
Fig. 2. The dashed line represents the band edge calculated from
CPA, neglecting Lifshitz tails.

k0/m = √
2E/m, so that Eq. (32) indeed reduces to the Ioffe-

Regel criterion.
Equations (29), (30), and (32) allow one to extract the

complete phase diagram of the Anderson model once the
CPA self-energy has been computed from Eq. (12), and a
reasonable choice for the constant C in Eq. (32) has been
made. For the random-box potential distribution, Pbox(V ) =
�(W/2 − V )/W , this constant was chosen [25] to reproduce
the well-known transfer-matrix result W = Wc = 16.5 for
the critical disorder strength at the center of the band (E =
0). Inserting the box distribution in Eq. (12) for the CPA
self-energy, one obtains �box(E = 0) = 0 − i4.7011 for W =
16.5, which yields, using Eq. (32), the constant Cbox = 0.775.
For definiteness, we will calculate the mobility edge for
the spatially uncorrelated speckle potential using the same
constant, that is, we set C = Cbox. Other choices of the constant
will produce qualitatively similar results.

In Fig. 6, we compare the SCTL predictions (solid line) with
the transfer-matrix results obtained in Sec. II. We see that the
SCTL reproduces the overall shape of the exact phase diagram.
In particular, the generalized Ioffe-Regel criterion, Eq. (32),
provides a natural explanation for the behavior of the mobility
edge at positive energies. Indeed, we see from Fig. 3 that near
E = 6 the imaginary part of the self-energy �′′ is rather large,
or equivalently, the relaxation time in Eq. (31) is rather short.
As a consequence, S0(E − �′) must therefore increase, which
means that Ec will move towards the center of the band, where
S0(E) takes its maximum value, S0(0) = 92.8756.

In Fig. 6, one can also see cusps in the SCTL mobility
edge occurring at E = −9.14 for V0 = 11.22 and, although it
is less evident, at E = −0.83 for V0 = 6.86. These features
are related to the presence of Van Hove singularities [26] in
the DOS of the clean system at E = ±2. Indeed, at the cusp
positions, the real part of the self-energy satisfies E − �′ =
−2 and E − �′ = 2, respectively.

Another interesting feature of Fig. 6 is that the mobility edge
at negative energies remains very close to the CPA band edge,
even for moderate disorder. This can be easily understood:
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In the immediate vicinity of the effective band edge ECPA
BE ,

the density of states and dispersion relation are very similar
to the ones of the disorder-free system near the disorder-free
band edge E = −6, meaning that they can be obtained from
the disorder-free quantities by the shift E → E − EBE, where
EBE = ECPA

BE . This shift is slightly different from the one in
Eq. (32), i.e., using �′, although the two quantities coincide up
to order V 4

0 (see above). Using EBE is a better approximation,
however, as it ensures that the density of states exactly vanishes
at E = EBE. Thus, close to the effective band edge, one has
approximately the average velocity (the effective mass of the
Anderson model is m = 1/2)

v0(E − EBE) � 2k(E), (33)

with k(E) = √
E − EBE, whereas the area of the constant-

energy shell is

S0(E − EBE) � 4πk(E)2. (34)

It also follows that the imaginary part of the self-energy in the
Born approximation, Eq. (10), behaves as

�′′(E) = −V 2
0 k(E)

4π
. (35)

This is in agreement with the square-root behavior of �′′(E)
above the CPA band edge observed in Fig. 3. It also means
that at low energy the mean free path is proportional to 1/V 2

0
and independent of energy. Inserting Eqs. (33)–(35) in the
generalized Ioffe-Regel criterion, Eq. (32), yields

Ec − EBE =
(

CV 2
0

4π

)2

. (36)

Therefore, in the weak disorder limit V0 
 1, the effective
band edge is shifted to the left of E = −6 proportionally to
V 2

0 , while the distance to the mobility edge is much smaller,
scaling as V 4

0 .

V. CONSEQUENCES FOR ANDERSON LOCALIZATION
OF COLD ATOMS

A direct implementation of the spatially uncorrelated 3D
Anderson model with cold atoms would require one to create
a tight cubic optical lattice so that only the first band is
populated, an ultracold gas so that kBT is much smaller than
the bandwidth (proportional to the tunneling rate between
neighboring sites), and a speckle potential with a correlation
length much shorter than the lattice spacing. Meeting all these
requirements in current experiments seems rather difficult.

From the present study, one can nevertheless draw a
few conclusions about the Anderson localization of massive
particles in realistic optical speckles, as realized in recent
experiments. Because of finite-range correlations, the disorder
strength V0 must be compared to the other characteristic
energy scale, namely, the “quantum” correlation energy Eσ =
�

2/mσ 2, σ being the correlation length. A thorough discussion
of the various possible regimes can be found in Ref. [3].
Especially, the effective band edge and the distance of the
mobility edge to the effective band edge were found to scale
as V 2

0 and V 4
0 , respectively, in agreement with our results

(with, however, a caveat—see below). In the “quantum”

0 2 4 6
V

0

-2

0

2

4

E
+

6

FIG. 7. (Color online) Zoom-in of the phase diagram (see Fig. 2)
for blue (circles) and red (squares) speckles at the bottom of the band.
The shape is qualitatively similar to the one obtained for spatially
correlated speckles in Ref. [7], pointing out the crucial role played
by the on-site potential distribution P (V ).

regime, V0 
 Eσ , the de Broglie wavelength of the particle
is much larger than the correlation length of the potential,
and it is reasonable to expect speckles to essentially behave
as δ-correlated potentials. Very recent unpublished work [27]
shows that the phase diagram for atoms in an optical lattice
exposed to an additional speckle potential with a correlation
length shorter, but not much shorter, than the lattice spacing is
qualitatively very similar to our result.

In Fig. 7 we reproduce the portion of the phase diagram
near E = −6, calculated in Sec. II for blue and red speckle
potentials. Because of the above-mentioned symmetry be-
tween the phase diagrams of blue- and red-detuned speckles
under the transformation E → −E, the red points are nothing
but the data of Fig. 2 near E = +6 for a blue-detuned speckle,
with the sign of the energy reversed. Several features of
previous numerical calculations [7] for speckle potentials with
isotropic correlations are recovered:

(i) At very low V0 
 Eσ , for both blue- and red-detuned
speckles, the mobility edge lies below the average potential.

(ii) For larger V0 and blue-detuned speckle, the mobility
edge goes to lower and lower energy.

(iii) In contrast, for a red-detuned speckle, the mobility
edge has a turning point and becomes larger than the average
potential energy.

However, we stress that a strict mapping of the Anderson
model on the behavior of a massive particle is not possible for
realistic speckle potentials. Indeed, as discussed in Ref. [3], the
correlation function of the speckle potential has a long-range
tail (decreasing not faster than 1/r2 at a large distance). As
a result, the integral of the correlation function diverges, im-
plying that the “white-noise” limit, which could be associated
with a purely uncorrelated potential, does not exist. Thus, even
if the qualitative behaviors are similar, quantitative differences
are expected.

VI. SUMMARY AND CONCLUSION

In conclusion, we have carried out a thorough analy-
sis of the 3D Anderson model for spatially uncorrelated
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random potentials, i.e., potentials with a correlation length
much shorter than the lattice spacing, obeying the Rayleigh
probability distribution Eq. (1). We have shown that the
asymmetry in the mobility edge of cold atoms exposed to blue
and red speckles, as recently found numerically in spatially
correlated isotropic potentials [7], is directly related to the
asymmetry of the Rayleigh distribution under the change
V → −V . Finally, our work points out the crucial importance
of a correct evaluation of the single-particle Green’s function
in speckle potentials, as a necessary condition to apply
the self-consistent theory of localization. We hope that our
results will stimulate further work to generalize the coherent-

potential approximation to spatially correlated speckle
potentials.
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