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Superfluid phases of fermions with hybridized s and p orbitals
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We explore the superfluid phases of a two-component Fermi mixture with hybridized orbitals in optical lattices.
We show that there exists a general mapping of this system to the Lieb lattice. By using simple multiband models
with hopping between s- and p-orbital states, we show that superfluid order parameters can have a π -phase
difference between lattice sites, which is distinct from the case with hopping between s orbitals. If the population
imbalance between the two spin species is tuned, the superfluid phase may evolve through various phases due
to the interplay between hopping, interactions, and imbalance. We show that the rich behavior is observable in
experimentally realizable systems.
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I. INTRODUCTION

Multiband effects are important in understanding a variety
of quantum many-body phenomena such as high-temperature
superconductivity, fractional quantum Hall phases, and topo-
logical matter in general [1–4]. In the context of ultracold
gases, excellent opportunities of experimentally exploring
multiband phenomena in a controlled way have emerged in
recent years. Optical lattices naturally have multiple bands,
and quantum systems in the excited bands of optical lattices
have been experimentally realized. Müller et al. [5] transferred
ultracold bosons into the p band of the lattice and observed how
coherence was established between atoms. Recently Zhai et al.
prepared bosons in the d band [6]. Closely related to the work
presented in this article are the experiments [7–9] exploring
excited band condensates in a bipartite optical lattice, and [10]
studying pairing between different parity orbital fermions.
Bosons in the flat band of a Lieb lattice were realized very
recently [11].

These experimental possibilities have inspired considerable
amount of theoretical work on multiband effects in optical
lattices. Naturally, in other contexts the volume of work
on multiband effects is much larger; here we mention only
examples of results related to ultracold gases. For example, it
has been argued that since higher bands of an optical lattice
typically have larger bandwidths, higher critical temperatures
for antiferromagnetic ordering may be realized [12]. The idea
is probably mentioned in many places and is based on the fact
that in perturbation theory the Hamiltonian ends up having
a prefactor tunneling squared over coupling. In the p-band
tunneling can be larger so the characteristic energy over tem-
perature scale can be higher in the absolute sense. (Quote from
Wu et al. [12]: “We also show that in the strongly correlated
regime the Néel temperature for p band antiferromagnetism
is 2 to 3 orders of magnitudes higher than that of s band,
which is much more promising to be attained in cold atom
experiments.”) It has also been suggested by Dutta et al. [13]
that strong interactions and multiband effects can give rise to
self-assembly of nontrivial lattices for topological insulators.
Topological semimetals and chiral superfluidity with s-wave
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interactions have been predicted [14,15] in multiorbital models
where orbitals with different symmetries interact. There is also
extensive theory literature on both p-band bosons [16–19]
and fermions [20] with many studies focusing on the strong
coupling regime [21,22]. Furthermore, oscillating order pa-
rameters in fermionic systems have been predicted due to
coupling between s and p orbitals [23], or in pure p-orbital
systems [24,25].

Motivated by these advances, in this article we explore the
physics of attractively interacting two-component fermions
with multiple bands. In particular, we wish to understand
how an unequal number of different fermionic species and
the tunneling properties of p orbitals influence the formation
of s-wave pairing order parameters in such systems.

We first solve a simplified model with just two sites which
indicates possibilities of different superfluid phases, some
with a spatially varying order parameter phase factor. We
then demonstrate that in many respects, the results from this
toy model are realized by a bipartite lattice where s and p

orbitals in different sublattices hybridize [26]. Such a lattice
has been experimentally demonstrated by Wirth et al. [7] who
studied Bose-Einstein condensation on the excited bands of
such a lattice and found nontrivial ordering of the condensate
phase. This ordering is due to the fairly complex interplay
between tunneling properties of different orbitals and on-site
interactions between atoms.

We outline the expected phase diagram for fermions at
the mean-field level and find a possibility of a π -phase
superfluidity where the sign of the order parameter varies
between sublattices. Such possibility was raised by Iskin [27]
in the context of a checkerboard lattice, but it turned out that
in that system this possibility was not realized. Somewhat
related phenomena have also been discussed in studies
exploring FFLO phases in lattices [28–31], in multiorbital
models [23,25], or in two-dimensional (2D) systems without
a lattice [32].

This paper is organized as follows: We start, in Sec. II,
by discussing the lattice we consider in some detail and
we especially elaborate on the sign changes that occur in
the hopping parameters, due to the different orbital states.
Consequently, in Sec. III, we introduce interactions and
the possibility of a pairing instability. We first study a
simplified, dispersionless model to examine what kind of
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pairing instabilities can occur. Subsequently, in Sec. IV, we
study a more complex system, resembling an experimentally
realizable system. The numerical results are presented in
Sec. V. Finally in Sec. VI, we conclude with a summary and
discussion.

II. SIMPLE MODEL WITH HYBRIDIZED ORBITALS

We consider fermions in two different (pseudo)spin states,
↑ and ↓, occupying bipartite lattices with sublattices A and
B. Here, the fermions on sites of the A sublattice are in the
s-orbital state, whereas the particles in the B sublattice occupy
a p-wave orbital state, where the number of the different
p orbitals is equal to the dimension of the lattice. In this
section, we study first noninteracting fermions occupying a
one-dimensional (1D) and consequently a two-dimensional
lattice, where we denote the orbitals on the B sublattice by p

or px and py , respectively. Our goal here is to elucidate how
systems with hybridized s and p orbitals are connected to and
differ from systems with s orbitals only.

A. One dimension

Due to the different orbital states on the two sublattices,
the hopping coefficients are also different for particles moving
in opposite directions. To be more specific, we first focus on
the one-dimensional case. There, the hopping coefficient for
a particle moving from an A to a neighboring B site in the
positive x direction, t

sp
+x , has an opposite sign to the one in the

opposite direction, t
sp
−x , which is due to the odd parity of the p

orbital. The hopping coefficients for the particles moving back
from the B to the A sublattice are the same, t

sp
+x = t

ps
−x and

t
sp
−x = t

ps
+x , since they correspond to the same overlap integral.

Apart from the sign difference the hopping coefficients are the
same, t

sp
+x = −t

sp
−x ≡ t . Thus, the nearest neighbor hopping

Hamiltonian for the one-dimensional case reads

H 1D
K = −t

∑
n,σ

[
ψ̂s†

σ,nψ̂
p
σ,n − ψ̂

p†
σ,n+1ψ̂

s
σ,n + H.c.

]
, (1)

where ψ̂
j†
σ,n creates a (pseudo)spin state |σ 〉 fermion with

orbital j at unit cell n and a unit cell contains one A and one
B site [see Fig. 1(a)]. The first term thus describes hopping
within a unit cell, while the second describes hopping across
unit cells.

It is instructive to Fourier transform the above Hamiltonian
Eq. (1), in a few steps:

H 1D
K = −t

∑
k,σ

[
ψ̂

s†
σ,kψ̂

p

σ,k − eik2dψ̂
p†
σ,kψ̂

s
σ,k + H.c.

]

= −t
∑
k,σ

[
(1 − e−ik2d )ψ̂s†

σ,kψ̂
p

σ,k + (1 − eik2d )ψ̂p†
σ,kψ̂

s
σ,k

]

= −t
∑
k,σ

2i sin(kd)
(
ψ̃

s†
σ,kψ̃

p

σ,k − ψ̃
p†
σ,kψ̃

s
σ,k

)
, (2)

where d is the lattice spacing, which is taken equal to one here.
A transformation in the fermionic operators was made in the
last line, ψ̃

p

σ,k = exp[−ikd]ψ̂p

σ,k and ψ̃s
σ,k = ψ̂s

σ,k .

FIG. 1. The lattice we study in one dimension (a), where on the B

lattice sites the p orbitals are sketched. Hopping within the specified
unit cell is denoted by a full line, whereas hopping to the neighboring
unit cell is denoted by a dashed line. In (b) the mapping from the s-p
lattice to the lattice with s orbitals only is shown.

B. Mapping p to s orbitals

Although the Hamiltonian in Eq. (1) and its Fourier
transform in Eq. (2) look quite different from the Hamiltonian
describing fermionic particles in a 1D lattice with only
s-orbital sites, it turns out that these two are more similar
than they seem. We show this connection by transforming
the Hamiltonian with alternating hoppings to a hopping
Hamiltonian without sign changes [see Fig. 1(b)]. First, Eq. (1)
can be rewritten by splitting the summation over the unit cells
in a sum over the even and odd unit cells, after which the
Hamiltonian reads

H 1D
K = −t

∑
m,σ

[
ψ̂

s†
2m,σ ψ̂

p

2m,σ + ψ̂
s†
2m+1,σ ψ̂

p

2m+1,σ

− ψ̂
p†
2m,σ ψ̂s

2m+1,σ − ψ̂
p†
2m+1,σ ψ̂ s

2m+2,σ + H.c.
]
,

where the summation over m runs over half of the values that
n in Eq. (1) runs over. Consequently, the following unitary
transformation can be used

ψ̃
j

2m,σ = ψ̂
j

2m,σ , ψ̃
j

2m+1,σ = −ψ̂
j

2m+1,σ , (3)

with j = s,p. This yields for the Hamiltonian,

H 1D
K = −t

∑
m,σ

[
ψ̃

s†
2m,σ ψ̃

p

2m,σ + ψ̃
s†
2m+1,σ ψ̃

p

2m+1,σ

+ ψ̃
p†
2m,σ ψ̃s

2m+1,σ + ψ̃
p†
2m+1,σ ψ̃ s

2m+2,σ + H.c.
]

= −t
∑
n,σ

[
ψ̃s†

n,σ ψ̃p
n,σ + ψ̃p†

n,σ ψ̃s
n+1,σ + H.c.

]
,

which is the hopping Hamiltonian for particles in a 1D lattice
with only s-orbital sites. In Fourier space the same transfor-
mation boils down to making a shift in the quasimomentum of
the operators, ψ̂

j

k,σ = ψ̃
j

k−π/(2d),σ . After subsequently shifting
all quasimomenta by +π/(2d) the Hamiltonian reads

H 1D
K = −t

∑
k,σ

[
(1 − e−ik2de−iπ )ψ̂s†

k,σ ψ̂
p

k,σ

+ (1 − eik2deiπ )ψ̂p†
k,σ ψ̂s

k,σ

]
= −t

∑
k

2 cos(kd)
(
ψ̃

s†
k,σ ψ̃

p

k,σ + ψ̃
p†
k,σ ψ̃s

k,σ

)
, (4)

053616-2



SUPERFLUID PHASES OF FERMIONS WITH HYBRIDIZED . . . PHYSICAL REVIEW A 92, 053616 (2015)

FIG. 2. (a) The s-p lattice in two dimensions, where on the B

lattice sites the px and py orbitals are sketched. Hopping within the
specified unit cell is denoted by a full line and to the neighboring unit
cells by a dashed line. (b) Illustration of the two decoupled lattices.
On the left the full lattice is sketched and the two different hopping
routes for the particles are denoted by full and dashed lines, which
are shown as separate lattices in the middle and right. (c) Mapping
from the s-p lattice to the lattice with s orbitals only.

where the same transformation as before has been used in the
last step.

Although there thus exists a simple mapping between the
s-p Hamiltonian and the s orbitals only lattice, from Eq. (4) it
is also clear that they are not exactly the same, the difference
being the dispersions of the particles. The different dispersions
result in a number of differences between the two systems, such
as different momentum distributions and Fermi momenta. The
latter can in turn give rise to different properties of possible
superfluid phases.

C. Two dimensions

In a two-dimensional system the lattice sites of the B

sublattice contain two p orbitals, px and py (denoted by x

and y in sub- or superscripts, respectively) [see Fig. 2(a)]. The
presence of two p orbitals changes the hopping physics yet
a bit more compared to the one-dimensional case. Namely,
a particle that moves from the A to the B sublattice in the

x direction, ends up in a px orbital state. Since the overlap
integral between the px orbital and the neighboring s orbitals
in the y direction vanishes, this particle can only move along
the x direction, and similarly for particles moving from the
A to the B sublattice in the y direction. In other words,
t
sy
±x = t sx±y = 0 due to the odd parity of the p orbitals. In the

absence of interactions, this results in effectively two hopping
sublattices, illustrated in Fig. 2(b), which both have the Lieb
lattice geometry. The hopping Hamiltonian in two dimensions
reads

H 2D
K = −t

∑
n,σ ;α∈{x,y}

[
ψ̂s†

σ,nψ̂
α
σ,n − ψ̂

α†
σ,n+αψ̂s

σ,n + H.c.
]
, (5)

where a unit cell contains one site from the A and one from
the B sublattice [see Fig. 2(a)], and the second term in the
summation now describes hopping to the next unit cell both in
the x and y direction, denoted by n + x and n + y, respectively.

The Fourier transform of the hopping Hamiltonian for the
two-dimensional system is

H 2D
K = −t

∑
k,σ ;α∈{x,y}

2i sin(kαd)
(
ψ̃

s†
σ,kψ̃

α
σ,k − ψ̃

α†
σ,kψ̃

s
σ,k

)
, (6)

where d is again the lattice spacing and the same transfor-
mation in the fermionic operators has been used as in the
one-dimensional case Eq. (2).

D. Mapping px and py to s orbitals

Also in a two-dimensional system a mapping can be made
from the s-p lattice discussed above to a lattice containing only
s-orbital states. The mapping from a square lattice containing
both s and p orbitals is to the Lieb lattice containing only s

orbitals [see Fig. 2(c)]. Actually, the two hopping sublattices
both map to a Lieb lattice. Since they are uncoupled, the
Hamiltonian in Eq. (5) can also be written as the sum of the
two hopping Hamiltonians of the sublattices,

H 2D
K = HK1 + HK2,

where both HK1 and HK2 have the same form as Eq. (5), but
both now sum over half of the unit cells [see Fig. 2(b)]. Just as
before, the summation can be split in a sum over the even and
odd unit cells, which for HK1 reads

HK1 = − t
∑

m,σ ;α∈{x,y}

[
ψ̂

s†
σ,2mψ̂α

σ,2m + ψ̂
s†
σ,2m+1ψ̂

α
σ,2m+1

− ψ̂
α†
σ,2m+αψ̂s

σ,2m − ψ̂
α†
σ,(2m+1)+αψ̂s

σ,2m+1 + H.c.
]
.

After using the same transformation for the fields as in the
one-dimensional case, Eq. (3), the Hamiltonian reads

HK1 = −t
∑

m,σ ;α∈{x,y}

[
ψ̃

s†
σ,2mψ̃α

σ,2m + ψ̃
s†
σ,2m+1ψ̃

α
σ,2m+1

+ ψ̃
α†
σ,2m+αψ̃s

σ,2m + ψ̃
α†
σ,(2m+1)+αψ̃s

σ,2m+1 + H.c.
]

= −t
∑

n′,σ ;α∈{x,y}

[
ψ̃

s†
σ,n′ψ̃

α
σ,n′ + ψ̃

α†
σ,n′+αψ̃s

σ,n′ + H.c.
]
,

where the summation over n′ runs over half of the values
that n runs over in the full 2D Hamiltonian, Eq. (5). The
above Hamiltonian now describes particles hopping in a
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two-dimensional Lieb lattice with s-orbital sites only. The
same transformation can be made for HK2. As in the one-
dimensional case, the dispersions describing particles in the
lattice with both s and p orbitals are of sine form [see Eq. (6)],
while particles in the Lieb lattice with only s orbitals have
a cosine dispersion. The Lieb lattice has been studied in
the context of cold gases as well [33,34], where interesting
phenomena result from the lattice exhibiting flat dispersions,
so-called flat bands. Recently, Bose-Einstein condensation of
atoms in a Lieb lattice was experimentally studied by Taie
et al. [11].

III. PAIRING

In the previous section we studied particles in bipartite
lattices and looked in detail at the effect of the different orbitals
on the hopping. To explore the role of parity further, in this
section we include on-site interactions between the fermionic
particles in the one-dimensional lattice. We specifically look at
pairing instabilities that can arise due to attractive interactions
and study the different superfluid phases that occur in this
system. This section is meant as an instructive example, since
the notion of a superfluid in one dimension is more complicated
than the definition we use here.

The interaction Hamiltonian reads

H 1D
I =

∑
n

(
U0ψ̂

s†
↑,nψ̂

s†
↓,nψ̂

s
↓,nψ̂

s
↑,n + U1ψ̂

p†
↑,nψ̂

p†
↓,nψ̂

p

↓,nψ̂
p

↑,n

)
,

(7)

where we consider attractive interactions, U0,1 < 0, which in
general can be different. We use a mean-field approximation
and include Cooper pairs �0 = U0〈ψ̂s

↓,nψ̂
s
↑,n〉 and �1 =

U1〈ψ̂p

↓,nψ̂
p

↑,n〉, such that the total Hamiltonian reads

H 1D = H 1D
K + H 1D

I

= −|�0|2
U0

− |�1|2
U1

− 2μ↓ +
∑

k

�̂
†
kHBCS�̂k, (8)

where μσ is the chemical potential for fermions in spin state
|σ 〉 and where the matrix HBCS in the Nambu basis with �̂

†
k =

(ψ̂s†
k↑,ψ̂s

−k↓,ψ̂
p†
k↑ ,ψ̂

p

−k↓) becomes

HBCS =

⎛
⎜⎜⎜⎝

−(μ + h) �0 −itεk 0

�∗
0 μ − h 0 itεk

itεk 0 −(μ + h) �1

0 −itεk �∗
1 μ − h

⎞
⎟⎟⎟⎠, (9)

with the average chemical potential μ = (μ↑ + μ↓)/2 and
where the possibility of having an imbalance in the population
of the two spin components is included via a chemical potential
difference h = (μ↑ − μ↓)/2. For the spin-down sector we
used ε−k = sin(−k) = −εk for the dispersions in the hopping
Hamiltonian Eq. (2) and we set d = 1. In order to write the
total Hamiltonian using matrix multiplication, the spin-down
fields have been interchanged. In the usual BCS theory this
would result in extra terms εk − μ↓ [35], whereas here only
the 2μ↓ in Eq. (8) stems from interchanging fermionic fields.
This is due to the alternating signs for the hoppings, meaning
that the two dispersions coming from interchanging spin-down

fields cancel each other. It is assumed in the above Hamiltonian
that there is no energy offset between the A and B lattice sites.

To understand the different phases that can occur in this
system, we first neglect the momentum dependencies of the
particle dispersions by setting them all equal to one, εk = 1,
for simplicity. By diagonalizing the above Hamiltonian the
four quasiparticle dispersions �ωi are obtained, which apart
from the usual |�0|2 and |�1|2 terms, now also contain mixed
terms, such as �0�1. Consequently, the partition function
can be obtained Z = Tr[exp(−βH )], from which in turn the
thermodynamic potential can be calculated � = − ln Z/β,
where β = 1/kBT is the inverse thermal energy, with kB

Boltzmann’s constant [35]. For our system the thermodynamic
potential reads

�1D(�0,�1) = −|�0|2
U0

− |�1|2
U1

− 2μ↓

− 1

β

4∑
i=1

ln(1 + e−β�ωi ). (10)

We now minimize the thermodynamic potential �1D with
respect to the two pairing fields �0 and �1 at half filling and
zero temperature T = 0. A global minimum at �0 = �1 = 0
corresponds to a phase without Cooper pairs, which is the
normal phase, whereas a global minimum of �1D at nonzero
values for the pairing fields corresponds to a superfluid phase.
We take the interactions at the two sublattices to be equal, U0 =
U1 = U , and map out the phase diagram as a function of the
interaction strength U/t and chemical potential difference h/t

[see Fig. 3(a)]. Without imbalance and interactions the system
is in the normal state (�3). For a large enough interaction,
but still without a population imbalance, the thermodynamic
potential is minimized by nonzero and equal pairing fields
�0 = �1 
= 0, which we refer to as the SF0 phase (�2). This
in contrast to the so-called π phase, which we call here the
SFπ phase, where �0 and �1 have the opposite sign. For
large enough imbalance h the thermodynamic potential is
indeed minimized by nonzero �0 and �1 having opposite
signs and the ground state of the system is the SFπ phase.
We find both an SFπ phase where the pairing fields have
equal magnitude (�4), |�0| = |�1|, and an SFπ phase with
unequal pairing fields (�5). For even larger imbalances h

the system enters the normal state again (�6). We find that
most of the above phase transitions take place with the order
parameters changing discontinuously, suggesting first-order
phase transitions. The exceptions are between �2 and �3 at
U = 2t , and between �4 and �5 at U = 4t , where the pairing
fields change continuously. In the above mentioned SF0 phase
the two pairing fields �0 and �1 take the same value, which
means a constant total pairing field throughout the lattice. This
corresponds to a homogeneous superfluid phase, like in the
usual BCS theory. Interestingly, in the SFπ phases the pairing
fields take different values on the different sublattices and the
corresponding phase is not a homogeneous superfluid phase.

Because we neglected the momentum dependencies in the
Hamiltonian in Eq. (9) and consequently ended up with a
thermodynamic potential without momentum integrals it is
possible to even find analytic expressions for the minima of
the thermodynamic potential � and the pairing fields, �0 and
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FIG. 3. (Color online) (a) Zero temperature phase diagram.
Dashed lines denote continuous phase transitions; all other transitions
are first order. (b) Local minima of �1D as functions of h at different
values of U . The different curves represent �1 − �6 in Table I, where
the color coding is the same as in (a). The dashed, dotted, and solid
curves are for the cases of SF0, SFπ , and normal phases, respectively.

�1, for which these minima are acquired. For half filling, we
list all possible local minima and the phase they correspond

to in Table I, together with the pairing fields. In Fig. 3(b),
we demonstrate the evolution of these local minima with
the chemical potential difference h for different interaction
strengths U . From this comparison the global minimum can
be identified, which is how the phase diagram in Fig. 3(a)
was obtained. Also listed in Table I for each phase are
the polarizations P , where the polarization is the difference
in densities between the two spin species divided by the
total density, P = (n↑ − n↓)/(n↑ + n↓). The spin component
densities can be calculated from the thermodynamic potential,
nσ = −∂�/∂μσ .

A. Connection between the inhomogeneous SFπ and LO phase

Thus, we find from the above simplified, one-dimensional
model with alternating signs for the hopping parameter,
corresponding to a lattice with alternating s and p orbital
sites, that in the presence of an imbalance between the two spin
components the ground state of the system can be formed by
an inhomogeneous superfluid phase, the SFπ phase. Namely,
in contrast to a homogeneous superfluid phase, the SF0 phase,
where the pairing field is constant throughout the system, in
the SFπ phase the pairing field changes with position in the
lattice.

We can compare the SFπ phase to another inhomogeneous
superfluid phase, the so-called Larkin-Ovchinnikov (LO)
phase [36]. In an LO superfluid the order parameter is also
taken to be position dependent and specifically to be a cosine,
where the wave vector q is left as a free parameter,

�(x) = �LO cos(qx).

This Cooper pair ansatz results in a thermodynamic potential
that depends both on the pairing field amplitude �LO and the
wave vector q, �(|�LO|,q) [37]. Physically, the above Cooper
pair ansatz corresponds to pairs formed by two fermions with
different momenta, e.g., ψ̂k↑ and ψ̂q−k↓. The order parameter
wave vector is equal to the net momentum q of the pairs and its
wavelength is thus inversely proportional to it, λLO = 2π/q.

Now, if the LO wavelength is twice the lattice spacing,
λLO = 2d, the LO phase in a lattice strongly resembles the
SFπ phase we find, where the pairing fields �0 and �1

only differ in sign (�4) (see Fig. 4). Namely, the LO order
parameter then takes the same value �LO, but with opposite
sign, on neighboring sites. The SFπ phase where the pairing
fields also have a different magnitude (�5) can be viewed
as a combination of a constant and a standing wave order
parameter. In both cases, the SFπ phase corresponds to LO
Cooper pairs with a net momentum of q = π/d, such as ψ̂k↑

TABLE I. Possible local minima of the thermodynamic potential �1D in Eq. (10) and their corresponding conditions at half filling, μ = 0,
for equal interactions U0 = U1 = U . The polarization P is also shown for each phase.

�1 �2 �3 �4 �5 �6

SFπ (metastable) SF0 (P = 0) N (P = 0) SFπ (P = 1/2) N (P = 1)

0 � h � U/2 − t 0 � h � U/2 0 � h � t |h − t | � U/4 0 � h � U/2 0 < t � h

0 < t < U/2 0 < t < U/2 0 < U/2 � t 0 < U/4 � t 0 < t < U/4 0 < U

�0 = U/2 �0 = √
U 2/4 − t2 �0 = 0 �0 = U/4 �0 = U/4 + √

U 2/16 − t2 �0 = 0
�1 = −U/2 �1 = √

U 2/4 − t2 �1 = 0 �1 = −U/4 �1 = −U/4 + √
U 2/16 − t2 �1 = 0

� = −U/2 � = −2t2/U − U/2 � = −2t � = −h − t − U/8 � = −h − 2t2/U − U/4 � = −2h
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FIG. 4. LO order parameter and the SFπ phase order parameters.
For �4 the axes origin is at zero, whereas for �5 it is at some nonzero
value.

pairing with ψ̂π/d−k↓. The reason we can find this LO-like
superfluid phase, without taking it into account explicitly is
because in a lattice the above pair corresponds to two particles
with the same lattice momentum, k and −k, since π/d is the
size of the Brillouin zone for a lattice where a unit cell contains
two sites.

It is possible that if a full LO ansatz is taken into account
for this system, a standing wave with a different wavelength
λLO is found to be the ground state of the system. However,
the general statement remains true, that a spin imbalance can
result in an inhomogeneous superfluid phase.

Next we proceed to study a two-dimensional lattice, where
there are two different p orbitals on the B sublattice, and
we include the momentum dependence of the dispersions. In
that case, taking a full LO ansatz into account would be more
involved. Interestingly, we are still able to find inhomogeneous
superfluid phases in a rather simple manner, via the possibility
of the SFπ phase.

IV. EXPERIMENTALLY REALIZABLE SYSTEMS WITH
HYBRIDIZED ORBITALS

In order to demonstrate how the phases revealed in
the simple model can be observed experimentally, here we
introduce a concrete two-dimensional lattice which has been
realized recently by the group of Hemmerich [7] for ultracold
bosonic atoms. In their experiment, a checkerboard lattice is
created by two sets of orthogonal laser beams with shallow
sites on one sublattice (A) and deeper sites on the other
sublattice (B). By proper tuning of the relative depths of
the two sublattices a system can be created where the lowest
energy level of the A sites (the s band) are in resonance with
the first energy level of the B sites (the px and py bands). On
all sites of the B sublattice the s bands are fully occupied,
such that particles in the px or py band cannot relax to the
lowest band. We study the possibility of superfluid phases
for a two-component Fermi gas with a population imbalance
loaded into such a lattice. To this end, we use a Hamiltonian
that includes hopping between nearest neighboring sites and
attractive on-site interactions. We start by considering the full
lattice potential and arrive at an effective Hamiltonian by using
a tight binding approximation.

A. Tight binding approximation

The lattice potential used in experiment can be described
by

V (x,y) = −V0| cos(k0x) + eiθ cos(k0y)|2, (11)

where V0 is the average potential depth and k0 is the wave
vector determining the lattice spacing, k0 = π/d. In the
following we take the recoil energy ER = �

2k2
0/(2m) as the

unit of energy, and the distance between two adjacent minima
of A and B sites d as the unit of length.

If the lattice potential V0 is large enough, a tight binding
model can well describe the properties of the system. In this
approximation, the traps at shallower A and deeper B sites
can be taken as harmonic potentials by expanding the lattice
potential around each site as

V A ≈ −2V0(1 + cos θ ) + V0k
2
0(1 + cos θ )(x2 + y2)

≡ EA
0 + 1

2 �ω2
A(x2 + y2),

V B ≈ −2V0(1 − cos θ ) + V0k
2
0(1 − cos θ )(x2 + y2)

≡ EB
0 + 1

2 �ω2
B(x2 + y2),

where the energy levels of the oscillators are EA,B
n = E

A,B
0 +

�ωA,B(n + 1/2). The degeneracy of the harmonic oscillator
energy levels in two dimensions is n + 1 with corresponding
parity (−1)n. Based on these energy levels, the s band at the
shallow lattice sites EA

0 is in resonance with the px and py

bands on the deeper lattice sites EB
1 when EA

0 + �ωA/2 =
EB

0 + 3�ωB/2, which gives a relation between the lattice depth
V0 and the phase θ in Eq. (11). By numerically calculating
the energy bands from the full lattice potential, we find for a
lattice depth V0 = 10 that the energy bands are in resonance
for θ ≈ 0.556π , while from the harmonic oscillator energy
levels one finds θ ≈ 0.560π . This difference is small, which
ensures that the tight binding is a good approximation.

In the following, we focus on the above mentioned three
orbitals, s on the A sublattice and px and py on the B sublattice
in resonance with each other. The chemical potentials of the

FIG. 5. (Color online) (a) Lattice potential in Eq. (11) with V0 =
10 and θ ≈ 0.556π in one unit cell, with the shallower A site at
the origin and the deeper B sites at four corners. The bottom of the
potential at B sites is −24.67, while it is −15.33 for A sites. The
two arrows indicate nearest neighbor hopping. (b) Corresponding
dispersions of single-particle states along kx = ky .
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system are chosen such that at low enough temperatures other
bands are either fully occupied or empty and therefore play no
role in our present study on superfluidity.

The lattice potential in one unit cell and the corresponding
band structure obtained by solving numerically the single-
particle Schrödinger equation are shown in Fig. 5. There, the
lowest dispersion corresponds to the lowest energy band in the
B sublattice. The first three bands above this band are the bands
of interest, px , py , and s, hybridized by the hopping. The even
higher dispersions correspond to even higher energy bands
in the lattice. It can be seen that the three bands of interest

are well separated from the other bands and considering their
hybridization, the Hamiltonian term HAB corresponding to the
nearest-neighbour hopping can indeed be described by Eq. (5).

If we also include next nearest neighbor hopping, we can
write down a total single-particle Hamiltonian H0 in the basis
�̂

†
k = (ψ̂s†

k ,ψ̂
x†
k ,ψ̂

y†
k ),

H0 =
∑

k

�̂
†
kHK�̂k, (12)

with the matrix,

HK =

⎛
⎜⎝

εA
0 + 4t ss cos kx cos ky 2itxs sin kx 2itys sin ky

−2itxs sin kx εB
0 + 2txx cos kx cos ky 2txy sin kx sin ky

−2itys sin ky 2txy sin kx sin ky εB
0 + 2tyy cos kx cos ky

⎞
⎟⎠, (13)

where the on-site energy offsets ε
A,B
0 for A and B sites were

added.
The hopping coefficients and energy offsets can be obtained

by fitting the dispersions obtained from diagonalizing the
above Hamiltonian to the exact dispersions calculated numeri-
cally. As an example, for the hopping parameters we find txs =
tys ≈ 0.0747 and for the energy offsets εA

0 ≈ −11.42 and
εB

0 ≈ −11.41, in the case of lattice parameters V0 = 10 and
θ ≈ 0.556π , whereas the next nearest neighbor hoppings are at
least three orders of magnitude smaller. Therefore, it is possible
to use a reduced Hamiltonian with only nearest neighbor
hoppings t ≡ txs = tys and also, because ε

A,B
0 are almost the

same, they can be replaced by one parameter ε0. If we now
fit the dispersions obtained from the reduced Hamiltonian
with the exact dispersions, we find t ≈ 0.0751 and ε0 ≈
−11.42. The three dispersions of the new hybrid states are
E1

k = ε0 and E
2,3
k = ε0 ± 2t

√
sin2 kx + sin2 ky , which repro-

duce the numerical results very well (see Fig. 6). In the
following we will use the reduced Hamiltonian.

Here, it is worth pointing out that band E1 is exactly flat,
i.e., dispersionless, which results from the linear combination
of the px and py orbitals in the nearest-neighbor hopping
approximation. Actually, the dispersions depicted in Fig. 6 are
the same as the dispersions in the Lieb lattice, which illustrates
the mapping discussed in the previous section. A final remark
in this section is that the discussion above considers only the
orbital degrees of freedom, and is valid for both fermionic spin
species we consider.

B. On-site interactions

To study the possibility of a pairing instability, like previ-
ously, we now include interactions and study the different su-
perfluid phases that can occur in this two-dimensional system.

We include an attractive s-wave contact interaction,

HI = U

∫
drψ̂†

↑(r)ψ̂†
↓(r)ψ̂↓(r)ψ̂↑(r), (14)

where the interaction strength U < 0. By expanding the
fermionic operators using the Wannier states the interaction
Hamiltonian reads

U

∫
drψ̂†

↑(r)ψ̂†
↓(r)ψ̂↓(r)ψ̂↑(r)

≈ U
∑

R,{ni }

∫
drw∗

n1
(r − R)w∗

n2
(r − R)

×wn3 (r − R)wn4 (r − R)ψ̂n1†
R↑ ψ̂

n2†
R↓ ψ̂

n3
R↓ψ̂

n4
R↑

=
∑

R,{ni }
Un1n2n3n4ψ̂

n1†
R↑ ψ̂

n2†
R↓ ψ̂

n3
R↓ψ̂

n4
R↑, (15)

with ni denoting the s, px , and py orbitals and R the position
of the unit cell, and where we used the localizing property of
the Wannier functions. The effective interaction coefficients
Un1n2n3n4 absorb the corresponding cross integrals of four
Wannier functions and are independent of R since all unit
cells are equivalent in an infinite lattice. We use the harmonic
oscillator eigenstates as an approximation to the Wannier
functions to calculate the interaction coefficients. We only need
to consider combinations of the s band and the neighboring px

and py bands within one unit cell, since all other cross integrals
are at least four orders of magnitude smaller and can therefore
be neglected. The results of the dominant interaction integrals
are shown in Table II, where it is used that the absolute value
of a cross integral does not depend on the order of the Wannier
functions.

The effective coupling constants are defined U0 ≡ Ussss ,
U1 ≡ Uxxxx = Uyyyy , and U2 ≡ Uxxyy , where in the harmonic
approximation U1 = 3U2, independent of the lattice potential
depth. In the U2 interaction terms, the four orbitals yield six
different combinations, namely ψ̂

x†
↑ ψ̂

y†
↓ ψ̂

y

↓ψ̂x
↑ , ψ̂

x†
↑ ψ̂

y†
↓ ψ̂x

↓ψ̂
y

↑ ,

ψ̂
x†
↑ ψ̂

x†
↓ ψ̂

y

↓ψ̂
y

↑ , and these terms with x and y interchanged,
which are all included in our model.
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FIG. 6. Dispersions of the three hybridized states along (a) kx =
ky and (b) along kx with ky = 0, for the lattice with V0 = 10 and θ ≈
0.556π . The solid curves are exact dispersions solved numerically,
while the dashed curves are the fitted dispersions of the reduced
Hamiltonian with only two parameters ε0 and t .

Using a simple mean-field approximation we introduce
the BCS order parameters �nm ≡ ∑

k Umnnm〈ψ̂n
k↓ψ̂m

−k↑〉.
Considering the lattice symmetry, we have three different
pairing fields denoted as �0 = �ss , �1 = �xx = �yy , and
�2 = �xy = �yx . For example, for the U2ψ̂

x†
↑ ψ̂

x†
↓ ψ̂

y

↓ψ̂
y

↑
interaction term the mean-field approximation is as

TABLE II. Numerical values of Un1n2n3n4/U for the lattice with
V0 = 10 and θ ≈ 0.556π .

U0 ≡ Ussss U1 ≡ Uxxxx , Uyyyy U2 ≡ Uxxyy

4.51 4.04 1.35

follows:

U2ψ̂
x†
↑ ψ̂

x†
↓ ψ̂

y

↓ψ̂
y

↑

� U2〈ψ̂x†
↑ ψ̂

x†
↓ 〉ψ̂y

↓ψ̂
y

↑ + U2〈ψ̂y

↓ψ̂
y

↑〉ψ̂x†
↑ ψ̂

x†
↓

− U2〈ψ̂x†
↑ ψ̂

x†
↓ 〉〈ψ̂y

↓ψ̂
y

↑〉

= U2
�∗

1

U1
ψ̂

y

↓ψ̂
y

↑ + U2
�1

U1
ψ̂

x†
↓ ψ̂

x†
↑ − U2

|�1|2
U 2

1

= �∗
1

3
ψ̂

y

↓ψ̂
y

↑ + �1

3
ψ̂

x†
↓ ψ̂

x†
↑ − |�1|2

3U1
. (16)

For all other interaction terms the mean-field approximation is
similar.

With the mean-field pairing, we understand that there
are four interacting channels included in our Hamiltonian,
namely ψ̂

n†
↑ ψ̂

n†
↓ ψ̂n

↓ψ̂n
↑ (n = s,x,y) counts intraband pairing,

ψ̂
x†
↑ ψ̂

x†
↓ ψ̂

y

↓ψ̂
y

↑ yields interband pair tunneling, ψ̂
x†
↑ ψ̂

y†
↓ ψ̂

y

↓ψ̂x
↑

results in interband pairing, and ψ̂
x†
↑ ψ̂

y†
↓ ψ̂x

↓ψ̂
y

↑ corresponds
to spin exchange within interband pairs. However, as shown
below, the last two interband pairing terms turn out to have no
contribution.

C. Full Hamiltonian

Including the nearest-neighbor hopping and the pairing
terms, as well as a population imbalance, the total mean-field
Hamiltonian can be written with the Nambu basis �̂

†
k =

(ψ̂s†
k↑,ψ̂

x†
k↑,ψ̂

y†
k↑,ψ̂s

−k↓,ψ̂x
−k↓,ψ̂

y

−k↓),

H

N
=

∑
k

{�̂†
kHBCS�̂k + 3[ε0 − (μ − h)]}

− |�0|2
U0

− 8|�1|2
3U1

− 4|�2|2
U2

, (17)

with the matrix,

HBCS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0 − μ − h 2it sin kx 2it sin ky �0 0 0

−2it sin kx ε0 − μ − h 0 0 4�1/3 2�2

−2it sin ky 0 ε0 − μ − h 0 2�2 4�1/3

�∗
0 0 0 −ε0 + μ − h −2it sin kx −2it sin ky

0 4�∗
1/3 2�∗

2 2it sin kx −ε0 + μ − h 0

0 2�∗
2 4�∗

1/3 2it sin ky 0 −ε0 + μ − h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Accordingly, the thermodynamic potential reads

�(�0,�1,�2) = 1

V
∑

k

{
3[ε0 − (μ − h)] − 1

β

∑
i

ln[1 + e−βωi (k)]

}
− |�0|2

U0V
− 8|�1|2

3U1V
− 4|�2|2

U2V
, (19)

where V is the 2D volume of a unit cell, ωi(k) are the six eigenvalues from the 6 × 6 matrix in Eq. (18), and the quasimomentum
summation is over the first Brillouin zone.
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FIG. 7. (Color online) Dispersions ωi for (a) the SF0 phase and
for (b) the SFπ phase as functions of kx at fixed ky = 0, with the
parameters t ≈ 0.075 and ε0 = μ ≈ −11.42, and lattice parameters
V0 = 10 and θ ≈ 0.556π . (a) �0 ≈ 0.187 and �1 ≈ 0.185, which
minimize � at h = 0, U = 0.10, and T = 0.01, while in (b) the sign
of �1 is reversed to make a comparison between the SF0 and SFπ

phases.

V. RESULTS

From the thermodynamic potential Eq. (19) we can, like
earlier, obtain phase diagrams for the 2D lattice with s- and
p-orbital sites. We obtain phase diagrams as a function of
interaction U and imbalance h for different temperatures and
lattice parameters by minimizing � with respect to the order
parameters �0, �1, and �2. For the parameter regimes we
considered, we find that �2 is always zero by numerically
minimizing �. Subsequently, we calculate the momentum
distributions for the spin particles for the different phases we
find. But first we take a look at the dispersions.

A. Dispersions

The thermodynamic potential is calculated from the eigen-
values of HBCS in Eq. (18), ωi(k), which in the normal state
(�0 = �1 = 0) correspond to the particle dispersions and in
the case of a superfluid phase to the quasiparticle dispersions.
As in the 1D case, we find superfluid phases with both �0 and
�1 being nonzero, having either the same sign (SF0) or the

opposite sign (SFπ ). In Fig. 7 the dispersions ωi for the SF0

phase (a), and the SFπ phase (b), can be compared, where all
parameters were chosen the same to calculate these figures and
the only difference is an added minus sign to �1 for Fig. 7(b).
The flat dispersions are the same for the two cases.

The dispersions are shown for the population balanced
system. In the presence of a population imbalance, i.e.,
h > 0, the dispersions are shifted downwards(upwards) for the
spin-up(down) particles, which are then the majority(minority)
particles. Intuitively, it can then be understood from these
dispersions that depending on the imbalance it is energetically
more favorable to either occupy quasiparticle states corre-
sponding to the SF0 phase or to the SFπ phase. However,
to obtain the exact phase diagram of course the full thermo-
dynamic potential should be minimized, which is what we do
next.

B. Phase diagrams

We now present phase diagrams as functions of chemical
potential difference h and interaction strength U . Here, U is the
full interaction strength from which the effective interactions
U0 and U1 are calculated and is different from the interaction
coefficient used in the 1D case. By minimizing � with fixed
μ = ε0, we find numerically that �2 always vanishes, while
�0 and �1 have similar behavior as we found for the simple
1D model.

In Fig. 8 phase diagrams are shown for the lattice parameters
V0 = 10 and θ ≈ 0.556π at different temperatures. White
regions correspond to the normal phase, red to the SF0 phase,
and (darker and lighter) blue corresponds to SFπ phases. In
contrast to the 1D case, here the SFπ phase with �0 = −�1

(�4) is missing or at least highly reduced. The SFπ phase with
|�0| 
= |�1| (�5) splits into two phases, one with |�0| < |�1|
(SF1

π ) and one with |�0| > |�1| (SF2
π ). The split of this �5

phase was to be expected, since now U0 is not equal to U1 and
thereby the degeneracy between the two local minima of � is
lifted.

We also observe that, with increasing temperature, the
superfluid phases shrink towards the larger U and smaller h

FIG. 8. (Color online) Phase diagrams as functions of h and U for lattice parameters V0 = 10 and θ ≈ 0.556π at different temperatures.
In all phase diagrams the white region denotes the normal phase, red corresponds to the SF0, and blue to the SFπ phases. The crosses mark the
values for which the momentum distributions are calculated in Figs. 10 and 11.
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FIG. 9. (Color online) Phase diagrams as functions of h and U

for fixed temperature T = 0.01 at different lattice parameters. A
shallower lattice is considered in (a) with V0 = 8, θ ≈ 0.564π ,
t ≈ 0.110, ε0 ≈ −8.44, U0 ≈ 3.98U , and U1 ≈ 3.65U . A deeper
lattice is used in (b) with V0 = 12 and θ ≈ 0.550π , with t ≈ 0.0517,
ε0 ≈ −14.5, U0 ≈ 5U , and U1 ≈ 4.39U . As before, the white regions
denote the normal phase (N), red corresponds to the SF0, and blue to
the SFπ phases.

corner, with the SFπ phase completely disappearing for high
enough temperatures.

Furthermore, to study the effect of different hopping
parameters t , we change the lattice potential via V0 and θ ,
which can also be modified experimentally. In this way, the
parameters t and ε0 obtained from the fitting in the tight binding
model, as well as the effective interactions Ui , are modified.
We consider both a shallower lattice with V0 = 8 and a deeper
lattice with V0 = 12, where the phase diagrams for these two
cases are plotted in Figs. 9(a) and 9(b), respectively. The
lattice with V0 = 8 corresponds to a larger hopping coefficient
t ≈ 0.110 than previously, meaning that the other energy scales
in the Hamiltonian, the interaction U and the imbalance h,
become effectively smaller. The result is that the same phases
as before now occur for larger U and h, which can be observed
in the phase diagram Fig. 9(a). The deeper lattice with V0 = 12
corresponds to a smaller hopping t ≈ 0.0517 and we observe
the opposite effect. The superfluid SFπ phase region now shifts
towards smaller h and U .

C. Momentum distributions

As a possible experimental signature of the SF0 and SFπ

phases, we present the quasimomentum distributions of the
particles which can be observed experimentally. Since in
such experiment, the original spin particles rather than the
quasiparticles are observed, the particle distributions should be
obtained by rotating the quasiparticle basis back to the original
particle basis. This can be carried out by using the eigenvectors
of HBCS in Eq. (18), which form the transformation matrix S
that diagonalizes HBCS. Then, the particle occupation number
of the i th state reads

ni(k) =
∑

j

|Sij (k)|2
eβωj (k) + 1

, (20)

where ωj (k) are the eigenvalues of HBCS in Eq. (18). Within
the six bands given in the above equation, there are only three
independent distributions, since nk↑ + nk↓ = 1 at half filling.

FIG. 10. (Color online) Momentum distributions of the spin-up (top) and spin-down (bottom) particles averaged over the three bands as
functions of kx and ky in a lattice with parameters V0 = 10 and θ ≈ 0.556π for the points marked in Fig. 8(a). The temperature is T = 0.01, the
interaction is U = 0.10, and the chemical potential differences (a) h = 0.10 (SF0), (b) h = 0.14 (SF1

π ), (c) h = 0.17 (SF2
π ), and (d) h = 0.22

(normal state).
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FIG. 11. (Color online) The same as in Fig. 10 but at temperature T = 0.03, corresponding to the points in Fig. 8(b). Again the interaction
is U = 0.10 and now the chemical potential differences are (a) h = 0.10 (SF0), (b) h = 0.135 (SF1

π ), (c) h = 0.17 (SF2
π ), and (d) h = 0.22

(normal state).

Besides, since it is not possible to distinguish the original s

and p bands of each particle in a measurement, we present the
averaged occupations of the three bands for spin-up particles
and for spin-down particles.

Figure 10 shows the quasimomentum distributions for
the points marked in Fig. 8(a), with interaction U = 0.10,
temperature T = 0.01, and various values of the chemical
potential difference h. The distributions show smooth changes
as a function of the momenta. At zero temperature, these would
be sudden jumps corresponding to the Fermi surfaces of the
filled bands. It can be seen that the momentum distributions
are very different for the different phases. Especially, the
difference between the SF0 and SFπ phase is considerable.
Also the effect of the chemical potential difference on the
densities can be seen quite clearly. At low h, in Fig. 10(a),
the differences between the ↑ and ↓ distributions are very
small, meaning that the densities are similar. In contrast, at
a large value of h, in Fig. 10(d), the difference between
the ↑ and ↓ distributions is very large, corresponding to a
large polarization. The various shapes of the distributions
result from the interplay of the dispersions, being different
for the various phases (Fig. 7), the occupations of those levels,
which depend on the chemical potential difference h, and the
temperature.

The momentum distributions for the same interaction U =
0.10, but at a higher temperature T = 0.03 are shown in
Fig. 11 for various values of the chemical potential difference
h, marked in Fig. 8(b). It can be seen that the qualitative
differences between the momentum distributions for the
different phases are still there, although a bit smoothened
out compared to the T = 0.01 distributions. However, the
variations in the momentum distributions are now much larger,
making the experimental observation of these interesting
phases possible.

At even higher temperatures the variations in the distribu-
tions are even larger, but the qualitative differences between
them for the various phases are then completely smoothened
out. The quasimomentum distributions also change with

varying the interaction strength U . For the same phases the
distributions are qualitatively the same as the ones depicted in
Figs. 10 and 11. However, the variations in the distributions
for both spin components become smaller at larger interaction
strength and larger for smaller interactions U .

VI. CONCLUSION AND OUTLOOK

In conclusion, we studied lattices populated by two-
component fermions occupying both s- and p-orbital states
in both one and two dimensions. We showed how the system
in two dimensions can be mapped to a Lieb lattice. In one
dimension we used a simple mean-field calculation without
including the full dispersions of the particles and determined
the phase diagram, which shows two different superfluid
phases. One superfluid phase is a homogeneous superfluid
phase, while the other one is an inhomogeneous superfluid
phase, the so-called π phase, having similarities with the
LO superfluid phase. Consequently, we calculated the full
thermodynamic potential for an experimentally realizable
two-dimensional lattice within a mean-field theory and find
a similarly rich phase diagram. Also, we calculated the
momentum distributions for the two spin components in the
system, which could be observed experimentally.

Due to the hybridization of the s and p bands a flat band
appears in the system. Flat bands can be related to many
topological properties [38–40] and may be responsible for
the high Tc surface superconductor [3]. In future research, we
will focus on the flat dispersion entering in this theory and the
role of a flat band on pairing instabilities.
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Phys. Rev. Lett. 106, 095301 (2011).
[31] S. Chiesa and S. Zhang, Phys. Rev. A 88, 043624 (2013).
[32] S. Yin, J.-P. Martikainen, and P. Törmä, Phys. Rev. B 89, 014507
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