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Motivated by recent experiments on two-component systems, we investigate the ground-state phase diagram
of a mixture of two bosonic species by means of path-integral quantum Monte Carlo simulations by a two-worm
algorithm. The mixture is trapped in a square lattice at different filling conditions. Various quantum phases are
stabilized depending on the interplay between intra- and interspecies interactions and on the filling factors. We
show that the ground-state phase diagram at half-filling features a demixed superfluid phase and a demixed
Mott-insulator phase when the interspecies interaction becomes greater than the intraspecies repulsion, and
a double-superfluid phase or a supercounterflow otherwise. We show that demixing, characterized by spatial
separation of the two species, can be detected experimentally through the effects of anisotropy revealed by
time-of-flight images. We also study how demixing effects depend on the filling factor of the two components.
Finally, we find that the supercounterflow phase is preserved in the presence of unbalanced populations.
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I. INTRODUCTION

Mixtures of two bosonic species trapped in optical lattices
feature a variety of unprecedented effects and quantum phases
[1–25] resulting from the interplay between kinetic energy
and intra- and interspecies density-density interactions. In the
past decade, considerable theoretical work has been devoted to
investigating manifold properties of these systems. Different
aspects of the phase diagram have been studied by means of
generalized mean-field schemes [15–17], the Luttinger-liquid
picture [18], or perturbation methods [19]. Moreover, the effect
of phase separation [20,21], the study of quantum emulsions
and coherence properties of mixtures [22,23], and the shift
of Mott domains due to the presence of a second (superfluid)
species [24] along with the interpretation of this shift in terms
of polaron excitations [25] have been explored.

In the limit of large interactions, magneticlike phases
such as the incompressible double-checkerboard solid and the
supercounterflow have been predicted theoretically [1–3] at
total filling one and repulsive interspecies interaction, while
paired superfluidity has been found [4] in the case of attractive
interspecies interaction at equal integer filling of the two
components. These findings stimulated further investigation
of magneticlike phases including finite-temperature effects
[9,13], different optical lattice geometries [14] and dimension-
ality, and various interacting regimes [5–12,19]. Nevertheless,
over 10 years from the initial theoretical investigation of these
systems [1–3], their rich phase diagram still exhibits several
unexplored aspects that challenge theoretical and numerical
techniques, while its elusive character demands more sophis-
ticated experimental techniques for the observation of these
quantum phases.

The recent experimental realization of mixtures, either
combining two different atomic species [26,27] or using
the same atomic species in two different internal energy
states [28–31], has demonstrated how refined experimental
techniques allow one to control the model parameters, hence

reinforcing the interest in these systems. The possibility
to observe such new phases in real systems is strongly
affected by (i) the presence of the trapping potential which
introduces an undesired source of inhomogeneity, (ii) the fact
that their theoretic prediction is based on assuming rather
ideal conditions (such as, for example, species A and B
with the same boson numbers Na = Nb or large intraspecies
interactions), and (iii) the difficulty in reaching low enough
temperatures where such phases are expected. Concerning
points (i) and (ii), the experimental realizability of magnetic
phases has been analyzed in Ref. [32], leading to promising
results at least for the double-checkerboard phase. In Ref. [32]
it was shown that the double-checkerboard state can be found
for large but finite intraspecies interaction and for certain
parabolic confinements and particle number imbalance.

In this work, we reconstruct the ground-state phase diagram
of a mixture of two twin species (two bosonic components with
equal hopping parameters and equal intraspecies interactions)
at half-filling ν = 1

2 and determine under which conditions
the supercounterflow and demixed phases are stabilized. We
further explore demixing away from ν = 1

2 . Demixed phases
are characterized by spatial separation of the two species. So
far, demixing effects have been mainly studied in the context
of continuous systems [33–39] and Bose-Fermi mixtures
[40,41]. Here, we study demixing in a binary mixture of
bosons described by the two-component Bose-Hubbard model.
At ν = 1

2 we find a demixed superfluid (dSF) phase or a
demixed Mott-insulator (dMI) phase when the interspecies
interaction is greater than the intraspecies repulsion, and a
double-superfluid (2SF) phase or a supercounterflow (SCF)
otherwise. We characterize transitions to demixed phases by
introducing a suitable demixing parameter. Further significant
information is found by looking at the off-diagonal correlator
which allows one to design experimental observation of the
various phases through time-of-flight images. We also study
SCF away from ν = 1

2 and find that SCF is stabilized for
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commensurate total filling although the superfluid response
in the counterflow channel does depend on the population
imbalance. This paper is organized as follows. In Sec. II
we present our model and formalism. In Sec. III we discuss
the ground-state phase diagram at ν = 1

2 , supercounterflow
properties for unbalanced populations, and the demixing effect
at noncommensurate filling. Finally, in Sec. IV we conclude.

II. METHOD AND MODEL

We study a mixture of two bosonic species in a uniform
two-dimensional (2D) square optical lattice. The system is
described by the two-component Bose-Hubbard (BH) model:

H = Ha + Hb + Uab

∑
i

nainbi, (1)

where Uab is the interspecies repulsion, nai and nbi are the
number operators at site i for species A and B, and

Hc = Uc

2

∑
i

nci(nci − 1) − tc
∑
〈ij〉

c
†
i cj , (2)

with c = a,b denoting the bosonic species, and operators
ci and c

†
i satisfying the standard commutator [ci,c

†
i ] = 1.

Parameter Uc represents the intraspecies repulsion and tc is
the hopping amplitude for component c. The symbol 〈ij 〉
refers to summation over nearest neighboring sites. To further
simplify the number of free parameters, we work with twin
species; that is, we set Ua = Ub = U and ta = tb = t . We are
interested in exploring the phase diagram of model (1) as a
function of U/t and Uab/t with particular emphasis on the
supercounterflow and demixed phases. Our results are based
on large-scale path-integral quantum Monte Carlo simulations
by a two-worm algorithm [8,42,43]. Unless otherwise noted,
we perform simulations for system sizes L = 8, 16, 24, and
36 (we use the lattice step λ/2 as a unit length) and we work
at inverse temperature β = L/t which ensures that the system
is in its ground state.

III. RESULTS

Ground-state phase diagram at half-filling. The ground-
state phase diagram of model (1) is shown in Fig. 1 in
the U/t vs Uab/t plane. The 2SF phase features two U (1)
broken symmetries and is characterized by order parameters
〈a〉 �= 0 and 〈b〉 �= 0, or, equivalently, finite stiffness of the
total superfluid flow ρtot �= 0 and finite stiffness of the relative
superfluid flow ρSCF �= 0. The total and relative superfluid
stiffnesses are given by ρtot,SCF = 〈( �Wa ± �Wb)2〉/2β, where
the components of �Wa and �Wb are winding numbers of world
lines of species A and B [44]. The SCF phase restores one U (1)
broken symmetry and is characterized by the order parameter
〈ab†〉 �= 0 while 〈a〉 = 0 and 〈b〉 = 0, or, equivalently, zero
total superfluid stiffness, ρtot = 0, and finite relative superfluid
stiffness, ρSCF �= 0. The demixed phases are characterized by
spatial separation of the two components. This phenomenon
is observed whenever Uab > U (as found in Ref. [1] within
the isospin picture of bosonic mixtures for the Mott region).
A heuristic derivation of this condition for the case of generic
filling factor is given in the Appendix. In a demixed phase the
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FIG. 1. (Color online) Ground-state phase diagram of twin
bosonic species trapped in a uniform optical lattice at ν = 1

2 . Four
phases are stabilized: double superfluid (2SF), supercounterflow
(SCF), demixed Mott insulator (dMI), and demixed superfluid (dSF).
Symbols mark the phase boundaries as calculated from Monte Carlo
simulations (see text). Whenever not visible, error bars lie within the
symbol size. The inset shows the scaled total superfluidity ρtot as a
function of the interspecies interaction for system sizes L = 8, 16, 24,
and 36 and U/t = 20. The intersection between curves corresponding
to different system sizes gives the transition point for the 2SF-SCF
transition.

density distribution of the two components is anisotropic on the
lattice with density maxima of one species corresponding to
density minima of the other. The dSF features two U (1) broken
symmetries, but the two species occupy different regions of the
lattice. Finally, the dMI is an incompressible, insulating phase
where the two components are spatially separated. Overall,
2SF and dSF are conducting phases, while dMI and SCF are
insulating phases, although SCF supports flow in the so-called
particle-hole channel. In agreement with Ref. [45], we find that
demixing is observed as soon as Uab/t > U/t for any value of
U . It is also worth noting that in order to reach the insulating
phases, both intra- and interspecies interactions have to be
large enough. Indeed, for Uab/t � 13.5 (U/t � 15.5) the 2SF
(dSF) phase is stable for arbitrarily large U/t (Uab/t).

In order to extract the phase diagram shown in Fig. 1 we
measure superfluid stiffness in terms of winding numbers
statistics and the demixing parameter � (see below) which
depends on the density distribution. Both observables are
readily available within the path-integral formulation by the
worm algorithm. The demixing parameter is given by

� = 1

M

∑
i

[ 〈nai〉 − 〈nbi〉
〈nai〉 + 〈nbi〉

]2

, (3)

where 〈nci〉 is the quantum-thermal average of the density
of component c = a,b at site i. Parameter (3) is basically a
lattice average of the square of the imbalance of the local
species’ density. This parameter is different than the one used

in Ref. [33], D = [ 〈Na〉−〈Nb〉
〈Na〉+〈Nb〉 ]

2
, but gives the same information

about demixed phases.
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FIG. 2. (Color online) Demixing parameter � as a function of
Uab/t for U/t = 5, 10, and 15 (circles, squares, and triangles,
respectively) across the 2SF-dSF transition. A jump of 4 orders of
magnitude is clearly visible when Uab/t ∼ U/t , signaling the onset
of the demixed phase dSF at the expense of the 2SF phase.

In Fig. 1, solid circles correspond to the 2SF-SCF transition.
This transition belongs to the (2+1)-XY universality class.
Transition points are found using standard finite-size scaling
of ρtot as can be seen in the inset of Fig. 1 where we plot the
scaled total superfluidity as a function of interaction Uab/t

for system sizes L = 8, 16, 24, and 36 and U/t = 20. The
curves corresponding to different sizes intersect at the critical
point Uab/t = 14.9 ± 0.1. Both 2SF and SCF are stable for
Uab < U .

We detect the phase transition between 2SF and dSF
(squares in Fig. 1) by studying the behavior of the � parameter.
In Fig. 2 we show � as a function of Uab/t for U/t = 5, U/t =
10, and U/t = 15, circles, squares, and triangles, respectively.
A jump of 4 orders of magnitude is clearly visible when
Uab/t ∼ U/t, signaling the onset of the demixed phase dSF at
the expense of the 2SF phase. Further significant information
about the demixed phase is achieved by looking at the density
distribution of particles in the lattice. The quantum-statistical
average of the particle numbers 〈nai〉 and 〈nbi〉 is displayed
in Fig. 3. The x and y axes denote the x and y coordinates
on the lattice. The color code is displayed in the bar on the
right-hand side. Figure 3(a) refers to the 2SF case where the
density of each species is uniformly distributed in the lattice,
corresponding to the spatial coexistence of the two species.
Figure 3(b) refers to the dSF phase. Here, we clearly see that
the two components occupy spatially separated regions with
well-defined boundaries of a few lattice steps of thickness
where the two components coexist.

The dSF phase becomes unstable towards a dMI phase upon
increasing the intraspecies interaction (triangles in Fig. 1).
We compute the phase boundary by verifying the drop of the
SF density of each component for system sizes L = 8, 16,
and 24. While the dSF is characterized by two U (1) broken
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FIG. 3. (Color online) Quantum-statistical average of the particle
numbers 〈nai〉 and 〈nbi〉. The x and y axes denote the x and y

coordinates on the lattice. The color code is displayed in the the bar on
the right-hand side. (a) 2SF phase at U/t = 10 and Uab/t = 7 with
density uniformly distributed in the lattice. (b) dSF phase at U/t = 15
and Uab/t = 20 with two components occupying spatially separated
regions of the lattice. (c) dMI phase at U/t = 20 and Uab/t = 22
with two components occupying spatially separated regions of the
lattice. Compenetration between the two regions is noticeable.

symmetries over spatially separated regions, in the dMI phase
these symmetries are restored; that is, the system loses its off-
diagonal long-range (anisotropic) correlations and becomes
insulating. Investigating the details of this phase transition is
challenging. Finite-size scaling of the SF stiffness cannot be
performed in proximity of demixed regions since the statistics
of winding numbers is affected by the topography and the
(nonconnected vs connected) topology of demixed regions,
both of which depend on the initial conditions. The averaged
particle number within the lattice in the dMI phase is displayed
in Fig. 3(c) . Unlike the dSF phase [Fig. 3(b)], the boundaries
between the regions occupied by the two species tend to be
rough and irregular, and compenetration between the regions
is more pronounced due to the reduced mobility of bosons in
the dMI phase.

Finally the empty circles in Fig. 1 correspond to the SCF-
dMI transition. Upon entering the dMI the system restores the
U (1) broken symmetry characterizing the SCF. We measured
the � parameter and ρSCF across the transition line and,
similarly to the 2SF-dSF transition, we observe an increase
of about 3 orders of magnitude in �, while ρSCF goes to 0.

In Fig. 4 we show the computed momentum distribu-
tions nck = |φ(k)|2

∑
i,j eik(ri−rj )〈c†i cj 〉 [46] for species c =

a,b proportional to time-of-flight (TOF) images detectable
experimentally. Here φ(k) is the Fourier transform of the
Wannier function φ(r), which we do not compute here. TOF
profiles along x and y lattice directions within the first
Brillouin zone are plotted in Fig. 4 for the 2SF [panel (a)],
dSF [panel (b)], SCF [panel (c)], and dMI [panel (d)] phases.
Note that the TOF image of the SCF phase corresponds
to the one of the particle-hole pair. The insets show the
corresponding quantum-statistical average of the density of
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FIG. 4. (Color online) Momentum distributions nk in the first
Brillouin zone for the 2SF (a), dSF (b), SCF (c), and dMI (d)] phases.
The insets show the corresponding quantum-statistical average of the
density of the two components within the lattice. The dSF phase
shows an evident anisotropy along the x and y directions. This is
expected due to the anisotropy of the spatial separation.

the two components within the lattice. We observe different
profiles featuring the different quantum phases with an evident
detectable anisotropy of distributions nck along the x and y

directions for dSF phase. This is expected due to the anisotropy
of the spatial separation and represents a clear experimental
signature of the dSF phase. On the other hand the TOF image of
the dMI phase doesn’t reflect anisotropy of spatial separation
due to the absence of off-diagonal long-range order. In general,
we observe no differences in the momentum distributions
between the two species.

Noncommensurate filling. We now turn to studying model
(1) away from commensurate total filling where neither the
dMI phase nor the SCF phase exists. In particular, we are
interested in studying the properties of the dSF phase as a
function of the total filling n. We find that demixing effects are
still present at n < 1, although the spatial separation between
the two components A and B is not as pronounced as for
n � 1. This can be seen in Fig. 5, where we plot the demixing
parameter � as a function of n (circles). A substantial drop
in the value of � is observed for n < 1. This is due to the
presence of large regions in the lattice where A and B overlap,
as shown in the left inset of Fig. 5 where we plot the quantum-
statistical average of the densities of the two species at n =
0.3. This overlap region results from enhanced hopping of
particles which is responsible for larger fluctuations of 〈na,b〉.
For comparison, in the right inset of Fig. 5, we show the species
densities at n = 1.3. A net spacial separation between A and B
is observed. Despite this substantial drop in the value of � for
n < 1, we find that � is still a good indicator that demixing
has occurred. Indeed, � values in the 2SF phase (triangles in
Fig. 5) are still orders of magnitude smaller than those in the
dSF phase. These results suggests that demixing effects can be
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FIG. 5. (Color online) � parameter as a function of total filling
n for the dSF (circles, U/t = 10, Uab/t = 15, and L = 24) and
2SF (triangles, U/t = 10, Uab/t = 7, and L = 24) phases. Insets
represent the average densities of the two components for n = 0.3
(left) and n = 1.3 (right).

observed in the presence of an external harmonic trap where
a variation of n within the trap is present. See Supplemental
Material [47] for further details.

Unbalanced populations. We conclude by studying the SCF
phase in the presence of population imbalance. The SCF phase
can be stabilized at n = 1. Here we are interested in showing
that the SCF phase still exists with nonzero imbalance although
its robustness depends on the latter. In Fig. 6 we plot ρSCF

for different values of the ratio Nb/Na . We observe that the
SCF phase remains robust also for large population imbalance
although the largest superfluid response corresponds to the
balanced case.
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FIG. 6. (Color online) Supercounterfluidity stiffness as a func-
tion of Nb/Na (U/t = 20, Uab/t = 17, and L = 24). The dashed
line is a cubic polynomial least-square fit, while the dotted lines
represent 1-σ deviation contours from the fit.
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IV. CONCLUSION

Motivated by recent experiments on two-component sys-
tems, we investigated properties of a mixture trapped in a
2D optical lattice at different filling factors. We used path-
integral quantum Monte Carlo simulations by a two-worm
algorithm. At ν = 1

2 , we observed a dSF phase and a dMI
phase when the interspecies interaction becomes greater than
the intraspecies repulsion, and a dSF phase or a SCF phase
otherwise. Demixing was characterized by spatial separation
of the two components and manifested itself experimentally
with anisotropic TOF images. The latter were calculated for
selected examples, comparing the results for demixed and
non-demixed phases. Finally, we showed that the SCF phase
survives in the presence of population imbalance and trapping
potential (see Supplemental Material [47]). In the future, we
plan to investigate how finite temperature affects demixing.
Our preliminary results show that, in the dSF phase, thermal
fluctuations destroy demixing effects earlier than they destroy
superfluidity, leaving the system in a uniform superfluid phase.
Moreover, since preliminary results show that the demixing
parameter is sensitive to temperature, this suggests its possible
application as a thermometer for mixtures of ultracold gases.
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APPENDIX: A SIMPLE INTERPRETATION OF THE
DEMIXING EFFECT

The mixing-demixing effect can be interpreted in a simple
way for the dSF-SF transition at generic filling factor. In
a perturbative framework, where the energy contribution of
tunneling processes is assumed to be negligible, one should

compare the energy of the ground state with the two species
spatially separated to the energy of the ground state where the
two species coexist within the lattice. When the two species
occupy spatially separated regions of the lattice, Ra and Rb,
we assume that Ma (Mb) sites of Ra (Rb) are occupied by
bosons A (B), with ra (rb) sites containing n + 1 (m + 1)
bosons and Ma − ra (Mb − rb) sites containing n (m) bosons.
Note that the total number of sites is given by M = Ma + Mb

while the total numbers of particles are Na = Man + ra and
Nb = Mbm + rb. The nonuniform filling inRa andRb reflects
the SF character of the two species. The resulting energy reads

E0 = Ua

2
Man(n − 1) + Ub

2
Mbm(m − 1)

+Uaran + Ubrbm − μaNa − μbNb, (A1)

where the Uab-dependent term is absent due to the spatial
separation of the two species. The mixing effect is described
by the following: a boson is lost from each site of Ra (Rb)
occupied by n + 1 (m + 1) bosons while ra (rb) sites appear
in Rb (Ra) with m bosons B and one boson A (n bosons A
and one boson B). The Uab interaction term is now activated
and the resulting energy is

E′
0 = Ua

2
Man(n − 1) + Ub

2
Mbm(m − 1)

+Uab(ram + rbn) − μaNa − μbNb. (A2)

This mutual exchange of bosons between Ra and Rb repre-
sents the mixing process with the lowest-energy cost in the
minimum-energy scenario. The condition E0 < E′

0 (justifying
the transition from the uniform ground state to the demixed
state) implies that Uab(ram + rbn) > Uaran + Ubrbm, which
reduces to the well-known condition Uab > U for n = m and
Ua = Ub. This elementary argument is valid in the SF regime
due to its semiclassical character. It cannot be extended to the
transition from the dMI phase to the SCF phase where quantum
correlations and hopping processes play a prominent role.
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