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Effect of bound-state dressing in laser-assisted radiative recombination
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We present a theoretical study on the recombination of a free electron into the ground state of a hydrogenlike
ion in the presence of an external laser field. Emphasis is placed on the effects caused by the laser dressing
of the residual ionic bound state. To investigate how this dressing affects the total and angle-differential
cross section of laser-assisted radiative recombination (LARR) we apply first-order perturbation theory and
the separable Coulomb-Volkov continuum ansatz. Using this approach, detailed calculations are performed for
low-Z hydrogenlike ions and laser intensities in the range from IL = 1012 to 1013 W/cm2. It is seen that the total
cross section as a function of the laser intensity is remarkably affected by the bound-state dressing. Moreover,
the laser dressing becomes manifest as asymmetries in the angular distribution and the (energy) spectrum of the
emitted recombination photons.

DOI: 10.1103/PhysRevA.92.053426 PACS number(s): 34.50.Rk, 34.80.Lx, 32.80.Wr

I. INTRODUCTION

The recombination of a continuum electron into a bound
state of an atom or ion accompanied by the emission of
a photon is commonly called radiative recombination (RR).
This fundamental process can be observed in many laboratory
and astrophysical plasmas and in ion or electron storage
rings [1–3]. The cross section of this process and the energy and
angular distribution of the emitted recombination photons have
been studied extensively over the past decades in both theory
and experiment (see Refs. [3–5], and references therein). The
characteristics of the emitted radiation may change remarkably
after all if the electron and the nucleus are exposed to an
external laser field. This additional field can accelerate or
decelerate the electron before the recombination takes place
and hence may broaden the spectrum and also modify the
emission pattern of the recombination photons. It is of major
importance to understand these effects since laser-assisted
radiative recombination (LARR) is the third step in the process
of high-harmonic generation [6,7]. Moreover, the external laser
can cause a significant gain of the recombination yield, which
may support the generation of neutral antimatter [8–10].

Laser-assisted radiative recombination was studied in a
number of experiments (see, e.g., [11–15]). To understand the
evidence found in these experiments a number of theoretical
studies have been performed [6,7,16–18]. Up to now most
of these studies had been carried out in the context of the
strong-field approximation (SFA). In this theory, originally
introduced by Keldysh [16], Faisal [17], and Reiss [18], the
incident electron moves solely in the field of the external
laser while the laser influence is neglected for the final
bound electron. In recent decades several advancements of the
SFA approach were proposed. In particular, an extension was
developed to include the influence of the Coulomb field into
the description of the incident electron [19]. More recently,
first steps to include the laser influence on the residual
bound state in the theory either perturbatively or by means
of a Floquet expansion have been done [20–23]. Combining
these advancements, Shchedrin and Volberg [24] performed
a technical analysis of a theory where both the Coulomb
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distortion of the continuum wave function and the perturbative
dressing of the residual bound state were included. However,
up to now no calculations of the differential LARR cross
section have been presented respecting the influence of both
potentials on both electron states. Moreover, the effect of
bound-state dressing on two-color photoionization has been
discussed [25], but it was not analyzed in the context of LARR.
Therefore, in this paper we investigate in detail how the laser
dressing of the bound state affects the photon emission in
LARR. Our study is based on an S-matrix approach where we
account for the influence of both fields (laser and Coulomb) in
the representation of the initial and final electron states [21,24].
The incident electron is described by a separable Coulomb-
Volkov wave function, the final one by a perturbative expansion
of the laser-dressed bound state up to the first order. Using
this approach, outlined in Sec. III, we present results for the
angle-differential partial cross section in Sec. IV A and the total
cross section in Sec. IV B. We find that the total cross section
is typically enhanced due to the assisting laser field. Moreover,
the bound-state dressing significantly affects the angular and
the energy distribution of the recombination photons.

Atomic units are used throughout this paper (e = me = � =
1), except when stated otherwise.

II. GEOMETRY OF LASER-ASSISTED
RADIATIVE RECOMBINATION

Let us first discuss the geometry used for our description
of LARR. Figure 1 displays an atom in its rest frame. The
quantization axis (z axis) is chosen along the asymptotic
momentum of the incident electron p. The polarization vector
εL of the laser photon together with the electron momentum
p defines the xz plane. In this work we restrict ourselves to
coplanar geometries in which the propagation direction k of
the recombination photon lies also in the xz plane. Therefore,
we can characterize both the polarization of the laser photon
εL and the momentum k of the recombination photon solely
by their polar angles χ and θk with respect to the z axis.

III. THEORY

In this section we derive analytical expressions for the
cross-section LARR. This cross section can be expressed
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FIG. 1. (Color online) Geometry of laser-assisted radiative re-
combination. The z axis is given by the asymptotic momentum p
of the incoming electron. The xz plane is defined by p and the
laser polarization εL. The angle between these vectors is χ . The
recombination photon is assumed to be emitted in the xz plane and
therefore characterized by one angle θk .

in terms of the S-matrix element that is a measure for the
probability that a continuum electron with momentum p re-
combines into the bound state with quantum numbers (n,l,m)
accompanied by the emission of a single recombination photon
with frequency ωk and polarization ελ

k :

Snlm = −i

∫ ∞

−∞
dt〈ψnlm(r,t)|ei(ωkt−k·r)

(
ελ

k · ∇)|ψ p(r,t)〉. (1)

Here λ is the helicity of the recombination photon and
ψ p(r,t) and ψnlm(r,t) are the initial continuum and final
bound-state wave functions of the recombining electron. In
the nonrelativistic regime these wave functions are taken as
solutions of the time-dependent Schrödinger equation with
the Hamiltonian

Ĥ (t) = p̂2

2
− Z

r
+ AL(t) · p̂ + 1

2
AL(t)2, (2)

where p̂ is the electron momentum operator, Z the nuclear
charge, and AL(t) the vector potential of the external laser
field with frequency ωL and polarization εL. If the wavelength
λL of this field is much larger than the size of the atom a0, the
dipole approximation can be applied and the vector potential
written as

AL(t) = εLAL cos(ωLt). (3)

The corresponding electric field is then

EL(t) = εLEL sin(ωLt). (4)

The laser intensity IL in terms of the electric-field amplitude
EL = ωLAL is given by IL = cE2

L/4π .

A. Bound and continuum wave functions

In order to calculate the S matrix (1) of LARR we need
to know the bound- and continuum-state wave functions
ψnlm(r,t) and ψ p(r,t). Since no analytical solutions are known
for the Schrödinger equation with the Hamiltonian Ĥ (t)
[Eq. (2)], we will show below how approximations can be
derived for the initial continuum and final bound state of the
electron.

1. Separable Coulomb-Volkov continuum states

In Eq. (1) ψ p(r,t) describes the incident electron moving in
the superposition of the atomic and the external laser potential.

A well-established approach to approximate such a wave
function is to construct so-called separable Coulomb-Volkov
continuum states [26]. We briefly recall here the derivation of
this wave function that was originally introduced by Jain and
Tzoar [26].

We assume that the electron motion in the continuum is
mainly influenced by the external laser field. Therefore, the
starting point for the construction of ψ p(r,t) is the well-known
Volkov wave function

χ p(r,t) = ei p·r exp

[
−i

(
Eit + AL

ωL

εL · p sin(ωLt)

+ A2
L

2

∫ t

−∞
cos2(ωLτ )dτ

)]
, (5)

which is the exact solution of the Schrödinger equation for
an electron with kinetic energy Ei moving in a spatially
homogeneous laser field switched on adiabatically at t0 →
−∞. To additionally account for the relatively weak influence
of the Coulomb field we replace the plane term exp(ip · r)
in Eq. (5) by the continuum wave function φ p(r) of a
hydrogenlike atom [27]

ψ p(r,t) = φ p(r) exp

[
−i

(
Eit + AL

ωL

εL · p sin(ωLt)

)]

= (2π )−
3
2 exp

[
i

(
p · r − Eit − AL

ωL

εL · p sin(ωLt)

)]

× exp

(
πZ

2p

)

(1 − iZ/p)

× 1F1[iZ/p,1,i(pr − p · r)], (6)

but neglect all terms of the order ∼A2
L and higher. Here

1F1(a,b,z) and 
(z) are the confluent hypergeometric function
and the Gamma function, respectively.

This approximation (6) is valid as long as the asymptotic
electron momentum p is large compared to the momentum
transferred to the electron by the laser field [26,28]. As can be
seen from Eq. (2), this momentum transfer is quantified by the
laser vector potential AL(t). Therefore, the validity condition
reads

AL

p
= AL√

2Ei

� 1. (7)

For further discussion of the separable Coulomb-Volkov wave
function and its validity we refer the reader to the literature
(e.g., Refs. [26,28]).

2. Laser-dressed bound state

In the preceding section we derived the wave function
ψ p(r,t) for a continuum-state electron in a combined laser
and Coulomb field. We obtained ψ p(r,t) under the assumption
that the atomic field is much weaker than the laser one.
This is not the case if the electron is in a bound state.
The intensity of the Coulomb field for the ground state of
hydrogen is IC = (α2e/a0me)2c5ε0/2 = 3.5 × 1016 W/cm2,
which is much larger than any laser intensity discussed in
this paper. To derive the bound-state wave function, therefore,
we can treat the laser vector potential AL(t) perturbatively. In
first-order time-dependent perturbation theory ψnlm(r,t) can
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be written as [29,30]

ψnlm(r,t) = e−iEnt

[
φnlm(r) − AL

2

∑
n′l′m′

(
eiωLt

ωn′n + ωL

+ e−iωLt

ωn′n − ωL

)
〈φn′l′m′ |εL · p̂|φnlm〉φn′l′m′(r)

]
,

(8)

where in the second term we restricted the summation to
the bound-state solutions φnlm of the Schrödinger equation
for hydrogenlike ions and ωn′n = En − En′ is the energy
difference between the levels with principal quantum numbers
n and n′. Additionally, we assume that that the laser is not in
resonance with any atomic transition.

Even though Eq. (8) holds for any bound state, we restrict
ourselves to the 1s ground state, which is the dominant decay
channel. Moreover if this capture into the K shell is assisted
by an optical laser with frequency ωL � 10.2 eV � ωn′1, the
so-called soft-photon approximation is applicable [18,31] and
we can neglect ωL in the denominators in Eq. (8):

ψ1s(r,t) ≡ ψ100(r,t) = e−iEnt

(
φ100(r) − AL cos(ωLt)

×
∑
n′l′m′

1

ωn′1
〈φn′l′m′ |εL · p̂|φ100〉φn′l′m′ (r)

)
. (9)

To further simplify this expression we apply the Heisenberg
equation of motion for the unperturbed atomic Hamiltonian
Ĥ0 = p̂2/2 − Z/r and rewrite the matrix element

〈φn′l′m′ |εL · p̂|φnlm〉 = iωn′n〈φn′l′m′ |εL · r|φnlm〉 (10)

from velocity to length form. This allows us to perform the
summation in Eq. (9) over the states φn′l′m′ explicitly and to
finally obtain

ψ1s(r,t) = e−iE1tφ100(r)[1 − iALεL · r cos(ωLt)]. (11)

The first term on the right-hand side of Eq. (11) is the
unperturbed atomic wave function while the second term
(dressing term) is the perturbative correction due to the
external laser. This correction is proportional to ALr and
hence the approximation is valid as long as ALr � 1. In our
calculations for hydrogen we consider a characteristic length
r = a0 = 1 a.u.

B. Evaluation of the S-matrix element

With the wave functions describing the electron before
[Eq. (6)] and after [Eq. (11)] the capture in hand, we can
calculate the S matrix of LARR. By inserting these wave
functions into Eq. (1) we obtain for the recombination into
the ground state

S1s = −i

∫ ∞

−∞
dt〈ψ1s(r,t)|eiωkt

(
ελ

k · ∇)|ψ p(r,t)〉

= −i

∫ ∞

−∞
dt

∫
R3

d3r ei(E1−Ei+ωk)t [eiκ sin(ωLt)

+ iALεL · r cos(ωLt)eiκ sin(ωLt)]φ∗
100(r)

(
ελ

k · ∇)
φ p(r),

(12)

where we defined κ = ALεL · p/ωL. Moreover, we applied
the dipole approximation for the interaction of the emitted
recombination photon and the electron. In this approximation
k · r � 1, which is well justified for all cases discussed in this
paper.

The time integration in the second line of Eq. (12) can be
performed analytically if we make use of the Jacobi-Anger
expansion and its first derivative with respect to t :

eiκ sin(ωLt) =
∞∑

N=−∞
JN (κ)eiNωLt , (13a)

cos(ωLt)eiκ sin(ωLt) = 1

κ

∞∑
N=−∞

NJN (κ)eiNωLt , (13b)

where JN (κ) is the Bessel function of the first kind. The time-
integrated S matrix for the recombination into the ground state
then can be written as

S1s = −2πi

∞∑
N=−∞

δ(E1 − Ei + ωk − NωL)

×M (N)(AL,εL, p,Z), (14)

where the δ function provides for energy conservation and E1

is the binding energy of the ground state of the hydrogenlike
ion. In this notation the photon number N can be interpreted
as the number of laser photons that are absorbed (N > 0) or
emitted (N < 0) by the electron. Therefore, the S matrix (14) is
an infinite sum of partial matrix elements M (N)(AL,εL, p,Z),
each corresponding to a particular number N of ex-
changed laser photons. These partial matrix elements can be
written

M (N)(AL,εL, p,Z) = JN (κ)

(
MRR( p,Z) + NωL

εL · p
Mdr ( p,Z)

)
(15)

as the sum of two constituent matrix elements MRR( p,Z) and
Mdr ( p,Z),

MRR( p,Z) = Bελ
k · ep

p − iZ

(p2 + Z2)2

(
i Z

p
− 1

i Z
p

+ 1

)iZ/p

, (16a)

Mdr ( p,Z) = B

(
1 − i

Z

p

)
(Z − ip)−2iZ/p

(p2 + Z2)2−iZ/p

×
(
εL · ελ

k − 2(εL · ep)
(
ελ

k · ep

)2p2 − ipZ

Z2 + p2

)
,

(16b)

where B = 2πi
√

2Z5 exp(πZ/2p)
(1 − iZ/p) and ep =
p/p is the unit vector that points the initial asymptotic
electron momentum. The derivation of these constituent matrix
elements is shown in Appendix A.

Equation (16a) represents the standard matrix element of
laser-free radiative recombination, where AL = 0. In this case
κ = 0 and we get S1s = −2πiδ(E1 − Ei + ωk)MRR( p,Z).
The constituent matrix element Mdr ( p,Z) has its origin
in the laser-dressing contribution to the bound-state wave
function (11). By setting Mdr ( p,Z) = 0, therefore, we can
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readily investigate results for bound states uninfluenced by the
laser field. This splitting of the partial matrix element M (N)

into two parts is consistent with the findings of Shchedrin and
Volberg [24].

C. Differential and total LARR cross section

Up to now we discussed expressions (15) and (16) for
the partial matrix element M (N) of laser-assisted radiative
recombination into the ground state of a hydrogenlike system.
We can use these expressions to calculate the total and
angle-differential LARR cross sections. For example, the
angle-differential partial cross section for the recombination
of an electron accompanied by an emission or absorption of
N laser photons is given by

dσ
(N)
1s

d�k

= 4π2

c3p
ωk(N )

∑
λ

|M (N)|2. (17)

Here c is the speed of light in vacuum and �k the solid angle
into which the recombination photon is emitted. Moreover,
we assume that the polarization of the recombination photon
remains unobserved and hence sum over the helicity λ.

The frequency ωk of the recombination photon in Eq. (17)
is given by the conservation law

ωk(N ) = Ei − E1 + NωL. (18)

Since ωk is always positive, the photon number has to yield
the inequality N � Nmin = (Ei − E1)/ωL.

From Eq. (17) we can obtain the total cross section by
integrating over the solid angle �k and summing over the
photon number N from �Nmin
 to infinity:

σ1s = 4π2

c3p

∞∑
N=Nmin

∑
λ

∫
d�kωk(N )|M (N)|2. (19)

This cross section characterizes the probability to produce
a hydrogen ion by LARR. However, the sum in Eq. (19)
is infinite and not all terms contribute equally to the total
cross section. If we perform a stationary-phase analysis of
Eq. (12) (following Refs. [32,33]) we find that the partial
matrix element M (N) is nearly zero if |N | exceeds the cutoff
photon number

Ncut = ALp/ωL. (20)

Accordingly, if Ncut < |Nmin| we can take Nmin → −∞
without changing the result significantly.

IV. RESULTS AND DISCUSSION

A. Differential partial cross section

In the past LARR has been discussed mainly within the
SFA [19,34]. The laser influence on the bound state is neglected
in this approximation. Anyhow, we expect from previous
attempts [24] that the emission pattern and energy distribution
of the recombination photons is affected by the bound-state
dressing. Therefore, we use our theory to investigate these
effects and perform calculations for the angle-differential
partial cross section.

In Fig. 2 we show the differential partial cross section of
laser-assisted recombination into the 1s state of hydrogen. The

0.00

0.05

0.10

0.15

0.20

N = 0

IL = 1012 W/cm2

190 200 210 220 230 240

photon energy h̄ωk [eV]

0.00

0.05

0.10

0.15

0.20

d
iff

er
en

ti
al

p
ar

ti
al

cr
os

s
se

ct
io

n
d
σ

(N
)

1
s

/d
Ω

k
[m

b
/s

r]

N = 0

IL = 1013 W/cm2

FIG. 2. Angle-differential partial cross section (17) for the laser-
assisted recombination of an Ei = 200-eV electron and a hydrogen
nucleus (Z = 1) as a function of the recombination photon energy
ωk(N ). The calculations have been performed for a photon emission
angle θk = 175◦ and a laser polarization angle χ = 135◦. The laser
parameters are �ωL = 2 eV and IL = 1012 W/cm2 (top) and IL =
1013 W/cm2 (bottom). The dashed lines and triangles refer to the
results where the dressing of the target bound states is neglected. The
spectrum is discrete and the lines are only shown to guide the eye.

calculations have been carried out for a fixed photon emission
angle θk = 175◦ and an external laser (�ωL = 2 eV) with two
different laser intensities IL = 1012 W/cm2 (top panel) and
IL = 1013 W/cm2 (bottom panel). Results are shown with
(circles) and without (triangles) incorporation of the laser
dressing of the bound state. Of course, the LARR cross
section is only defined at the discrete energies ωk(N ) shown in
Eq. (18) and the solid and dashed lines are only shown to guide
the eye.

It can be seen in Fig. 2 that the spectrum is not just a single
line, as it would be for the laser-free radiative recombination,
but a distribution of photon energies. The width of this
distribution increases from about 18 eV for IL = 1012 W/cm2

to 46 eV for IL = 1013 W/cm2. This intensity-dependent
broadening of the spectrum can be understood from the scaling
of cutoff photon number Ncut that becomes larger as the
intensity increases [cf. Eq. (20)].

As can be seen from Fig. 2, the dressed and undressed
results behave quite differently as a function of ωk(N ). The
results obtained without bound-state dressing are almost sym-
metric around the field-free photon energy where N = 0. A
slight increase of dσ

(N)
1s /d�k towards higher photon energies

is caused by the prefactor ωk(N ) in Eq. (17) that scales linearly
but weakly with N . If, in contrast, the bound-state dressing is
included in the computations, the photon distribution becomes
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FIG. 3. Angle-differential partial cross section for the laser-assisted recombination of an Ei = 15-eV electron into the ground state
of hydrogen (Z = 1) as a function of the photon emission angle θk . The assisting laser has an intensity of IL = 1013 W/cm2 and the
frequency �ωL = 2 eV. Its polarization angle is χ = 65◦. Results are shown for four different recombination photon energies: In the top
row �ωk(N = −1) = 26.61 eV (left) and �ωk(N = 1) = 30.61 eV (right) while in the bottom row �ωk(N = −4) = 20.61 eV (left) and
�ωk(N = 4) = 36.61 eV (right). In all panels we show results obtained including (solid lines) and omitting (dashed lines) the bound-state
dressing in comparison.

strongly asymmetric. This can be explained by the fact that the
contribution of Mdr ( p,Z) increases with N , as can seen from
Eq. (15). For higher intensities, sidebands with larger photon
numbers are visible and therefore the asymmetries become
more pronounced.

Figure 2 displays the spectral distribution (17) of the
recombination photons for a fixed photon emission angle θk .
In order to investigate the θk dependence of dσ

(N)
1s /d�k we

present in Fig. 3 the angular distribution of the recombination
photons emitted during the recombination of 15-eV electrons
into the 1s state of hydrogen. The calculations were per-
formed for a laser with intensity IL = 1013 W/cm2, frequency
�ωL = 2 eV, and different energies of the recombination
photons: �ωk(N = −1) = 26.61 eV (top left panel), �ωk(N =
1) = 30.61 eV (top right panel), �ωk(N = −4) = 20.61 eV
(bottom left panel), and �ωk(N = 4) = 36.61 eV (bottom
right panel). Again we compare results obtained including
(solid lines) and neglecting (dashed lines) the bound-state
dressing. As can be seen from Fig. 3, the emission pattern
of the recombination photons is symmetric around 90◦ if
the bound-state wave function is assumed to be uninfluenced
by the laser. This behavior is easily understood by setting
Mdr ( p,Z) = 0 in Eq. (15). The LARR cross section (17) can be
written then as dσ

(N)
1s ∼ ∑

λ |ελ
k ep|2 = 1 − |epek|2 = sin2 θk

(see Ref. [27]). This angular distribution is independent of the
photon number N and therefore the same for all recombination

photon energies (cf. Fig. 3). However, a different angular
behavior occurs if the bound-state dressing is taken into
account. The constituent matrix element Mdr ( p,Z) contains
additional angular-dependent terms that lead to an asymmetric
shift of the angular distribution. This shift becomes larger for
higher photon numbers N that enter Eq. (15) as a prefactor of
Mdr ( p,Z). However, as can be seen from Fig. 2 and Eq. (20),
large-N contributions become visible only if IL or Ei is
sufficiently high.

B. Total cross section of LARR

In the previous section we showed that the differential
partial cross section (17) of LARR may be influenced
remarkably by the laser dressing of the residual bound atomic
state. This effect becomes more pronounced for higher photon
numbers N . As we have shown in Sec. III C, however, only the
channels with |N | � Ncut contribute to the cross section. Since
Ncut depends on the energy of the incident electron Ei and the
laser intensity IL, we expect that also the total cross section
as a function of Ei and IL is influenced by the bound-state
dressing. In order to study this we display in Fig. 4 the total
cross section (19) of LARR as a function of the incident
electron energy for three different nuclear charges Z. For
our calculations we set the laser intensity IL = 1013 W/cm2

and the frequency �ωL = 2 eV. Again we compare results
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FIG. 4. (Color online) Total cross section of laser-assisted ra-
diative recombination into the ground state of a hydrogenlike ion
as a function of the initial electron energy Ei for three different
nuclear charges (Z = 1, black line; Z = 2, blue line; and Z = 3,
red line). The calculations have been performed for a laser with
the intensity IL = 1013 W cm−2, laser photon energy �ω = 2 eV
and a polarization angle χ = 90◦. We show results calculated with
laser-dressed bound-state wave functions (solid lines) and results
where the bound-state dressing is neglected (dashed lines).

obtained with the laser dressing being neglected (dashed lines)
and taken into account (solid lines). From this comparison
we see that in the latter case the LARR cross section is
enhanced. This difference between the two cases (with and
without bound-state dressing) vanishes for increasing kinetic
energies of the incident electron. For example, for Z = 1 in the
low-energy regime at Ei = 5 eV, σ1s is increased by a factor
of 1.07. For Ei = 30 eV this factor is only 1.01.

Up to now we have discussed the total LARR cross section
σ1s as a function of the initial electron energy Ei for different
nuclear charges Z and IL = 1013 W/cm2. Beyond that we
expect that σ1s can also depend on the laser intensity. Figure 5
shows the total LARR cross section (19) as a function of the
laser intensity IL, again for three different nuclear charges
Z. Moreover, we present our results for two sets of initial
electron energies Ei = 5 eV × Z2 and Ei = 10 eV × Z2. We
apply this scaling of Ei to better illustrate how the dressing
effects depend on Z. Because the laser-free cross section is
defined solely by the Sommerfeld parameter ν =

√
Z2/2Ei ,

the Z dependence of the total cross section at a fixed Ei/Z
2

comes from the bound-state dressing only. Similarly to before,
we see in Fig. 5 that the effect of bound-state dressing decreases
with increasing energy Ei . Moreover, the effect of bound-state
dressing is decreased for higher nuclear charges Z. This is due
to the stronger binding of the electrons in the ground state of
the hydrogenlike ion.

It can be seen in Fig. 5 that the bound-state dressing
causes a qualitative different behavior of the total LARR cross
sections. The results obtained without bound-state dressing are
independent of the laser intensity while the full calculations
increase linearly with IL. To explain this behavior we insert
the partial matrix element (15) into Eq. (19) and perform
the summation over N . Since for the discussed scenario
Ncut < |Nmin| is satisfied, the sum can be extended to negative
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FIG. 5. (Color online) Total cross section for laser-assisted radia-
tive recombination into the ground state of a hydrogenlike ion as a
function of the laser intensity IL for ωL = 2 eV and three different
nuclear charges (Z = 1, black solid line; Z = 2, blue dashed line;
and Z = 3, red dotted line).The initial electron energy is normalized
with respect to the nuclear charge such that Ei/Z

2 = 5 eV (top) and
Ei/Z

2 = 10 eV (bottom). The polarization angle is χ = 90◦. For
comparison the laser-free case and the result obtained with undressed
bound-state wave functions are shown (black dot-dashed lines in the
top and bottom, respectively).

infinity. This enables us to use

∞∑
N=−∞

J 2
N (κ) = 1, (21a)

∞∑
N=−∞

N2J 2
N (κ) = κ2

2
, (21b)

∞∑
N=−∞

N2j+1J 2
N (κ) = 0 for j ∈ N0 (21c)

and to obtain the total cross section in the form

σ1s = 4π2

c3p

∑
λ

∫
d�k

[
(Ei − E1)|MRR|2

+ E2
L

2ω2
L

[(Ei − E1)|Mdr |2 + (εL · p)Re(M∗
RRMdr )]

]
.

(22)

From this expression we see that the total cross section scales
quadratically with the laser electric-field amplitude EL and
therefore linearly with the laser intensity IL. If in contrast the
bound-state dressing is neglected (Mdr = 0), the total cross
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section σ1s does not depend on IL. Moreover, in this case
Eq. (22) reduces to the standard laser-free RR cross section.
This implies that, within the present model, the assisting
laser affects the total cross section solely via the bound-state
dressing.

V. SUMMARY

In this paper we presented a theoretical study of the
recombination of a free electron into the ground state of a
hydrogenlike ion in the field of an external laser. We put special
emphasis on the effects that arise from the laser dressing of
the bound ionic state. In order to investigate how this dressing
affects the total and angle-differential LARR cross sections we
applied the S-matrix theory and the dipole approximation for
the coupling of the electron to electromagnetic fields. Within
this theory the incident electron in the combined field of the
laser and the nucleus is described by a separable Coulomb-
Volkov wave function. To account for the influence of the
laser field on the final bound state we used time-dependent
perturbation theory up to the first order.

Based on the developed approach, we performed calcula-
tions for the differential partial cross section dσ

(N)
1s /d�k as

a function of the emission angle θk and the energy ωk(N )
of the recombination photon. We found that dσ

(N)
1s /d�k is

symmetric around θk = 90◦ if the bound-state dressing is
neglected while the full calculations show an asymmetric shift
of the angular distribution. Comparing the energy distribution
of the emitted recombination photons obtained either with or
without bound-state dressing, we see remarkable differences,
especially for higher photon numbers N .

Moreover, results have been obtained for the total cross
section as a function of the incident electron energy Ei and
the laser intensity IL. We found that, within the validity of our
theory, the total cross section of LARR may be enhanced if
the bound-state dressing is taken into account. It was shown
analytically that this enhancement is linear in IL. However, if
the bound-state dressing is neglected, the total LARR cross
section is constant with respect to IL and coincides with the
total cross section of laser-free radiative recombination.

Laser-assisted atomic processes have gained increasing
interest in recent years, especially those using intense laser
fields. While it has been common to neglect dressing effects
on bound atomic states, this study stresses their importance for
higher intensities.
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APPENDIX: DERIVATION OF THE CONSTITUENT
MATRIX ELEMENTS

To derive closed expressions for the constituent matrix
elements we insert the wave functions ψ p(r,t) (6) and
ψ1s(r,t) (11) into the general equation for the S matrix (12).
After time integration we find

MRR( p,Z) =
∫
R3

d3r φ100(r)(εk · ∇)ψ p(r), (A1a)

Mdr ( p,Z) =
∫
R3

d3r εL · rφ100(r)(εk · ∇)ψ p(r). (A1b)

To perform the spatial integration analytically we multiply the
integrands by 1 = eik·r |k=0 and obtain

MRR( p,Z) = 26π3B(εk · ∇k)I(Z, p,k)|k=0, (A2a)

Mdr ( p,Z) = −i26π3B(εL · ∇k)(εk · ∇k)I(Z, p,k)|k=0,

(A2b)

where B has been introduced in Eq. (16) and ∇k is the gradient
with respect to the components of k. The remaining integral
over the spatial coordinates is now reduced to a standard atomic
integral I(Z, p,k) that can be found, e.g., in Ref. [27], yielding

I(Z, p,k) =
∫
R3

d3r
r

ei( p−k)·r−Zr
1F1(iZ/p,1,i(pr − p · r))

= 4π
[k2 + (Z − ip)2]−iZ/p

[( p − k)2 + Z2]1−iZ/p
. (A3)

Using this relation and performing the k derivatives in (A2),
we obtain the results shown in Eq. (16):

MRR( p,Z) = Bελ
k · ep

p − iZ

(p2 + Z2)2

(
i Z

p
− 1

i Z
p

+ 1

)iZ/p

, (A4a)

Mdr ( p,Z) = B

(
1 − i

Z

p

)
(Z − ip)−2iZ/p

(p2 + Z2)2−iZ/p

×
(

εL · ελ
k − 2(εL · ep)

(
ελ

k · ep

)2p2 − ipZ

Z2 + p2

)
.

(A4b)
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