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Control of photoelectron interference in asymmetric momentum distributions
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We theoretically study the control of photoelectron interference of atoms ionized by a two-color laser field
with parallel polarizations. Based on both the quantum-trajectory Monte Carlo model and an ab initio simulation
with numerically solving the time-dependent Schrödinger equation, we show that the photoelectron angular
distributions can be controlled by changing the relative phase of the two frequency components. The high-energy
and low-energy photoelectrons show different modulations with respect to the relative phase. Tracing back to the
initial coordinates (the ionization time with respect to the laser phase and the initial momentum) of photoelectrons,
we have studied the physical origin of the asymmetric structure in photoelectron angular distributions and the
dynamics of controlling photoelectron emission using the two-color laser fields. We show that the long tail of
the Coulomb potential plays a minor role in the position of the high-energy cutoff in the backward scattering,
whereas it is of great importance in the formation of the asymmetric structures of the low-energy photoelectrons.
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I. INTRODUCTION

Tunneling ionization and multiphoton ionization are two
main processes when an atom is exposed to a strong laser field.
The ionization processes will be dominated by multiphoton
ionization when γ � 1 and by tunneling ionization when
γ � 1, where γ = √

Ip/2Up is the Keldysh parameter, Ip is
the ionization potential, and Up = E2

0/4ω2 is the ponderomo-
tive energy [1]. After detachment from atoms, the released
electron wave packets following different pathways to the
same final state will give rise to quantum interference. Pho-
toelectron interference from strong-field ionization encodes
a wealth of information about the dynamics of the nucleus
and photoelectrons [2,3], which can be used to resolve the
ionization dynamics and to extract the structural information
of molecules.

The general features of photoelectron energy spectra can
be qualitatively understood in terms of the semiclassical
picture [4]. In a linearly polarized laser field, the energy of
photoelectrons, which are directly accelerated away from the
nucleus after tunneling, can extend up to 2Up, which is the
onset of the well-known plateau region in photoelectron energy
spectra. If the photoelectron is driven back by the oscillating
laser field and is backscattered upon its parent ion, its kinetic
energy can be promoted up to 10Up, which is the well-known
high-energy cutoff observed in photoelectron energy spectra
[4–6]. Besides those general features, the interference effect
also plays an important role in the photoelectron energy spec-
tra. The intercycle interference of electron wave packets gives
rise to the above-threshold ionization (ATI) peaks [7] which
are separated by one-photon energy ω in the photoelectron
energy spectra [8]. The intracycle interference induced by
the recollision can be used to measure the photoelectron
holograms of atoms and molecules [2,3,9–11].
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Precise manipulation of the electron dynamics is the
primary step towards developing interferometric technology
to probe ultrafast multielectron dynamics [12] and to control
chemical reactions. There are many experimental “knobs”
that can be used to achieve this manipulation, such as the
pump-probe delay and the carrier envelope phase of a few-
cycle laser pulse [13–15]. Recently, the control of ionization
processes and electron dynamics using multicolor fields has
attracted both experimental and theoretical interests [16,17].
Two-color laser fields with parallel polarizations have many
important applications, e.g., probing quantum phase shifts and
electron delays in ATIs [18,19], generating terahertz waves
and high harmonics [20,21], and retrieving the structures
and dynamics of valence-electron clouds in atoms [22,23].
Recently, Skruszewicz et al. have investigated the change in
electron yield as a function of the relative phase of parallel
two-color fields by introducing relative-phase-contrast and
phase-of-the-phase spectra [24]. Using orthogonally polarized
two-color laser fields, one can control the interference of
photoelectron wave packets in both temporal and spatial
domains [25,26] and the electron-electron correlation in
double ionization [27].

In the present paper, we study the control of electron
dynamics of atoms in two-color laser pulses consisting of
800-nm (strong) and 400-nm (weak) fields with parallel
polarizations. We use two different approaches to calculate the
photoelectron angular distributions (PADs), i.e., the quantum-
trajectory Monte Carlo (QTMC) model and numerical solution
of the time-dependent Schrödinger equation (TDSE). We
show that the relative phase of the two-color components
can act as a knob to control the electron emissions as well
as the interference patterns with attosecond precision. Taking
advantage of the QTMC model [28,29], we investigate the
physical origin of different interference patterns and study
the influence of the Coulomb potential on the photoelectron
momentum spectra. We find that the long tail of the Coulomb
potential has a minor effect on the position of photoelectron
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FIG. 1. (Color online) The typical two-color laser field of Eq. (1)
for ϕ = 0. An eight-cycle trapezoidal pulse is used in our calculation
with a two-cycle turn on and turn off for 800 nm.

energy cutoff in the backward scattering for the two-color field.
Tracing the low-energy electrons back to the initial coordinates
at the tunnel exit, we shed light on the importance of the
long-range Coulomb potential in the formation of asymmetric
structures in PADs.

II. SIMULATION METHOD

The QTMC model [28] is used to study the PADs in two-
color laser fields with parallel polarizations. The two-color
fields are given by

E(t) = E0f (t)[cos (ωt) + α cos (2ωt + ϕ)]z, (1)

where ω and E0 are the frequency and amplitude of the 800-
nm fundamental laser field, f (t) is the pulse envelope, ϕ is
the relative phase, α is the ratio of field strength of the two
frequency components (α = 0.3), and z represents the laser
polarization direction. Atomic units are used throughout unless
specified otherwise. We take hydrogen as a model atom for
discussion. In the simulation, the two-color laser field has
an eight-cycle trapezoidal envelope with a two-cycle turn on
and turn off for the 800-nm field. The typical laser field for
ϕ = 0 is shown in Fig. 1. In this model, the time-dependent
tunneling ionization rate and the initial momentum distribution
transverse to the instantaneous laser field direction are given
by the Ammosov-Delone-Krainov theory [30,31]. The initial
longitudinal momentum is assumed to be zero. Therefore, each
trajectory is weighted by

W (t0,p
i
⊥) = W0(t0)W1(pi

⊥),

W0(t0) ∝ [(2Ip)2/|E(t0)|]2/
√

2Ip−1

× exp[−2(2Ip)3/2/|3E(t0)|],
W1(pi

⊥) ∝ [
√

2Ip/|E(t0)|] exp[−√
2Ip(pi

⊥)
2
/|E(t0)|], (2)

where t0 is the ionization time and pi
⊥ is the initial transverse

momentum. The tunnel exit is given by Landau’s effective
potential theory [32]. After sampling the electrons, their
classical motion in the combined laser and the Coulomb field
are governed by the Newtonian equation,

r̈ = −r(t)

r3
− E(t). (3)

The phase factor of each trajectory is given by eiS , where S

is the classical action along the trajectory,

S =
∫ +∞

t0

[
v(t)2

2
− 1

|r(t)| + Ip

]
dt. (4)

The electron asymptotic momenta on the virtual detector
are transformed from the electron momentum q = q(t0,pi

⊥,τL)
and its position r = r(t0,pi

⊥,τL) at the end of the laser pulse
(τL is the pulse duration) [33,34],

P = P
P (L × a) − a

1 + P 2L2
. (5)

Here L = r × q is the angular momentum, and a = q × L −
r/r is the Runge-Lenz vector. The magnitude of asymptotic
momentum P is determined by energy conservation q2/2 −
1/r = P 2/2.

Finally, we collect the asymptotic momenta of all trajec-
tories one by one into an interval of [−2.5,2.5] × [−2.5,2.5]
(pz × px) with 1001 × 1001 bins. Here we restrict the elec-
trons to motion on the z − x polarization plane with y = 0 due
to the cylindrical symmetry about the z axis. The trajectories
will interfere with each other when their asymptotic momenta
are in the same bin. The probability of each bin is determined
by adding all trajectories in that bin,

|A|2 =
∣∣∣∣∣
∑

k

√
W (t0,pk

⊥ ) exp(iS)

∣∣∣∣∣
2

, (6)

where k is the kth electron trajectory in that bin. The final
momentum distribution is obtained after the probability of all
the bins is calculated.

To validate the simulated results by the QTMC model, we
have also numerically solved the three-dimensional TDSE in
the length gauge of the dipole approximation,

i
∂|ψ(t)〉

∂t
=

{
−	

2
− 1

r
+ zE(t)

}
|ψ(t)〉. (7)

Starting from the initial 1s ground-state orbitals of the
hydrogen atom, the wave function is propagated in time using
the splitting-operator method [35]. Due to the cylindrical
symmetry of the atom in a linearly polarized laser field, the
magnetic quantum number is conserved during the propaga-
tion. The ionization probability of the asymptotic momentum
is obtained as a projection of the final wave function onto the
incoming Coulomb waves of the field-free Hamiltonian [36].

III. RESULTS AND DISCUSSIONS

The PADs in linearly polarized monochromatic and dichro-
matic fields by the QTMC model and the TDSE calculation
are shown in Figs. 2 and 3, respectively. One can find that the
QTMC simulations agree well with the results of the TDSE.
The QTMC result reveals similar interference features with
the TDSE result. In monochromatic laser fields [Figs. 2(a)
and 3(a)], the PADs are symmetric with respect to the axis
pz = 0. After adding a weak doubled-frequency field, the
PADs show an asymmetric distribution. Interestingly, the
yields of the high-energy photoelectrons and the low-energy
photoelectrons exhibit different modulations with respect to
the relative phase of the two frequency components, e.g., when
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FIG. 2. (Color online) The simulated PADs of H atoms by the
QTMC calculations (a) in a linearly polarized laser field and (b)–(f) in
a two-color laser field with the Coulomb potential. The relative phases
are ϕ = 0, π/4, π/2, 3π/4, and π for (b)–(f), respectively. The white
and red (gray) lines show one cycle of the laser field and vector
potential in arbitrary units. The laser intensity is 1×1014 W/cm2,
α = 0.3, ω = 0.057, and Ip = 0.5.

ϕ = 0, the high-energy photoelectrons are mostly distributed
in the region pz < 0 whereas the low-energy photoelectrons
are mostly distributed in the region pz > 0. The modulations
of both the high-energy photoelectrons and the low-energy
photoelectrons with respect to the relative phase by the QTMC
calculations are in good agreement with the TDSE results.
Next, we will discuss the phase dependence of these two parts
of photoelectrons.

In Fig. 4, we show the high-energy cutoff for the negative
and positive momenta along the laser polarization direction
with respect to the relative phase in the two-color laser field
by the QTMC model. We observe the high-energy cutoff
can be controlled through the change in the relative phase
ϕ. When pz < 0, the cutoff momentum first increases with
the increase of the relative phase, reaches the largest value at
about ϕ = 0.7π , and then decreases. When pz > 0, the change
is opposite—the cutoff momentum decreases at first, reaches
the smallest value at about ϕ = 0.6π , and then increases.

We explain the change in cutoff with the help of the classical
rescattering model [4]. The electrons which are ionized at t0

FIG. 3. (Color online) The same as Fig. 2 but by the TDSE
calculation.

FIG. 4. (Color online) (a) and (b) show the cutoff of the positive
momentum and the negative momentum along the laser polarization
with respect to the relative phase ϕ calculated by the classical
scattering model (solid black line) and the QTMC model (dashed
blue line), respectively.

and return to the nucleus at tc satisfy the equation,

−A(t0)(tc − t0) +
∫ tc

t0

A(τ )dτ = −z0, (8)

where z0 = Ip/E0 is the position of the tunnel exit. If we
consider the backscattering case (the scattering angle is 180◦),
the final momentum is given by

pz = A(t0) − 2A(tc). (9)

To get the cutoff momentum, we are supposed to find the
maximal and minimal values of Eq. (9) under the condition of
Eq. (8).

The change in the cutoff momentum with the relative phase
ϕ based on the classical rescattering model is also shown in
Fig. 4 by the solid black curves. We can see that the changes in
cutoff energy based on the QTMC and the classical rescattering
models are similar except that the cutoff energy in the QTMC
model is a little larger than that in the classical scattering
model. This difference may originate from the assumption of
zero initial transverse momentum in the classical rescattering
model [37]. Since we have used the Coulomb potential in the
QTMC model whereas a hard-sphere potential is used in the
classical scattering model (here the radius of the hard sphere
goes to zero), the similarity between these two simulation
results manifests that the change in the cutoff energy is
mainly a result of the scattering process itself. The long-range
Coulomb tail has a minor effect on the position of the cutoff
in the energy spectrum.

Now let us turn to the phase-dependent asymmetric struc-
tures of the low-energy photoelectron. We show the electron
distributions at low energy with considering the Coulomb
potential by TDSE calculations and QTMC model in Figs. 5(a)
and 5(b), respectively. We can see the low-energy electron
distributions of the QTMC results show the same asymmetrical
structures as those of the TDSE calculation. The PADs without
considering the Coulomb potential by the QTMC model are
shown in Fig. 5(c). With neglecting the Coulomb potential, the
PADs are asymmetric for ϕ = π/4,π/2,and3π/4, and they are
symmetric with respect to the polarization axis when ϕ = 0
and ϕ = π . This symmetric distribution can be understood
within a simple picture: The electron momentum at the end
of laser pulse is determined by the vector potential at the
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FIG. 5. (Color online) The simulated angular distributions of the low-energy electrons with including the Coulomb potential at ϕ =
0, π/4, π/2, 3π/4, and π by (a) TDSE calculations and (b) the QTMC model. (c) shows the simulated PADs without considering the Coulomb
potential and the scattering effect by the QTMC model. All parameters used are the same as in Fig. 2. Note the scale is different from Fig. 2.

ionization moment [pz= − A(t0),px = pi
⊥]. For two groups

of electrons with a specific final momentum that are sym-
metric about pz = 0 axis [p1x = p2x, p1z = −p2z], their
initial classical coordinates satisfy A(t1) = −A(t2),pi

1⊥=pi
2⊥,

corresponding to E(t1) = E(t2) when ϕ = 0 and ϕ = π (see
Fig. 2). According to Eq. (2), these two groups of electrons will
have the same ionization probability, which leads to symmetric
distributions of electron yields with respect to the axis pz = 0.
When the Coulomb potential is considered, the low-energy
electron momentum distributions become asymmetric for all
the phases, including ϕ = 0 and ϕ = π [e.g., see P1 and P2 in
Fig. 5(b)]. This demonstrates the importance of the Coulomb
potential in the formation of asymmetrical low-energy electron
distributions.

To study the effect of the Coulomb potential on the asym-
metric low-energy electron distributions, we sample electrons
on the right side (pz > 0) and the left side (pz < 0) with
respect to the pz = 0 axis [see the white squares in Fig. 5(b)]
and trace the electron trajectories back to the initial classical
coordinates, i.e., the ionization time and the initial transverse
momentum. For simplicity, we will focus on the structures P1

and P2 shown in Fig. 5 when ϕ = 0 and ϕ = π . As we will see
below, the Coulomb potential mainly affects the formation of
the asymmectrical structures in PADs in two ways: (i) another
group of rescattered electrons will contribute to the formation
of P1 and P2 in the presence of the Coulomb potential; (ii) the
initial coordinates (ionization time and initial momentum) of
the electron trajectories finally contributing to the P1 and P2

structures will be corrected by the Coulomb potential.
For the asymmetry of the P1 structure, it is mainly

caused by the first way. Similar to Ref. [28], we find that
the P1 structure is the result of interference among three

different groups of tunneled electrons: (i) forward scattered
electrons with large positive initial transverse momentum (R1),
(ii) forward scattered electrons with small negative initial
transverse momentum (R2), and (iii) direct electrons (D) [see
Figs. 6(a) and 6(b)]. If the Coulomb effect is not considered,
only the groups of R1 and D will contribute to the formation
of structure P1 [see Figs. 6(c) and 6(d)], which results in
symmetric photoelectron distributions when ϕ = 0 and ϕ = π

[see Fig. 5(c)]. In the presence of the Coulomb potential,
another group of rescattered electrons (R2) will significantly
contribute to P1. Moreover, from Fig. 6(a), we can clearly
see that the R2R electrons dominate when ϕ = 0 since these
electrons ionized at the largest instantaneous electric field and
have the smallest initial transverse momenta among all groups
of electrons that contribute to the P1 structure. The ionization
amplitudes of all groups of electrons have been shown in Fig. 6.
When ϕ = π , R2L electrons become the dominant electrons
[Fig. 6(b)]. Accordingly, the P1 structure can only be visible
on the right (left) side when ϕ = 0(ϕ = π ).

As for the asymmetry of the P2 structure, Coulomb
correction to the initial conditions of the electron trajectories is
the major reason. From Figs. 6(e) and 6(f), we can see that the
P2 structure is a result of interference between two groups
of tunneled electrons: (i) forward scattered electrons with
positive or negative transverse momentum that have the same
magnitude (R) and (ii) direct electrons (D). For electrons with
a given final momentum, the ionization time in the presence of
the Coulomb potential is earlier than that without considering
the Coulomb potential [see the black dashed lines in Fig. (6)]
[38]. When ϕ = 0, we can first take no account of DR and
RL electrons because the instantaneous electric field is much
weaker than that of the RR and DL electrons. As for the RR
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FIG. 6. (Color online) (a)–(h) show the ionization probability of
the initial transverse momentum with respect to the tunneling phase
of electrons for P1 [(a)–(d)] and P2 [(e)–(h)] structures in Fig. 5(b).
The first column is ϕ = 0, and the second column is ϕ = π . (a), (b),
(e), and (f) have considered the Coulomb potential. (c), (d), (g), and
(h) have neglected the Coulomb potential. D and R1(2) stand for the
direct electrons and rescattered electrons, respectively. R and L in
the subscripts stand for electrons finally distributing on the right side
(pz > 0) and the left side (pz < 0), respectively. The vertical black
dashed lines show that the ionization time is earlier with considering
the Coulomb potential than that without considering the Coulomb
potential. A logarithmic scale has been used in the color bar to
describe the ionization amplitude.

and DL electrons, which should have the same ionization
amplitude without considering the Coulomb potential [see
Fig. 6(g)], we can see in Fig. 6(e) that, due to the Coulomb
correction to the ionization time, the RR electrons are ionized at
a stronger electric field and have a larger ionization amplitude
whereas the DL electrons are ionized at a weaker electric field
and have a smaller ionization amplitude. Accordingly, when
ϕ = 0, the RR electrons dominate, and the P2 structure is
visible on the right side. In a similar way, when ϕ = π , the RL

electrons dominate, and thus the P2 structure is visible on the
left side.

In the above analysis we have studied the physical origins
of the asymmetrical structures P1 and P2 when ϕ = 0 and
ϕ = π . With the help of the QTMC model, we can also
trace back to the initial coordinates of the photoelectrons

at any other relative phase and reveal the origin of the
corresponding PADs. Due to the backward scattering, the high-
energy photoelectrons exhibit different asymmetries compared
to the low-energy photoelectrons as seen in Fig. 2. Moreover,
because the electrons tunneled at different ionization times t0
within half a laser cycle (T0/2 = 1.33 fs) will be streaked to
different final momentum, the subcycle interference patterns
in the final momentum distribution have recorded attosecond
time-resolved electron dynamics. By changing the relative
phase of the two-color components, we can control the
electron emission time and electron interference patterns with
attosecond precision as seen in Fig. 6.

Another interesting phenomenon in the low-energy electron
distributions is that the spot patterns which form the first
ATI ring in a monochromatic field disappear in the two-color
field when ϕ = 0, π/4, and π [see Fig. 2]. This is caused by
the large difference in ionization amplitudes among different
groups of tunneled electrons. We have known from Ref. [28]
that the spot patterns come from the interference among
three different groups of electron trajectories. When ϕ = 0,
π/4, and π , only one group of electrons dominates, which
makes the interference effect largely suppressed, and thus
the spot patterns induced by the constructive and distructive
interference disappear.

IV. CONCLUSION

To summarize, we have comprehensively investigated the
control of high-energy cutoff and the asymmetry of low-energy
electron distributions in parallelly polarzied two-color laser
fields. We get similar changes in the cutoff energy with respect
to the relative phase using both the classical rescattering model
and the QTMC model. We study the phase dependence of
the interference structure, which has encoded phase-sensitive
electron dynamics in a two-color field. The modulation of the
interference patterns with respect to the relative phase in atoms
has been used to extract the phase information of electronic
wave packets in momentum space [22]. Because the tunneled
electron wave packet has encoded the molecular structural
information, one may retrieve this structural information
from the phase-dependent photoelectron interference patterns.
Therefore, extending the two-color scheme to molecules
will provide an alternative approach to probe the structural
information of molecules in photoelectron holography.
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