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Multielectron dynamics in the tunneling ionization of correlated quantum systems

Maximilian Hollstein and Daniela Pfannkuche
Universität Hamburg, I. Institut für Theoretische Physik, Jungiusstraße 9, 20355 Hamburg, Germany

(Received 12 June 2015; published 20 November 2015)

The importance of multielectron dynamics during the tunneling ionization of a correlated quantum system is
investigated. By comparison of the solution of the time-dependent Schrödinger equation with the time-dependent
configuration-interaction singles approach, we demonstrate the importance of a multielectron description of the
tunneling ionization process especially for weakly confined quantum systems. Within this context, we observe
that adiabatic driving by an intense light field can even enhance the correlations between still trapped electrons.
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I. INTRODUCTION

The ionization of closed-shell atoms is impressively well
understood on the basis of single active electron (SAE)
approaches [1–3] or effective one-particle theories as the
time-dependent configuration-interaction singles (TDCIS) ap-
proach [4–6]. Within these approaches, ionization is described
by the ejection of a single electron into the continuum while
the residual electrons remain unaffected; i.e., they are only
taken into account by a time-independent potential for the
active electron (SAE) or they are kept residing in Hartree-Fock
ground-state orbitals of the field-free atom (TDCIS). However,
in weakly confined quantum systems such as molecules or
atomlike systems as semiconductor quantum dots in which the
electron-electron interaction induces significant correlations
between the trapped electrons [7–11], an independent particle
description of the ionization process, as inherent in these
approaches, is expectably unsuitable from the very beginning.
In this paper, we address the question concerning the impor-
tance of a multielectron description of the tunneling ionization
process of weakly confined and correlated quantum systems.
For this purpose, we consider the dynamics which is induced
by an intense low-frequency light field in a two-electron model
system. Our conclusions drawn from these considerations,
however, are not only valid for two-electron quantum systems
but they are transferable to systems with more than two weakly
bound electrons. Furthermore, we would like to remark that the
conclusions drawn from the presented model calculations are
not limited to the ionization of molecular or atomic systems but
they are also relevant for experiments based on the application
of a (time-dependent) voltage to semiconductor quantum
dots [12,13] and photoassisted tunneling [12,14–17] in the
low-frequency regime. This paper is structured as follows: after
introducing the considered model system, we demonstrate the
need for a multielectron description of the tunneling ionization
process by comparison of the solution of the time-dependent
Schrödinger equation (TDSE) with the results obtained by
the TDCIS approach. By detailed analysis of the exact wave
function we provide insight into the light-induced dynamics,
revealing that a multielectron description becomes necessary
not only due to ground-state correlations but also due to a
light-induced collective electron motion which is accompanied
with an enhancement of correlations between still trapped
electrons.

II. MODEL

In order to study the ionization of a weakly confined
quantum system, we consider a one-dimensional model system
consisting of two electrons in an inverse Gaussian confining
potential. (Note that the effective potential realized in semi-
conductor quantum dots can be well approximated by this
potential [18,19]).

Referring to the spatial coordinate as x, the considered
confining potential can be denoted by

V (x) = −V0e
−( x

w
)2

(1)

where V0 determines the depth and w determines the width of
the confinement. Without exception, effective atomic units (see
the Appendix) are used throughout this paper. For atoms and
molecules, the chosen unit system coincides with the well-
known atomic units. However, for GaAs quantum dots, for
example, an effective Hartree is on the order of ≈11.86 meV
and an intensity of 1.0 corresponds there to only ≈1.95 ×
105 W/cm2 [19,20]. Within the harmonic approximation of
the considered potential, the strength of the confinement, i.e.,
the level spacing of the lowest bound states, is given by

�E ≈
√

2V0

w
. (2)

In the subsequent considerations we make use of this depen-
dency and vary the strength of the confinement by variation of
the width w.

The electron-electron interaction is taken into account by a
regularized Coulomb interaction:

Vee(x1,x2) = 1√
(x1 − x2)2 + δ2

(3)

where x1,2 denote the spatial coordinates of the two electrons.
By choosing δ unequal to zero (we set δ to 0.5), a finite width
of the electronic wave function along the unconsidered spatial
dimensions is taken into account in a phenomenological way
[21,22]. Hereinafter, we restrict our considerations to light
fields with a wavelength which is large compared to the extend
of the considered quantum system. This allows the application
of the dipole approximation to the light-matter interaction.
Thus, in length gauge, the Hamiltonian of the quantum system
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interacting with the light field is given by

Ĥ0 = −1

2

2∑
i=1

∂2

∂x2
i

− V0

2∑
i=1

e−( xi
w

)2 + 1√
(x1 − x2)2 + δ2

, (4)

Ĥ (t) = Ĥ0 −
2∑

i=1

xiE(t) (5)

where Ĥ0 is the Hamiltonian of the field-free system and
E(t) denotes the time-dependent electric field of the laser.
Subsequently, we consider the initial dynamics of the system
in an electric field with sinusoidal time dependence, i.e.,

E(t) = E0 sin(ωt). (6)

In the following, we consider the situation where the two-
electron system is initially prepared in the singlet ground state.
In order to study the light-induced dynamics, we solve the
time-dependent Schrödinger equation numerically. For this,
we employ a split operator technique [23]. Here, we are
only interested in the two-electron dynamics involved in the
ionization process. That is, we are interested in the part of
the wave function describing both electrons residing in the
potential well or its vicinity. In this situation, a convenient
numerical technique is the use of complex absorbing potentials
or the (smooth) exterior scaling transformation [24,25]. There,
a finite simulation box is employed to represent the wave
function in the spatial region of interest and outgoing wave
packets leaving the region are effectively damped when having
spatial overlap with the complex absorbing potential or the
region where the spatial coordinate is transformed. Therefore,
these techniques prevent artificial reflections at the boundaries
and allow the use of rather small simulation boxes that
are only slightly larger than the region of interest. In the
considered situation, their use allows for a significant reduction
of computation time while still leading to converged results. In
practice, we employed the complex absorbing potential VCAP:

VCAP =
{−iC(||x| − x0|)3 |x| > x0

0 else
. (7)

For the calculations presented below, C is chosen to be 4 ×
10−3. x0 is chosen to be 15 where both the confining potential
and the ground-state wave function are only insignificant when
different from zero (i.e., for all model parameters, the absolute
value of the confining potential is for x = 15 smaller than
0.001 and the value of the ground-state density is decreased to
� 10−16). In this paper, we consider the tunneling ionization
process, i.e., the ionization via tunneling through the effective
potential barrier which is exhibited by the instantaneous
potential V (t) that is formed by the instantaneous electric field
and the confining potential:

V (t) = −V0e
−( x

w
)2 − E(t)x. (8)

For |E| � Ecrit with

Ecrit = V0

w

√
2

e
(9)

the instantaneous potential V (t) does not possess a minimum
so that Ecrit marks the regime of a light-matter interaction that
is dominant with respect to the confinement. Here, we focus

on the regime where E0 is comparable to Ecrit but smaller
so that the instantaneous potential is strongly deformed but
still exhibits a potential barrier, i.e., E0/Ecrit � 1. This regime
depends strongly on the confinement, i.e., the depth and, in
particular, the width. For instance, the considered regime can
be reached by laser intensities lower than ∼1014 W/cm2 for a
quantum system with a confinement depth of ∼15 eV and
a width of ∼10 a.u. Thus, our findings presented in this
paper can be particularly relevant for strong-field ionization of
polyatomic molecules. However, our results are also applicable
to semiconductor quantum dots. For instance, for typical GaAs
quantum dots [19] with a confinement depth on the order of
100 meV, the considered regime can be reached easily with
intensities even lower than ∼1 × 106 W/cm2. However, in
the presented model calculations, we consider the described
regime by setting V0 = 3 and E0 = 0.3 so that E0/Ecrit � 1
for all considered confinement widths w (1 � w � 5).

Considering that the tunneling ionization regime is char-
acterized by a Keldysh parameter [26] much smaller than
1, we choose the frequency of the light field to be ω =
2π × 0.001 and the amplitude to be E0 = 0.3 corresponding
to a Keldysh parameter smaller than 0.01 for the considered
model potential parameters. For semiconductor quantum dots,
the characteristic confinement energy is in the meV range so
that the considered light field would be in the domain of far
infrared light to microwaves. Since for tunneling ionization
the ionization process is most prominent at times when
the electric field of the light field is extremal, we consider
only the dynamics during a half cycle of the laser field focusing
on the situation at t = T/4 when the electric field is maximum.
Here, we restrict our considerations to the dynamics in the
confining potential well and its vicinity by analyzing the
restricted and renormalized wave function

�̃ = �(x1,x2,t)||x1,2|<xmax√∫ xmax

−xmax

∫ xmax

−xmax
dx1dx2|�(x1,x2,t)|2

(10)

whereas, unless noted differently, we chose

xmax = x0 = 15. (11)

Before the two-electron system is exposed to the light field,
both electrons are situated in this area. However, at later
times, electrons are excited by the laser into the continuum
and leave the considered spatial region. During the considered
half cycle, electrons that are tunneled through the potential
barrier are only accelerated away from the confining potential
minimum. This is reflected in the time-dependent norm
of �(x1,x2,t)||x1,2|<xmax , which decreases monotonically (see
Fig. 1).

Noteworthy, this time-dependent norm becomes stationary
even before the end of the considered half cycle, indicating
that the electrons which tunneled through the potential barrier
left the considered spatial region before the end of the half
cycle. After the half cycle at t = T/2, the part of the wave
function consisting of occupied continuum states has only
an insignificant spatial overlap with the considered spatial
region; more precisely, at T/2, the renormalized restricted
wave function has for the considered parameters an overlap
larger than 0.999 with the field-free ground state. For this
reason, we determine numerically the ionization probability
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FIG. 1. (Color online) The time-dependent norm of
�(x1,x2,t)||x1,2|<xmax during the first half cycle of the laser
field for a confinement potential V [Eq. (1)] with w = 5. Here,
T = 2π

ω
denotes the period of the considered light field and ω is the

frequency of the light field [see Eq. (6)].

conveniently by

Pion(t) = 1 −
∫ xmax

−xmax

∫ xmax

−xmax

dx1dx2|�(x1,x2,t)|2. (12)

III. RESULTS

A. Comparison of TDCIS and TDSE

Within the TDCIS approach, the two-electron wave func-
tion is expanded in the Hartree-Fock ground state |�0〉 and its
particle-hole excitations |�i

0〉:
|�〉 = α0 |�0〉 +

∑
i>0

αi
0

∣∣�i
0

〉
(13)

with

|�i
0〉 = 1√

2
(c†i↑c0↑ + c

†
i↓c0↓) |�0〉 (14)

where c0↑,c0↓ denote annihilation operators of the spin
orbitals which are occupied in the Hartree-Fock ground-state
determinant while c

†
i↑,c

†
i↓ denote creation operators of virtual

orbitals. The spatial part of the TDCIS singlet two-electron
wave function is consequently given by

�(x1,x2,t)TDCIS =
∑

i

α̃i(t)
[
ψ0(x1)ψi(x2) + ψi(x1)ψ0(x2)

]
(15)

with

α̃i(t) =
{
α0(t)/2 i = 0
αi

0(t) else
. (16)

As can be seen in Eq. (15), at all times, only one electron can be
active (i.e., occupy an arbitrary orbital) while the other electron
is forced to occupy the Hartree-Fock ground-state orbital ψ0.

In order to determine the coefficients α̃i(t) we solve the
Hartree-Fock equations on a pseudospectral grid as described
in [25]. The TDCIS wave function is then propagated by
iterative Lanczos reduction [27] within the configuration-
interaction singles singlet subspace constructed by the eigen-
functions of the Fock operator. In Fig. 2, the ionization
probability as defined in Eq. (12) obtained by the exact solution
of the TDSE and by the TDCIS approach is shown for varying
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FIG. 2. (Color online) The ionization probability Pion as defined
in Eq. (12) after a half cycle of the laser field obtained by the solution
of the TDSE (red curve) and by the TDCIS approach (blue curve with
dots) in dependence on the width of the confinement w. All quantities
in this figure are given in effective atomic units (see the Appendix).
For narrow confinements (i.e., for w < 2.5), the TDCIS approach
reproduces very accurately the exact ionization probability, whereas
for wide confinements substantial deviations are observable.

confinement widths. As can be seen, the TDCIS approach
reproduces very accurately the exact ionization probability for
w < 2.5 whereas large deviations are observable for w > 2.5
(e.g., by 40% for w = 5).

Some insight can be gained by the approximation of the
exact two-electron wave function in terms of configurations
constructed from the two most occupied natural orbitals [see
Eq. (17)]. This truncated configuration-interaction expansion
allows a good approximation of the exact wave function since
the natural orbitals constitute an orbital basis set leading to the
most rapidly converging expansion in configurations [28]:

� ≈
2∑

i,j=1

cijφi(x1)φj (x2)

/√√√√ 2∑
i,j=1

|cij |2. (17)

If the coefficients cij are real, this approximate wave function
can be represented exactly in open-shell form [29] where one
electron occupies a spatial orbital φu while the other electron
occupies a different orbital φv , which is not necessarily
completely orthogonal or totally parallel to φu:

�(x1,x2,t) ≈ φu(x1,t)φv(x2,t) + φv(x1,t)φu(x2,t). (18)

Although the coefficients cij of the approximate wave function
(17) obtained from the numerical propagation are complex at
t = T/4, we found for this situation that with good accuracy
c00 and c11 can be chosen real with alternating sign. Since c01

and c10 vanish exactly [30,31], a representation in open-shell
form is nonetheless possible. As described in [29], φu and φv

can be chosen as

φu = (|c00| 1
2 φ0 + |c11| 1

2 φ1
)
/[4(|c00|2 + |c11|2)]

1
4 , (19)

φv = (|c00| 1
2 φ0 − |c11| 1

2 φ1
)
/[4(|c00|2 + |c11|2)]

1
4 . (20)

With this, for instance for w = 5, both wave functions
[Eqs. (17) and (18)] have an overlap of 0.967 with the exact
wave function and thus provide a reasonable approximation.
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FIG. 3. The renormalized orbitals φ̃u,v = φu,v

||φu,v || and ψ̃u,v = ψu,v

||ψu,v || which constitute the (approximate) open-shell form of the exact wave
function and the TDCIS wave function at t = T/4 for (a) w = 1 and (b) w = 5. All quantities in this figure are given in effective atomic units
(see the Appendix).

Now, the approximation of the exact wave function in open-
shell form allows a convenient comparison with the TDCIS
wave function which can be exactly represented in open-shell
form:

�(x1,x2,t)TDCIS = ψu(x1,t)ψv(x2,t) + ψv(x1,t)ψu(x2,t) (21)

where

ψv(t) = ψ0 (22)

and

ψu(t) =
∑

i

α̃i(t)ψi. (23)

The two orbitals φu and φv and, respectively, ψu and ψv are
only fixed up to a factor; i.e., a two-electron wave function in
open-shell form is invariant under the transformation φu →
φu/α, φv → αφv where α is an arbitrary nonzero complex
number. Therefore, we compare the TDCIS wave function with
the exact wave function by consideration of the corresponding
renormalized orbitals (see Fig. 3).

As can be observed in Fig. 3(a) for w = 1, i.e., for a
confinement width for which the ionization probability is
accurately reproduced by the TDCIS approach, within this
open-shell approximation, both the exact and the TDCIS
wave function are described by one orbital which is strongly
localized in the potential well [φv (TDSE) and, respectively,
ψv (TDCIS)] and one orbital which has overlap with the
tunneling barrier describing a tunneling electron [φu (TDSE)
and, respectively, ψu (TDCIS)]. Despite the fact that TDCIS
reproduces accurately the ionization probability, deviations
between these orbitals are observable. That is, within the exact
treatment, the localized orbital φv (TDSE) is slightly shifted to

the left with respect to the origin (〈x〉φv
=

∫ |φv |2xdx

||φv ||2 = −0.258)
whereas for the TDCIS approach the localized orbital (i.e., ψv)
coincides with the Hartree-Fock ground-state orbital ψ0 [see

Eq. (22)] which is centered at the origin (〈x〉ψv
=

∫ |ψv |2xdx

||ψv ||2 =
0). However, both orbitals of both the TDCIS approach and
the exact treatment (TDSE) are still mostly centered in close
vicinity of the origin and differences are mostly observable for
x < 2, i.e., within the potential well. Most importantly, within
the tunneling barrier in vicinity of x � 2, the density of the

orbital that describes the tunneling electron mostly coincides
with the density of the corresponding orbital obtained from
the exact treatment. Hence, although there are deviations
of the exact wave function to the TDCIS wave function
within the confining potential, the TDCIS approach appears
to provide an accurate description of the ionization process for
this rather narrow confinement potential. However, for w = 5,
the TDCIS approach is not able to reproduce accurately the
ionization probability obtained by an exact treatment (TDSE).
Still, within the open-shell approximation, the exact wave
function is described by one orbital which is localized in
the potential well [φv (TDSE)] and one orbital which has a
significant overlap with the tunneling barrier [φu (TDSE)].
This indicates that, still, the dominant ionization process is
also within the exact treatment a process where one electron
resides in the potential well while the other is tunneling
through the potential barrier. However, the localized orbital
of the open-shell approximation of the exact wave function
φv (〈x〉φv

= 0.862) is shifted towards the local minimum of
the instantaneous potential at x = 1.344 whereas within the
TDCIS approach the localized orbital is centered at the origin.
Deviations are also observable between the orbitals describing
the tunneling electron, i.e., ψu for the TDCIS approach
and φu for the open-shell approximation of the exact wave
function. In particular the orbital φu (TDSE) (〈x〉φu

= 4.829)
is shifted towards the potential barrier maximum at x = 6.385
with respect to ψu (TDCIS) (〈x〉ψu

= 4.203), resulting in a
larger overlap of φu (TDSE) with the potential barrier. This
indicates that the immobility of the localized electron within
the TDCIS approach affects via the Coulomb interaction also
the tunneling electron. That is, within the TDCIS approach, the
tunneling electron seems to be less effectively pushed towards
the tunneling barrier. This provides an explanation for the
considerable differences between the ionization probability
obtained by the TDCIS approach and the exact treatment. That
is, in particular the underestimation of the ionization process
by the TDCIS approach can be related to this circumstance (see
Fig. 2). So far, only an open-shell approximation of the exact
wave function has been considered, which approximates the
full wave function fairly well (i.e., the overlap with the exact
wave function is 0.967) but obviously there are still some
deviations to the exact wave function. In the following section
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we therefore provide more extensive insight into the light-
induced multielectron dynamics from a different perspective
by considering the complete wave function obtained from the
exact treatment.

B. Field-induced multielectron motion

Due to the fact that the level spacing of the confinement �E

is much larger than the frequency of the light field, i.e., �E �
0.48 
 ω = 2π × 0.001, the low-frequency field considered
here can induce a quasiadiabatic electron motion leading to a
time-dependent shift of the electronic center of-mass. Within
the harmonic approximation of the confining potential and
within the dipole approximation, this motion of the electronic
center of mass can be related to a shift of the confining potential
minimum:

�x = E(t)w2

2V0
. (24)

This effect causes a shift of the density with respect to the
origin (see Fig. 6). Noteworthy, this shift of the potential min-
imum results in the motion of both electrons, which becomes
noticeable in the open-shell approximation [see Eq. (18)] by
the fact that the orbital φv , which describes a localized electron,
is not centered at the origin but is rather shifted towards the
local minimum of the instantaneous potential (see Fig. 3).
The regime of large deviations of the ionization probability
obtained by TDCIS and exact treatment coincides with the
regime where �x is on the order of the Bohr radius or larger,
i.e., �x � 1 =̂ w � 4.5. This supports the explanation for the
large deviations between the ionization probability obtained by
TDCIS and exact treatment as given in the previous section.
That is, within the TDCIS approach, the tunneling electron
is less effectively pushed towards the tunneling barrier due
to the immobility of the localized electron. However, since
the considered confining potential well is not a pure harmonic
potential also excitations of the relative motion are possible
[18]. This allows for correlated electron dynamics. In order
to get insight into this light-induced correlation dynamics,
we consider electronic correlations which become noticeable
by the circumstance that the electronic wave function cannot
be represented by a single Slater determinant. Therefore,
we determine the degree of correlation of the two-electron
wave function by employing the measure of correlations K as
defined in [32]:

K =
(∑

i

n2
i

)−1

(25)

where ni denote the occupation numbers of the natural orbitals,
i.e., the eigenvalues of the first-order density matrix [33].
Thereby, K can be interpreted as the “number” of Slater
determinants which are effectively necessary to represent the
wave function (see [32]). Since every fully uncorrelated singlet
two-electron wave function is a Slater determinant with a
doubly occupied spatial orbital, the absence of correlations
is characterized by a measure of correlations K = 1. Thus,
electronic correlations manifest themselves by a value of K
larger than 1 (note that ni > 0 and

∑
i ni = 1 (see [33] and

[29]). In order to determine K numerically, we obtain the

1 2 3 4 5
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K

t = 0
t = T/4

FIG. 4. (Color online) The degree of correlations K as defined
in Eq. (25) in dependence of the width of the confinement w for
the singlet ground state (blue curve with dots) and at the time when
the electric field of the laser is strongest (t = T/4) (red curve). All
quantities in this figure are given in effective atomic units (see the
Appendix). Since the relative strength of the Coulomb interaction
increases with increasing width of the confining potential, the amount
of correlations present in the ground state increases correspondingly
(blue curve with dots). While for narrow confinements (w ≈ 1)
the amount of correlations remains constant, for broad confinement
potentials, in the presence of the light field, the amount of correlations
is significantly increased in comparison to the ground state.

occupation numbers of the natural orbitals by diagonalization
of the first-order density matrix [29] represented on a spatial
grid.

In Fig. 4, K is shown in dependence on the width w of
the confining potential for two situations, i.e., for the singlet
ground state (blue curve with dots) and for the two-electron
wave function at t = T/4 (red curve). As can be seen in Fig. 4,
for narrow confinements (w ≈ 1) the measure of correlations
K for the singlet ground state is nearly 1, indicating an accurate
description by the Hartree-Fock determinant (for w = 1 one
finds indeed that mostly only one natural orbital is populated
in the ground state with an occupation of 0.992). However, K
increases monotonically with the confining potential width.
This is related to a feature well known for the harmonic
confinement potential, namely, that the confinement energy
and the Coulomb interaction scale differently with respect
to the characteristic confinement length l0. That is, whereas
the confinement energy scales as 1

l2
0
, the Coulomb interaction

is proportional to 1
l0

. Hence, the relative strength of the
Coulomb interaction increases monotonically with the width
of the confinement potential, leading to a correspondingly
increasing population of more than one natural orbital (see
Fig. 5). For w = 5, one finds that a second natural orbital is
significantly populated with an occupation of 0.107 so that here
a multideterminant treatment is already necessary to represent
the ground state accurately (note that the overlap with the
Slater determinant with maximum overlap with the exact wave
function is given by

√
n1 = 0.9398 where n1 is the occupation

number of the most occupied natural orbital (see [29])).
However, if one considers the two-electron wave function

at t = T/4, one observes a significant enhancement of correla-
tions with respect to the ground-state correlations. For instance
for w = 5, the occupation of the second most occupied natural
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FIG. 5. (Color online) The probability density ρ of the singlet
ground state and the densities of the first three most occupied natural
orbitals φ1,φ2 and φ3 weighted by their occupation numbers (n1,
n2, and n3) for a relatively wide confining potential (w = 5). All
quantities in this figure are given in effective atomic units (see the
Appendix). Due to a strong Coulomb interaction with respect to the
confinement energy, more than one natural orbital is significantly
occupied in the ground state.

orbital increases from 0.107 to even 0.142 in the presence of the
light field and furthermore also a third natural orbital becomes
noticeably populated with an occupation of ≈0.028 whereas
its ground-state occupation is only 0.009 (see Fig. 6). Note that
the occupation of a third natural orbital is not included in the
open-shell approximation [see Eq. (18)] and thus represents a
deviation between the TDCIS wave function and exact wave
function that adds to those discussed in the previous section.

Since the degree of correlations at t = T/4 is indepen-
dent of the laser frequency for frequencies smaller than
2π × 0.0025 (see Fig. 7), nonadiabatic excitations within the
potential well are apparently not the reason for the enhance-
ment of K (the considered laser frequency is 2π × 0.001).
Since the most occupied natural orbitals are localized within
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FIG. 6. (Color online) The probability density ρ of the two-
electron state at the time when the electric field of the laser is strongest
(t = T/4) and the densities of the first three most occupied natural
orbitals φ1,φ2, and φ3 weighted by their occupation numbers for a
relative wide confining potential (w = 5). All quantities in this figure
are given in effective atomic units (see the Appendix). In comparison
to the ground state (see Fig. 5), the occupation of the second and the
third most occupied natural orbital is increased.
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FIG. 7. (Color online) The degree of correlations K [see Eq. (25)]
at t = T/4 for w = 5. All quantities in this figure are given in effective
atomic units (see the Appendix). Nonadiabatic excitations within the
potential well manifest themselves by a frequency dependence of K
for T < 400, i.e., for frequencies larger than 2π × 0.0025. Thus,
for the considered laser frequency (2π × 0.001, big red marker)
nonadiabatic effects appear to be irrelevant.

the well of the instantaneous potential, this effect can be
attributed to a quasiadiabatic rearrangement of the still trapped
electrons within this strongly deformed potential well. The
enhancement of the degree of correlations indicates here an
effective broadening of the potential well by the light field
which results in an enhanced effective strength of the Coulomb
interaction between the still trapped electrons. According to
Eq. (24) and, respectively, Eq. (9), an increase of the width of
the confining potential is accompanied by both an increased
light-induced shift of the potential minimum and, as indicated
by a decreasing critical field strength Ecrit, an increased
light-induced distortion of the potential well. Apparently, as
the result of this effective weakening of the confining potential,
both the light-induced collective and the correlated electron
motion increase for wide confinements.

IV. CONCLUSIONS

To conclude, we demonstrated that for an accurate de-
scription of the tunneling ionization process a multielectron
description is the more important the wider the confining
potential. By analysis of the exact wave function, we show that
a multielectron description is not only necessary due to ground-
state correlations but also due to a collective and correlated
multielectron motion resulting from the deformation of the
confining potential well by the light field.
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APPENDIX

Throughout this paper, we employ effective atomic units
(see [20]). That is, energies are given in effective Hartree ẼH ,

ẼH = m∗e4

(4πε0εr�)2
; (A1)

length is given in units of the effective Bohr radius ã0,

ã0 = 4πε0εr�
2

m∗e2
; (A2)

time is given in units of t̃0,

t̃0 = �

ẼH

; (A3)

velocity is given in units of ṽ0,

ṽ0 = ã0ẼH

�
; (A4)

electric field strength is given in units of Ẽ0,

Ẽ0 = ẼH

eã0
; (A5)

and intensity is given in units of Ĩ0,

Ĩ0 = Ẽ2
0 , (A6)

where m∗
e denotes the effective electron mass, ε0 is the electric

constant, εr is the dielectric constant, � is the Planck constant,
and e is the electron charge.

For atoms and molecules, the effective electron mass m∗
coincides with the electron mass and the dielectric constant εr

is 1. Hence, for atoms and molecules, the chosen unit system
coincides with the well-known atomic units. However, for
instance for GaAs quantum dots, the effective electron mass m∗
is only 0.067 times the electron mass and the dielectric constant
εr is 12.4 so that, for instance, an effective Hartree corresponds
to 11.86 meV and an intensity 1.0 ×Ĩ0 corresponds to only
1.95 × 105 W/cm2.
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