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Superstatistical velocity distributions of cold trapped ions in molecular-dynamics simulations
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We present a realistic molecular-dynamics treatment of laser-cooled ions in radio-frequency ion traps which
avoids previously made simplifications such as modeling laser cooling as a friction force and combining individual
heating mechanisms into a single effective heating force. Based on this implementation, we show that infrequent
energetic collisions of single ions with background gas molecules lead to pronounced heating of the entire
ion ensemble and a time-varying secular ensemble temperature, which manifests itself in a superstatistical
time-averaged velocity distribution of the ions. The effect of this finding on the experimental determination of
ion temperatures and rate constants for cold chemical reactions is discussed.
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I. INTRODUCTION

The study of the properties of atoms and molecules at low
temperatures has been greatly advanced by the development of
particle traps, with applications in many fields of physics and
chemistry [1–4]. Radio-frequency (RF) ion traps in particular
have proven to be a useful tool for experiments in quantum
information and the study of fundamental chemical processes
due to their ability to confine a wide range of atomic and molec-
ular ions prepared at a low temperature by laser or sympathetic
cooling [5,6]. The fluorescence generated during laser cooling
can be captured with a CCD camera, allowing the ions to be
imaged. The resulting image can be compared to the results
of molecular-dynamics (MD) simulations of the trajectories of
the trapped ions, allowing the number and the temperature of
the trapped ions to be inferred [7–12]. In reaction experiments,
this procedure is often adopted to probe the variation of the
composition of the ion ensemble as a function of reaction time
in order to determine reaction rate constants [11,13–15].

Two significant approximations are typically made in MD
simulations in order to minimize the computation time, which
scales quadratically with the number of trapped ions due to
the pairwise Coulomb force. The first of these is to implement
the effects of laser cooling as a friction force, neglecting the
process of stimulated emission and the saturation of the force
with respect to intensity and ion velocity [16]. The second
is the replacement of the various heating processes acting
on the ions with a single effective heating force and fitting
the strength of this force to experimental data [9,12,17–19].
This approach neglects the underlying physical details of the
heating sources and, in particular, replaces rare events which
lead to strong heating with a continuous, weaker heating
process. This converts the system from one which samples a
broad range of temperatures into one in which the ions remain
at an essentially fixed temperature after reaching equilibrium
with only small displacements from the mean.

Alternative descriptions of laser cooling have previously
been used, ranging from stochastic photon scattering [20],
modeling the radiative dynamics of each particle explicitly as
a two-level system in a laser beam [21], to tracking the quantum
state of each particle throughout the simulation including
multiple hyperfine levels [22,23]. All of these methods have the
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advantage of directly introducing the heating of the particles
caused by photon recoil and fluctuations in the scattering rate,
whereas these must be included in an effective heating term if
a frictional force is used.

Building on this work, we show that these two approx-
imations can be problematic simplifications which lead to
pronounced misrepresentations of the dynamics and thermal
properties of the trapped ions. We introduce an MD imple-
mentation of a realistic force model for trapping, laser cooling,
and the salient heating mechanisms, which is directly based
on experimental parameters without relying on the above two
approximations. We show the effects of the breakdown of the
friction model of laser cooling at ion velocities of relevance to
experiments. Moreover, we demonstrate that collisions of only
a single ion of the ensemble with a background gas molecule
can lead to significant deviations of the secular velocities
of all trapped ions from a Maxwell-Boltzmann distribution.
We compare the present theoretical results to experimental
data, finding excellent agreement, and invoke superstatistics
to provide a simple explanation for the appearance of the
non-Maxwellian behavior. Finally, we discuss the relevance
of our results to the determination of reaction rate constants
and put them into context with other recent theoretical work
on the collisional dynamics of trapped ions [24,25].

II. BACKGROUND

A. Radio-frequency ion traps

The trapping of ions through electric fields requires a
time-varying component, since the Laplace equation of elec-
trostatics forbids the formation of a three-dimensional trap
using only static fields [26]. In a quadrupole RF ion trap,
confinement is achieved through combining RF and static
electric fields in such a way that charged particles can be
trapped in all three dimensions simultaneously [26]. The
dynamics of a single ion in a quadrupole RF trap are governed
by the Mathieu equations of motion,

d2ui

dt2
= �2

RF

4
[2qi cos(�RFt) − ai]ui, (1)

where ui, i ∈ {x,y,z}, are the ion coordinates, qi and ai are
dimensionless parameters depending on the trap geometry and
operating conditions, and �RF is the radio frequency [26].
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When qi and ai are both much smaller than 1, the motion
of the ion can be decomposed into two components: a slow
“secular” low-frequency motion and a fast oscillating “micro-
motion” at the driving RF [26,27]. The velocities v of the
ions corresponding to the secular motion can be calculated by
averaging their total velocities vtot including micromotion over
one RF period [9]. For multiple trapped ions, the instantaneous
distribution fv(v) of the magnitudes of the secular velocities v
is found to be Maxwellian in good approximation [28],

fv(v) = 4πv2

(
m

2πkBT

) 3
2

e
− mv2

2kB T , (2)

so that a secular temperature T can be assigned to the ion
ensemble. Here, m refers to the ion mass and kB is Boltzmann’s
constant.

B. Laser cooling

Cooling of the ions is implemented through the scattering of
photons from a laser beam slightly red detuned from an atomic
resonance (Doppler laser cooling) [29]. Unlike in the optical-
molasses cooling technique for neutral atoms, there is often
only one cooling laser present in ion-cooling experiments. The
motional degrees of freedom of all ions are strongly coupled
through the Coulomb interaction and so cooling one degree of
freedom is sufficient to cool the entire ensemble.

The rate Rscatt(vtot) at which photons are scattered by
an ion through interaction with a near-resonant laser beam
of detuning δL and intensity I on a transition with natural
linewidth � and saturation intensity Isat is given by [29]

Rscatt(vtot) = �

2

I/Isat

1 + I/Isat + 4(δL + k · vtot)2/�2
. (3)

The corresponding scattering force,

Fscatt = �kRscatt, (4)

can be expanded in a Taylor series around vtot = 0, which is
terminated after the linear term, yielding a radiation pressure
term F0 and a friction force Ff = −Bvvtot [29]. This linear
approximation of the laser-cooling force has frequently been
employed in previous MD treatments of trapped ions [9,11,12].
F0 acts to slightly displace the ions in the trap, and Ff acts
as a velocity-dependent term removing kinetic energy from
the system. The randomly directed spontaneous emission
of excited ions and fluctuations in the number of photons
absorbed per unit time both lead to a random walk of the
ion velocity [29]. This is equivalent to a heating of the ions
with a rate

Ṫ = 2

3

�
2k2

mkB

Rscatt. (5)

In the case of an RF ion trap, the laser cooling acts to
reduce the secular temperature. At sufficiently low secular
temperatures, the ion ensemble undergoes a phase transition
to an ordered state called a Coulomb crystal [1,6]. The
micromotion, on the other hand, is driven by the applied RF
field and so cannot be cooled completely, but can be reduced
by careful control of shape and location of the Coulomb
crystal [18].

III. FORCE MODEL

A realistic MD simulation of ions in a RF trap must take
into account the range of forces experienced by the ions. These
include the trapping force and Coulomb repulsion between
the ions as well as the laser cooling responsible for lowering
their temperature. In addition to these, a number of heating
processes counteract the effect of cooling such that an ion
cloud reaches a finite temperature, typically in the range
10–100 mK [6]. These processes can be broadly divided into
four types: heating due to interaction with the laser, heating
due to collisions of ions with residual background gas, heating
due to ion-ion collisions, and heating due to experimental
imperfections (e.g., machining imperfections, electronic noise,
and patch potentials).

Here, the force acting on an ion i was represented as follows:

Fi = −∇U (x,y,z,t) + FCoulomb + Fbackground + Fscatt, (6)

where U (x,y,z,t) is the time-dependent trapping potential and
FCoulomb is the sum of pairwise Coulomb forces acting between
the ions. These two terms also implicitly account for heating
by ion-ion collisions [30]. Fbackground is a term representing
elastic collisions with the background gas, and Fscatt is the
force arising from interaction of the ions with near-resonant
light. Heating due to experimental imperfections was neglected
in the present treatment (see below).

A. Trapping potential

In the present MD implementation, the trapping potential
was formulated as [31]

U (x,y,z,t) = �2
RFm

8

∑
i=x,y,z

[ai − 2qi cos(�RFt)]u
2
i . (7)

All simulations performed in this work use the potential of the
surface-electrode chip trap described in [32] defined by �RF =
8 × 2π MHz, qx = 0.0824,qy = −0.0806,qz = −3×10−4,
and ax = −16×10−4,ay = 11×10−4,az = 4×10−4, where
the ai and qi parameters were derived from numerical trapping
potentials [32].

B. Ion-laser interaction

We assume that a trapped ion can be described as a two-level
atom in the weak-binding approximation such that the standard
treatment of a free atom in a laser field can be applied.
Moreover, we assume that the population of the excited state
is given by the steady-state solution to the optical Bloch
equations (OBE) [29] as a function of laser intensity and ion
velocity, i.e., changes in the ion’s internal state occur much
faster than in its position or velocity. To convert this to a form
suitable for use in MD simulations, we write the transfer of
population between the upper and lower state in the form of
Einstein rate equations (neglecting coherences between states),
with the rate of change of population Pi of the upper state
(i = 2) given by

dP2

dt
= γP1 − (γ + �)P2, (8)

where � is the natural linewidth of the transition corresponding
to the rate coefficient of spontaneous emission and γ is the rate
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coefficient of absorption and stimulated emission (assuming
equal degeneracies in both states). By equating the steady-state
solution of Eq. (8) to the steady-state solution of the OBE [29],
we obtain

P2 = γ

2γ + �
= �2/4

(δL + k · vtot)2 + �2/2 + �2/4
. (9)

From Eq. (9), an expression for γ can be found,

γ = �

2

I

Isat

�2

�2 + 4(δL + k · vtot)2
, (10)

where the substitution �2 = �2

2
I

Isat
has been made. The proba-

bility that an atom in the excited state undergoes spontaneous
emission during a short period of time δt is approximately
�δt . Additionally, the probability of stimulated emission from
the excited state or absorption in the ground state is given by
γ δt . Thus, the continuous rate equations for an ensemble of
atoms can be converted to a probabilistic model for individual
atoms. This can be implemented in an MD simulation with a
time step of δt , under the condition that δt � 1/γ , 1/� such
that not more than one absorption or emission event occurs per
time step.

In the initialization of the simulations, each ion is assigned
a Boolean state variable (0 = ground state, 1 = excited state).
During each time step, the probability of the ion changing to
the other state is calculated, and this value is compared to a
random number generated in the interval [0,1) to determine if
a transition between the two states takes place during the time
step. When a transition occurs, the state variable of the ion is
updated, and a momentum kick of magnitude �k is applied
to the ion in the appropriate direction for absorption and
stimulated emission and in a random direction for spontaneous
emission. Figure 1 shows the time-dependent fraction of Ca+

ions in the excited state in a simplified simulation in which
the motion of the particles is neglected (v = 0 for all ions)
performed at I = 10Isat and δL = � (blue line). The black

FIG. 1. (Color online) Population P2 of the upper state of a two-
level atom as a function of time t given by the solution to the optical
Bloch equation (red dashed line) and fraction of ions in the upper
state of an ensemble of 262 Ca+ ions undergoing discrete transitions
between a lower and upper state according to the “state-tracking”
model described in the text (blue solid line).

FIG. 2. (Color online) Secular temperature T as a function of
time t of a system of 262 ions undergoing laser cooling at an intensity
of 0.2Isat and a detuning δL = � for the friction-force (red dashed line)
and state-tracking (blue solid line) models of laser cooling.

dashed line shows the corresponding solution of the OBE. We
assume laser cooling on the 4s 2S1/2 → 4p 2P1/2 transition
in Ca+ with spectroscopic parameters taken from [33]. It
can be seen that the population obtained with the present
probabilistic treatment quickly converges to the same value
obtained from the OBE. The present approach does not capture
the population oscillations obtained from the OBE shortly after
the beginning of the excitation. However, on the long time
scales of ms considered in the present study, these deviations
at the beginning of the dynamics are insignificant.

In a full MD simulation, the transition probabilities become
velocity dependent as a consequence of the Doppler shift in
Eq. (9). An ion moving towards the source of a red-detuned
laser beam absorbs more photons than one moving away,
resulting in a net force due to the applied momentum kicks.
This leads to an overall cooling effect, as can be seen in
Fig. 2, and automatically generates the stochastic heating force
resulting from laser cooling discussed in Sec. II B. To allow
for a comparison with the friction-force model of Sec. II B, the
laser intensity in this simulation was set far below saturation,
I = 0.2Isat, such that the friction-force model using the heating
rate of Eq. (5) is applicable. In this low-intensity regime, it
can be seen that the two models give very similar results. In
Sec. IV A, we will discuss the differences between the two
models at higher laser intensities more closely related to those
used in experiments.

It should be noted that the present two-level model neglects
the existence of metastable states such as the 2

D3/2 state
in Ca+, which experimentally requires a repumper laser
to prevent the accumulation of population in this state.
Consequently, it also neglects the effects of a possible coherent
population trapping which, however, can be suppressed by a
suitable choice of laser detunings [34].

C. Collisions with background gas

Even at the ultrahigh vacuum of lower than 10−9 mbar
usually used in cold-ion experiments, there is a significant
rate of elastic collisions of ions with residual background gas,
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typically H2. These collisions are primarily caused by the long-
range interaction between the ion and the induced dipole of
the neutral molecule, and so the collision rate constant can be
approximated by Langevin theory [35],

kel = 2πnn

√
α′

ne
2

4πε0μ
, (11)

with background particle density nn, polarizability volume α′
n,

and the reduced mass of the collision μ. As already shown in
Ref. [9], a collision of an ion with a background gas molecule
imparts momentum to the ions ejecting it from the crystal for
a number of oscillation periods until it is recooled. Kinetic
energy is transferred from the hot ion to the remaining ions in
the crystal through ion-ion collisions, resulting in an increase
of the secular temperature followed by laser recooling to equi-
librium. In our simulations, the assumption is made that the
collisions are purely elastic, following a hard-sphere model.
This is a reasonable approximation for an ion interacting with
a weakly polarizable neutral particle. Although alternatives
could certainly be considered, we emphasize that the salient
effects described later in this paper do not depend on the
choice of collision model. For the crystal with 262 ions of
Fig. 2 interacting with H2 molecules at a temperature of 300 K
and partial pressure of 10−9 mbar, an average of one collision
event per 30 ms takes place. A single simulation covering this
period of time took approximately 10 hours. Thus, it would
take a prohibitive computation time to average over the large
number of collisions which occur on the time scales of typical
experiments (seconds to minutes). One method of overcoming
this problem is to increase the rate and decrease the size of the
momentum kicks imparted in the collisions so that the average
heating rate remains the same [9]. In this way, a steady state
is reached in the simulations in only a few milliseconds of
simulation time. This approach, however, does not accurately
reproduce the underlying dynamics of the crystal as it creates
a system which remains close to equilibrium temperature
with only minor deviations, which is accurate only for large
crystals in which collisions are frequent [9]. The effect of
rarer background gas collisions is to cause a sharp rise in
the temperature, followed by a slow recooling to equilibrium.
In Sec. IV B, we will describe an approach which preserves
the essential features of the realistic heating mechanism and
cooling dynamics while remaining computationally tractable.

D. Experimental imperfections

Ions in an RF trap are sensitive to heating from a number of
potential imperfections of the trap, such as phase differences
between the RF electrodes, anomalous ion heating, the forma-
tion of patch potentials on the electrodes, and Johnson noise
[36]. These depend on the specific experimental environment
and can vary on a daily basis. Attempting to include them all
explicitly in a simulation would be impractical. Moreover, it
has been shown that in big traps, these effects are typically
small even for relatively large clouds of a thousand ions [9].
At present, our simulations do not account for these effects.
Judging from the comparison of our simulation results with
experimental data in Sec. IV A below, we conclude that they
are negligible for the trap and conditions considered here.

E. Numerical implementation

Due to its numerical stability with respect to treating
oscillatory motions and its computational simplicity, the
synchronized form of the leapfrog algorithm was used to
integrate the equations of motion for the trapped ions [37].
The code was implemented in the MD frameworks ProtoMOL

and OpenMM [38,39]. Simulations performed with 1000 ions
on OpenMM using single GPU acceleration (nVidia GeForce
GTX 650) proved to be four times faster than the ProtoMOL

code running on four CPU cores (Intel Xeon CPU E5-2687W).

IV. RESULTS AND DISCUSSION

A. Validation of the MD model

To validate our state-tracking model of laser cooling,
a number of simulations investigating the cooling from a
temperature of 10 mK to equilibrium were performed at a
fixed detuning and varying intensity. Additional simulations
were performed using the friction model of laser cooling
with the heating term described by Eq. (5), and also with
the state-tracking model with stimulated emission neglected
(as in Ref. [21]). Exponential decay curves were fitted to

FIG. 3. (Color online) (a) Cooling rate β and (b) equilibrium
temperature Teq of a cloud of 262 Ca+ ions using the friction-force
model (red +), the present state-tracking model (blue ×), and the
state-tracking model without stimulated emission (black 
) at a laser
intensity of 9Isat and a detuning δL = �. See text for details.
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FIG. 4. (Color online) The secular temperature T as a function
of time t of an ion crystal of 262 Ca+ ions following a collision
of an ion with a H2 molecule using state-tracking (blue solid line)
and friction-force (red dashed line) models of laser cooling averaged
over 20 simulations. The friction model yields an unrealistically fast
cooling rate resulting from a breakdown of the linear approximation
to the scattering force.

the data obtained in these simulations allowing extraction of
the cooling rate β and the equilibrium temperature Teq as a
function of the laser intensity; see Fig. 3. It can be seen that
β is approximately equal for all three models with respect to
I/Isat, but Teq differs at high intensities because of different
saturation behavior.

Typically, the majority of ions in the trap remains at low
secular velocities for which the linear expansion inherent in
the friction force applies. However, after a head-on Ca+−H2

collision at a mean relative velocity of 1775 m s−1, the calcium
ion is accelerated to a velocity of 170 m s−1, for which the
friction model is no longer valid. The force applied to an ion
at this velocity by the friction term can be up to two orders
of magnitude larger than the maximum scattering force for a
near-optimum detuning of �. This results in an unrealistically
fast recooling to equilibrium, as can be seen in Fig. 4. The
present state-tracking model does not rely on the friction
approximation and so allows the role of collisions to be more
accurately investigated.

In order to confirm that the present MD framework
successfully reproduces experimental results, simulations of
Coulomb crystals obtained in a surface-electrode RF ion trap
used previously [19,32] were performed. The laser intensity
and detuning were set to the experimental values of I ≈ 9Isat

and δL ≈ 13�. The effect of collisions with background gas
molecules at room temperature was simulated by applying
a kick to a single ion at the mean collisional velocity and
impact parameter at a fixed point in time (see Sec. IV B).
Simulations were carried out for a time interval equal to
the mean period between collisions with background gas
molecules. We obtained simulated images in a good agreement
with experiment and previous simulations (Fig. 5), confirming
the validity of the present MD approach.

B. Collisions with background gas

Assuming that the ion motions are strongly coupled, the
temperature following an increase at a time t0 is approximated

FIG. 5. (Color online) (a) Experimental and (b) simulated CCD
image of 262 Ca+ ions in the six-wire trap, as previously reported
in [19]. (c) Simulated image of 262 ions based on the present MD
implementation described in the text.

by an exponential decay to equilibrium [9,21,30],

T (t) = Teq + �T (vc,b) exp[−β(t − t0)]. (12)

Here, �T (vc,b) is the increase in temperature from Teq due
to a collision occurring with a collisional velocity vc and
impact parameter b. This expression assumes that collisions
take place sufficiently infrequently such that the system recools
to equilibrium in between, which is the case here. Since both
β and Teq are independent of the strength of the collision, they
can be extracted from a set of trial simulations performed at
a constant collision strength. Averaging over ten simulations,
the best fit parameters were found to be β = 151 s−1 and
Teq = 7.78 mK.

To establish values for �T (vc,b), a total of ≈350 simu-
lations were performed to sample over the range of collision
velocities at an H2 temperature of 300 K at impact parameter
b = 0. The values of �T (vc,b = 0) thus obtained are plotted
in Fig. 6 as a function of the kinetic energy of the colliding
H2 molecules. Assuming an instantaneous energy transfer
between the ions and that equipartition of energy applies, the
temperature increase of the crystal should be a linear function
of the kinetic energy transferred in the initial collision with the
background gas molecule [25,40,41]. We observe this to be
the case when the laser cooling is switched off following the
collision, but not when the cooling remains active (see Fig. 6).
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FIG. 6. (Color online) Increase in secular temperature �T of a
Coulomb crystal of 262 Ca+ ions following a collision with a H2

molecule at impact parameter b = 0 sampled over ≈350 simulations
(blue crosses) as a function of the kinetic energy Ek of the colliding
H2 molecule. The dotted line is a best fit to indicate the deviation from
the linear trend at high Ek . Red circles indicate additional simulations
performed with the laser cooling switched off after the collision, and
the dashed line is a line of best fit to these data. See text for discussion.

This phenomenon appears to be caused by the fact that at
higher velocities, the transfer of energy from the ejected ion to
the crystal is not instant and instead occurs over an extended
period of time, as shown in Fig. 7. As previously observed,
the ejected ion moves on a large orbit in the trap, transferring
energy to the colder ions only through infrequent collisions
when passing through the center [9]. Laser cooling causes
additional loss of kinetic energy, reducing the radius of the
orbit. After the ion reaches a low enough energy at which it
can no longer escape from the crystal, it quickly equilibrates
through collisions with the other ions. In Fig. 7, the recapture
of the ejected ion by the crystal occurs at approximately 2 ms
in the presence of a cooling laser, and is visible as a sharp
maximum in the temperature of the crystal [Fig. 7(a)] and
steep drop in the velocity of the ejected ion [Fig. 7(b)]. Without
laser cooling, recapture occurs later and the overall increase
in temperature of the crystal is also larger. From these results,
we conclude that the nonlinear trend in Fig. 6 is caused by the
laser-cooling process dissipating energy during the extended
time between the collision and the rethermalization of the
ion, which also results in a lower temperature increase of the
crystal.

For a full characterization of the collision dynamics, it
is necessary to consider collisions at all possible impact
parameters. The average temperature increase due to collisions
is then given by

�T =
∫∫

�T (vc,b)fvc
(vc)fb(b)dbdvc, (13)

where fvc
(vc) and fb(b) are the distributions of collision

velocities and impact parameters, respectively. Evaluation
of this expression as detailed in Appendix A yields �T =
56.3 ± 0.9 mK for 262 laser-cooled Ca+ ions colliding with
room-temperature H2 background gas molecules.

FIG. 7. (Color online) (a) Secular temperature T of a Coulomb
crystal of 262 Ca+ ions following the collision of a single ion with a
H2 molecule at a velocity of 3000 m s−1 and impact parameter b = 0
with (blue solid line) and without (red dashed line) laser cooling
applied. (b) Magnitude of the secular velocity |v| of the ejected ion
for these two cases. See text for details.

Thus, a time- and collision-strength-averaged temperature
T can be calculated,

T̄ = 1

�t

∫ t0+�t

t0

Teq + �T e−βtdt, (14)

where the averaging length �t is taken to be the period between
collisions, �t = 1/kel. Using �T , β, and Teq extracted from
the simulations, the mean temperature of the experimental
crystal shown in Fig. 5(a) was found to be T = 20 ± 1 mK.

In Ref. [19], the same crystal was assigned a temperature of
T = 23 mK, obtained through use of the model of frequent and
weak collisions of Ref. [9] and producing the image shown in
Fig. 5(b). The difference between these results is attributed to
the large temperature fluctuations in the current model, which
were previously neglected.

C. Superstatistical velocity distributions

The effects of the different collision models can be
investigated by sampling the secular-velocity distribution of
the ions over the period �t . For the model using frequent
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FIG. 8. (Color online) Instantaneous secular-velocity distribu-
tions fv(v) of the crystal of 262 Ca+ ions at times t = 2.5 ms
(red ×), 15 ms (blue +), and 27.5 ms (black 
) after a collision
with a H2 molecule. Maxwell-Boltzmann distributions fitted to the
numerical results at these times are shown as dashed, dash-dotted,
and dotted lines, respectively. The data points are averaged over six
iterations of the simulation and represent a histogram bin of width
�v = 0.5 m s−1.

weak kicks to all ions, the velocity distribution is Maxwellian
for a fixed temperature, as would be expected for a sample
in thermal equilibrium. The realistic present model using
infrequent, energetic collisions of a single ion with a single
background gas molecule does not lead to a system in thermal
equilibrium at a fixed temperature. The instantaneous velocity
distributions of the ions at a certain point in time are found
to be approximately Maxwellian, but change with time; see
Fig. 8. This reflects the considerably faster time scale for the
energy redistribution within the crystal than for the cooling of
the entire ensemble.

To simplify the analysis, we assume that collisions occur
at fixed time intervals �t , the temperature rise is instant
following a kick, and the system recools to equilibrium in
between. Thus, only the effects of a single collision need to
be considered at a time, and the secular-velocity distribution
found when sampling over �t can be written as a time average
of the instantaneous thermal distributions taking into account
the time-varying temperature for a given temperature rise �T :

fv(v|�T ) = 1

�t

∫ t0+�t

t0

4πv2

√[
m

2πkBT (t)

]3

e
−mv2

2kB T (t) dt,

(15)

where the left-hand side has been written as fv(v|�T ) to
emphasize that this represents the distribution following a
specified rise in the temperature �T . This integral may be
evaluated numerically for an arbitrary time-dependent tem-
perature T (t) and can be solved analytically for a temperature
of the form given by Eq. (12) (see Appendix B). We compare
the result of this analytical solution to the distribution obtained
numerically for simulations performed at a collision velocity
vc = 1775 m s−1 and an impact parameter b = 0 in Fig. 9.
It can be seen that the distribution has a longer tail at high
velocities than a standard Maxwell-Boltzmann distribution

FIG. 9. (Color online) Velocity distribution of 262 Ca+ ions in
the period of time between two collisions from Eq. (15) (solid blue
line) and the numerical distribution obtained by sampling a simulation
over this interval (crosses). The red dashed line is a Maxwell-
Boltzmann distribution at the average temperature T = 26 mK,
and the black dotted line is a Maxwell-Boltzmann distribution at
T̂ = 18 mK obtained from a fit to the numerical data. In the
simulation, a H2 velocity of 1775 m s−1 and impact parameter b = 0
were assumed.

due to the periods of high temperature immediately following
a collision, and is in very good agreement with the values
calculated using Eq. (15) with T (t) given by Eq. (12).

The two Maxwell-Boltzmann distributions plotted in Fig. 9
correspond to the time-averaged temperature [Eq. (14)] for
vc = 1775 m s−1, b = 0 of T = 26 mK (red dashed line), and
a temperature of T̂ = 18 mK (black dotted line) obtained from
a fit of a Maxwell-Boltzmann distribution to the numerical data
(crosses). Neither correctly describes the ion velocities—the
distribution for T = T overpredicts the peak velocity and,
for T = T̂ , the high-velocity tail is lost. For this system, the
temperature fluctuations are significant enough that a single
static temperature cannot accurately describe the distribution
of ion velocities.

The Cartesian components of the secular velocity vi, i ∈
{x,y,z}, can also be sampled over the course of a simulation,
producing the distribution

fvi
(vi |�T ) = 1

�t

∫ t0+�t

t0

√
m

2πkBT (t)
e

−mv2

2kB T (t) dt, (16)

as shown in Fig. 10 (see Appendix B for an analytical
solution to this integral). Similar heavy-tailed distributions
have previously been observed experimentally for atoms in an
optical lattice, and in simulations of ions undergoing buffer-gas
cooling [24,25,42,43]. In these cases, the velocity distributions
are generally a good fit to a Tsallis function. Indeed, the data
shown in Fig. 10 can be fit to a Tsallis distribution of the form
used in [24],

fT (x) = T0

[1 + (x/σ )2/n]n
, (17)

with excellent accuracy. The fit yields a width of the distri-
bution σ = 2.34 m s−1 and an exponent n = 2.72. Figure 10
also shows the solution of the integral given by Eq. (16)
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FIG. 10. (Color online) Distribution of the axial component vz of
the secular velocity (crosses) sampled during a simulation over 30 ms
following a collision event with a H2 molecule with v = 1775 m s−1

at impact parameter b = 0. The red dashed line represents a fit to a
Tsallis function and the black dotted line to a Gaussian distribution.
The blue solid line is a Maxwell-Boltzmann distribution averaged
over a time-varying temperature; see text for details. The inset shows
the heavy-tailed behavior of the distributions at high velocities.

(see Appendix B for the analytic expression). It can be seen that
this representation is in excellent agreement with the numerical
data and the Tsallis function.

The present results can be understood within the framework
of the superstatistics of driven nonequilibrium systems [44].
The time average over an exponentially decaying temperature
performed in Eq. (15) is mathematically equivalent to an inte-
gration over a temperature distribution fT (T |�T ) ∼ 1/(T −
Teq), as demonstrated in Appendix B. It has been shown
previously that the low-energy limit of a Maxwell-Boltzmann
distribution averaged over a fluctuating temperature is a Tsallis
distribution [44,45], and so the fact that it represents a good
fit to the data simply reflects that the ions remain in this
low-energy regime. In this limit, n = 1/(qs − 1), where qs is
the superstatistical parameter with an analytical form provided
in Appendix B [44]. At qs = 1, the system follows Maxwell-
Boltzmann statistics [24], and values greater than 1 indicate
a greater deviation from Maxwellian behavior. A numerical
investigation of this parameter revealed that over a wide range
of equilibrium temperatures (1–40 mK) and values of �T

(10–200 mK), qs is maximized for β�t ≈ 4, corresponding
to the situation in which the crystal has just recooled to
equilibrium before the next collision occurs. For much faster
(β → ∞) or much slower (β → 0) cooling, qs → 1 and the
Maxwellian limit is recovered. β, and therefore qs , can be
adjusted by varying the laser-cooling parameters, i.e., laser
detuning and intensity.

The discussion above applies to the time interval following
a single collision of fixed strength and hence a known value
of �T . Averaging over the distribution of collision velocities
and impact parameters yields

fvi
(vi) =

∫ ∞

0
fvi

(vi |�T (v⊥))fv⊥ (v⊥)dv⊥, (18)

FIG. 11. (Color online) Superstatistical velocity distributions
fvi

(vi) for a crystal of 262 Ca+ ions. The blue solid line shows
the results of averaging a Maxwell-Boltzmann velocity distribution
over a varying temperature induced by collisions with a range of
impact parameters b and velocities vc causing increases in the
temperature �T (vc,b) followed by a slow return to equilibrium. The
red dashed line is calculated using the same averaging procedure, but
treating all collisions as causing the mean increase in temperature,
�T = 56.3 mK. The black dash-dotted line is a Maxwell-Boltzmann
distribution for a fixed temperature equal to the mean, T = 20 mK.
The inset shows the heavy-tailed behavior of the superstatistical
distributions.

where v⊥ is the normal collision velocity (see Appendix A).
Using the results obtained previously for �T , Eq. (18)
was numerically integrated. The result is plotted in Fig. 11
and compared to both the distribution fvi

(vi |�T ) obtained
using Eq. (16) with �T = �T = 56.3 mK and the Maxwell-
Boltzmann distribution at the mean temperature T given by
Eq. (14). It can be seen that averaging over all collisions in this
manner leads to a distribution with an even more pronounced
tail compared to fvi

(vi |�T ), since this now includes the effects
of the most energetic collisions.

D. Consequences for studies of cold chemistry

As a further example of the consequences of a time-
dependent temperature, we now turn to the area of determining
rate constants for cold chemical reactions [6,46]. Take the rate
constant of a reaction with an activation energy Ea as given
by the Arrhenius equation,

k = Ae
−Ea

kB T (t) , (19)

where A is a reaction-specific prefactor. Temperature fluctua-
tions lead to a time-averaged rate constant,

k̄ = 1

�t

∫ t0+�t

t0

Ae
−Ea

kB T (t) dt (20)

differing from the rate constant calculated using a model with
T (t) = T̄ . Furthermore, additionally averaging over collision
velocities and impact parameters leads to further changes in
the rate constant. Figure 12 shows the rate constants as a
function of the activation energy for all three cases: for a
fixed temperature, for a time-averaged temperature, and for
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FIG. 12. (Color online) Variation of the logarithm of the ratio of
the time-averaged reaction rate constant k to the Arrhenius prefactor
A as a function of the activation energy Ea averaged over the time-
varying temperature for all collision strengths (blue solid line) and for
the mean collision strength (red dashed line). The black dash-dotted
line indicates the expected behavior for a constant temperature equal
to the mean.

a time- and collision-averaged temperature. As expected, for
Ea = 0 (e.g., barrierless Langevin-type ion-neutral processes),
the same rate constant is obtained, since in this case k does
not depend on the velocity of the ions. However, it can be
seen from the figure that for time-varying temperatures, the
logarithm of the reaction rate is no longer a linear function of
the activation energy due to the periods of time spent at higher
and lower temperatures. At higher activation barriers, the rate
constant for the temperature-varying model is higher than for
the fixed temperature, suggesting that reactions which would
be energetically suppressed at the mean temperature can still
occur.

E. Influence of micromotion

The discussion so far has focused on the effect of collisions
on the secular motion of the trapped ions. Micromotion is
implicitly contained by using a fully time-dependent trap
potential in our simulations. However, the effects discussed
here are qualitatively different from the micromotion heating
of ions in a buffer gas, which has been studied in detail in
a range of previous publications [24,25,43,47,48]. In these
works, it was shown that ions undergoing collisions with
neutral buffer-gas particles exhibit heavy-tailed velocity dis-
tributions caused by micromotion disruption and the resulting
dissipation of micromotion energy into the secular motion
(“RF heating”). Here, we have shown that a non-Maxwellian
behavior of the entire ensemble can also emerge because of an
energetic collision of a single ion with a neutral particle. This
effect does not depend on the specifics of the ion trap and,
in particular, does not require the presence of micromotion.
It results from a time-dependent ensemble temperature which
exists whenever cooling processes are active in combination
with infrequent but strong heating effects.

The effects pertaining to the secular energy of the ions
discussed here are expected to be less relevant in big crystals

in which the energy content of the ions is clearly dominated by
micromotion [18]. We expect them, however, to be significant
in small crystals or strings centered on the RF null line of the
trap, or for larger ensembles in multipole traps for which the
micromotion energies are small.

V. SUMMARY AND CONCLUSIONS

We have implemented an MD model for laser-cooled
ions in a RF ion trap which includes a realistic physical
representation of laser cooling and the collisions of the ions
with background gas molecules. Based on this MD implemen-
tation, we explored constraints on the validity of previously
employed friction-force models for laser cooling and show
that they lead to a significant overestimation of the cooling
rates for energetic ions. We show that infrequent collisions
with background gas molecules lead to superstatistical secular-
velocity distributions of the ion ensemble independent of the
presence of micromotion and that this behavior is tunable
through changing laser-cooling parameters. We also show
that the effects discussed here can have consequences for the
determination of rate constants of cold chemical reactions with
small activation barriers.
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APPENDIX A: AVERAGING COLLISIONS
OVER IMPACT PARAMETERS

To avoid repeating a large number of simulations for
all possible impact parameters, we note that for the elastic
isotropic collisions of structureless particles considered here,
the effects of a collision at a collisional velocity vc are entirely
described by v⊥, the component of vc normal to the collision
surface, while the tangential component plays no role [49].
The overall effect is that a fast glancing collision can impart
the same momentum to an ion as a slow head-on collision,
leading to the same rise in temperature. v⊥ can be calculated
from vc,b according to

v⊥ = vc

√
1 − b2

d2
, (A1)

where d = √
σ/π is the maximum impact parameter. Since a

collision along this velocity component is, by definition, head
on (i.e., b = 0), we have

�T (vc,b) = �T (v⊥,0), (A2)

and so the results obtained in Sec. IV B (see Fig. 6) can be
used to describe a collision with arbitrary impact parameter.
Equation (13) can then be replaced with an integration over
the probability-distribution function fv⊥ (v⊥),

�T =
∫

�T (v⊥,0)fv⊥ (v⊥)dv⊥. (A3)
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Under the (for the present case, very good) assumption that
the total velocity of the ion (including micromotion) is much
smaller than the velocity of the colliding molecule, fv⊥ (v⊥)
may be derived in closed form as

f (v⊥) = 2mv⊥
kBT

[
1 − erf

(
v⊥

√
m

2kBT

)]
, (A4)

where erf(x) is the error function. This distribution may then
be used in combination with the values of �T (v⊥,0) taken
from simulations to evaluate the integral in Eq. (A3).

APPENDIX B: TIME-AVERAGED
VELOCITY DISTRIBUTION

The form of T (t) given by Eq. (12) allows for an analytical
solution of Eq. (15) to be found by substituting

dT = −β(T − Teq)dt, (B1)

so that Eq. (15) can be written as

fv(v) = −4πv2

β�t

∫ T2

T1

√(
m

2πkBT

)3
e

−mv2

2kB T

T − Teq
dT . (B2)

Here, the limits of the integral are given by T1 = Teq + �T and
T2 = Teq + �T e−β�t . The same integral may also be found
through considering the temperature distribution fT (T ) as

follows. In our case, we aim to determine the temperature
during the interval of time spanned by [t0,t0 + �t). The
distribution of times in this interval is uniform (since, ex-
perimentally, we cannot tell at which point a collision has
occurred), and equal to 1/�tdt . Equation (12) is used to map
this time distribution onto a temperature distribution,

fT (T ) = ft (t(T ))
dt

dT
= 1/(β�t(T − Teq)), (B3)

where t(T ) is the inverse function of Eq. (12). The Maxwell-
Boltzmann distribution averaged over an arbitrary temperature
distribution is given by

fv(v) =
∫

4πv2

(
m

2πkBT

) 3
2

e
− mv2

2kB T fT (T )dT , (B4)

and substitution of Eq. (B3) into this equation recovers
Eq. (B2). Using another substitution, u = Teq/T , gives an
integral of the form

∫ √
ue−au

u − 1
du, (B5)

where a = mv2/(2kBTeq), and the prefactor has been omitted.
The integral may be evaluated:

∫ √
ue−au

u − 1
du =

e−a
{−4π

√
auT

[√
2au, i√

u

] + i
√

πu[ea − √
πaerfi(

√
a)]erf(

√
au) + π

√
au

}
i
√

au
, (B6)

where T (h,a) is Owen’s T function [50] and erfi(x) = −ierf(ix). This result can be used to obtain the velocity distribution
plotted in Fig. 9,

fv(v|�T )= 4ae−a
√

aπ

β�t
√

v2

⎧⎨
⎩
[

erfi(
√

a) − ea

√
aπ

]
erf

⎛
⎝
√

mv2

2kBT

⎞
⎠ − 4iT

⎛
⎝
√

mv2

kBT
,i

√
T

Teq

⎞
⎠
⎫⎬
⎭

T =T2

T =T1

, (B7)

where T1 = Teq + �T (v,b) and T2 = Teq + �T (v,b) exp(−β�t), and the notation fv(v|�T ) is used to emphasize that it applies
in the time period following a collision, resulting in a temperature increase of �T .

The distributions of the individual velocity components vi with i = x,y,z can be obtained through evaluation of

fvi
(vi |�T ) = − 1

β�t

∫ T2

T1

√
m

2πkBT
e

−mv2
i

2kB T

T − Teq
dT . (B8)

Integration yields

fvi
(vi |�T )= 1

β�t

√
mπ

2kBTeq
e
− mv2

2kB Teq

[
4iT

(
v

√
m

kBT
,−i

√
T

Teq

)
+ erf

(
v

√
m

2kBT

)
erfi

(
v

√
m

2kBTeq

)]T =T2

T =T1

. (B9)

Additionally of interest is the generalized qs parameter defined as 〈1/T 2〉
〈1/T 〉2 [44]. In the present case, this can be written as

qs = β�t
Teq

(
1
T1

− 1
T2

) + ln
[

T2(T1−Teq)
T1(T2−Teq)

]
ln2

[
T2(T1−Teq)
T1(T2−Teq)

] . (B10)
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APPENDIX C: TIME-AVERAGED ARRHENIUS RATE CONSTANT

We now derive an expression for the Arrhenius rate constant, taking into account temperature fluctuations. Starting from the
time-averaged rate constant given by Eq. (20), we change the integration variable using Eq. (12),

k̄ =
∫ T2

T1

− Ae
− Ea

kB T

β�t(T − Teq)
dT . (C1)

Making the substitution u = Teq/T yields

k̄ = A

β�t

∫ T =T2

T =T1

e
− Eau

kB Teq

u
− e

− Eau
kB Teq

(u − 1)
du. (C2)

The solution of the integral can be written in terms of the exponential integral function Ei(x) [51] such that

k̄ = A

β�t

{
Ei

(
− Ea

kBT

)
− e

− Ea
kB Teq Ei

[
− Ea

kBT

(
1 − T

Teq

)]}T2

T1

, (C3)

which is plotted in Fig. 12.
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