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Electron-ion radiative recombination assisted by a bicircular laser field that consists of two circularly polarized
fields counterrotating in the xy plane and having the frequencies rω and sω, which are integer multiples of the
fundamental frequency ω, is considered using the S-matrix theory. The energy and polarization of soft x rays
generated in this process are analyzed as functions of the incident electron energy and incident electron angle
with respect to the x axis. Numerical results for the process of direct recombination of electrons with He+ ionic
targets are presented. Abrupt cutoffs of the plateau structures in the emitted x-ray energy spectra are explained by
classical analysis. Simpler or more complex oscillatory structures in the spectrum may appear as a result of the
interference of a different number of classical orbits. Symmetry analysis and the numerical results show that the
x-ray power spectrum and ellipticity are invariant with respect to a rotation of the incident electron momentum
by the angle 2π/(r + s). We have visualized this by presenting the logarithm of the differential power spectrum
and polarization of the emitted x rays in false colors as functions of the incident electron angle and the x-ray
energy. We have also shown that the change of the relative phase of the bicircular field is equivalent to the change
of the incident electron angle. By controlling this relative phase it is possible to control the polarization of the
emitted soft x rays.
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I. INTRODUCTION

Over the past few decades the generation of coherent,
extreme ultraviolet radiation and of soft x rays has been a
topic of a great scientific and practical importance. Some
of the atomic processes in which the production of high-
energy photons is possible are high-order harmonic generation
(HHG) (see, for example, the review articles in Refs. [1–4],
and references therein), laser-assisted x-ray–atom scattering
[5–7], laser-induced bremsstrahlung [8–12], and laser-assisted
electron-ion recombination [13–24].

The process of electron-ion recombination is very important
in plasma physics and astrophysics [25]. In the case of radiative
recombination the energy is transferred from the free electron
to a photon. By applying additional external laser field, the
incident electron may exchange the energy with the laser field
before it recombines with the target ion. As a result, a high-
energy photon is emitted (see Ref. [2], and references therein).
It should also be mentioned that the external laser field can
cause a significant gain of the recombination yield, which may
be important for the laser-assisted neutral antimatter formation
[26]. The laser-induced enhancement of the recombination rate
has also been observed in experiments with merged ion and
electron beams (in ion storage rings) [27]. The effects of po-
larization on laser-induced electron-ion recombination in the
electron cooler of the storage ring were considered in Ref. [28].
Multiphoton-assisted recombination was investigated experi-
mentally in Ref. [29]. In the present paper we consider the
process of direct laser-assisted recombination (LAR).

The atomic and molecular processes can be controlled by
applying a bichromatic laser field and by varying the relative
phase and the amplitudes of the field components (see the
review article in Ref. [30], and references therein). For the
LAR process the emitted-x-ray spectrum was analyzed as a
function of the relative phase of linearly polarized bichromatic

field with frequencies ω and 2ω in Ref. [16] and the possibility
of the coherent phase control was confirmed. The dependence
of the LAR energy spectra on the carrier-envelope phase
of a few-cycle laser pulse was considered in Ref. [24]. In
the present paper we consider electron-ion radiative recom-
bination assisted by the so-called bicircular field. This field
consists of two coplanar counterrotating circularly polarized
fields having frequencies rω and sω, where r and s are
arbitrary integers and ω is the fundamental frequency (with
the corresponding period T = 2π/ω), and relative phases φr

and φs . We analyze how the LAR process can be controlled
by changing the parameters of the bicircular field.

Very recently, HHG by a bicircular laser field has become
a hot topic of research [31–38]. The reason is that the
harmonics generated by the bicircular field are circularly
polarized and as such they are a valuable tool for investigation
of chirality-sensitive light-matter interactions. It should be
mentioned that 20 years ago it was shown that the bicircular
field is an efficient tool for HHG [39]. The theories of HHG
by a bicircular field have shown that the emitted harmonics
should be circularly polarized [40–44], but this was confirmed
experimentally only recently [31]. Having in mind that HHG
can be considered as a three-step process that consists of
strong-field ionization followed by electron propagation and
laser-assisted electron-parent ion recombination, it is clear
that for a better understanding of HHG by a bicircular field,
it is important to investigate LAR in a bicircular field. It
should be mentioned that the three-step model of HHG was
formulated in Ref. [45] and further elaborated in the context
of the strong-field approximation [46] and a quasiclassical
approach that includes the Coulomb correction [47]. There
are many references related to this subject of which we
mention [48] and the review articles in Refs. [1–4,49], and
references therein. More recently, the photorecombination
cross section of atoms was retrieved from HHG spectra [50]
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using the so-called quantitative rescattering theory and the
corresponding factorization formula (see the review article
in Refs. [49,51] for a derivation of the factorization formula
using time-dependent effective range theory). In addition, it
should be mentioned that above-threshold ionization, a process
that is inverse to the LAR, by a bicircular field was recently
considered in Refs. [52,53].

The present paper is devoted to the investigation of electron-
ion radiative recombination assisted by a bicircular laser field.
These introductory remarks are followed by the quantum-
mechanical theory based on the S-matrix formalism and on
the classical analysis, which are presented in Sec. II. We have
extended our previous theory so that it can be applied for an
arbitrarily polarized laser field and to the polarization analysis
of the emitted x rays. The corresponding symmetry analysis is
relegated to the Appendix. Section III contains our numerical
results. We first present the results for the differential power
spectra and explain them using classical analysis. After that
we consider the polarization properties of the emitted soft
x rays and put all this in the context of dynamical symmetries.
Finally, the conclusions are summarized in Sec. IV. The atomic
system of units (� = e = me = 4πε0 = 1) is used throughout
the paper.

II. THEORY

A theoretical description of the direct LAR process, based
on the S-matrix formalism, was given in Ref. [15]. The incident
electron having the momentum p recombines with a positive
ion and an atomic bound state of energy EB < 0 is formed.
This process happens in the presence of a strong periodic laser
field with the electric-field vector E(t) and during this process
an x-ray photon having the wave vector K, frequency ωK,
and unit complex polarization vector êK is emitted. The LAR
process is characterized by the differential power spectrum
[15]

S(K,p) = pω4
K

2πc3
|Tn|2, (1)

where Tn = T(K,p) · ê∗
K is the T -matrix element. The number

of photons n exchanged with the laser field is obtained from
the energy conserving condition

n = (ωK + EB − Ep − Up)/ω, (2)

where Ep = p2/2, Up = ∫ T

0 A2(t)dt/(2T ) is the pondero-
motive energy, and A(t) = − ∫ t E(t ′)dt ′ = dα(t)/dt . In the
length gauge and dipole approximation we have

T(K,p) = TnêK =
∫ T

0

dt

T
〈ψB |re−iK·r|p + A(t)〉

× exp

{
i(EB + ωK)t − i

2

∫ t

dt ′[p + A(t ′)]2

}
,

(3)

where |ψB〉 is the atomic bound-state ket vector and |p〉 is a
plane wave [such that 〈r|p〉 = (2π )−3/2 exp(ip · r)].

In most papers about the LAR the polarization of the
emitted-x-ray photons is not considered. In the general case
it is elliptical [19]. Similarly to Refs. [35,41], we define

the degree of circular polarization ξK = Im (2T ∗
nxTny)/|Tn|2,

where we have assumed that the vector K is along the z axis
and that T(K,p) = Tnx êx + Tny êy , with êx and êy the real unit
polarization vectors along the x and y axes, respectively. Then
the ellipticity of the emitted x ray is given by

εK = sgn(ξK)

⎛
⎝1 −

√
1 − ξ 2

K

1 +
√

1 − ξ 2
K

⎞
⎠

1/2

. (4)

The integral over the recombination time t in Eq. (3) can be
solved numerically. In addition, a semiclassical analysis can
be done using the stationarity condition that the first derivative
over time of the action in the exponent in (3) is equal to zero,
leading to the equation

1
2 [p + A(t)]2 = EB + ωK, (5)

which expresses the energy-conserving condition at the re-
combination time t : The classical electron kinetic energy in the
laser field at time t has to be equal to the energy of the ground
state, into which the electron recombines, plus the emitted-x-
ray energy. In this paper we will support our numerical results
by a classical analysis for which EB + ωK > 0 and Eq. (5) has
real solutions.

We use a bichromatic circularly polarized field with
coplanar counterrotating components having the angular fre-
quencies rω and sω, which are integer multiples of the same
fundamental frequency ω. The corresponding electric-field
vector in the xy plane is defined by [41–43]

E(t) = i

2
[Er ê+e−i(rωt+φr ) + Es ê−e−i(sωt+φs )] + c.c., (6)

where ê± = (êx ± iêy)/
√

2. In Eq. (6) φj , Ej , and Ij = E2
j are

the phase, amplitude, and intensity of the j th field component
of helicity hj (hr = 1 and hs = −1). The components of the
bicircular field (6) are given by

Ex(t) = [Er sin(rωt + φr ) + Es sin(sωt + φs)]/
√

2,

Ey(t) = [−Er cos(rωt + φr ) + Es cos(sωt + φs)]/
√

2.
(7)

Defining Ar = Er/(rω) and As = Es/(sω), for the pon-
deromotive energy we obtain Up = (A2

r + A2
s )/4. In Fig.

1 we present the normalized electric-field vector E(t) and
the pertinent normalized vector potential A(t) for various
combinations of (r,s) ∈ {(1,2),(1,3),(1,4),(1,5),(2,3),(2,5)}.
The intensities of the field components are equal and the
relative phases are set to zero.

The bicircular field E(t) and the vectors A(t) and α(t)
obey the following dynamical symmetry: The rotation by the
angle αj = −2πjr/(r + s) about the z axis is equivalent to
the translation in time by τj = jT /(r + s), i.e.,

Rz(αj )E(t) = E(t + τj ), (8)

where j is an integer, the diagonal matrix element of the
rotation matrix Rz(αj ) is cos αj , and the off-diagonal elements
are ±sinαj . This dynamical symmetry can be used to show
that the differential power spectrum is invariant with respect
to rotation about the z axis by the angle −αj/r (see the
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FIG. 1. (Color online) Normalized electric-field vector E(t)
(solid black lines) and vector potential A(t) (dashed red lines) of
the rω − sω bicircular laser field given by Eq. (7) for equal laser field
component intensities and the relative phases φr = φs = 0, plotted
for 0 � t � T , T = 2π/ω. The electric-field vector starts from the
point E(0) = (0,0) and develops in the clockwise direction for t > 0,
while the vector potential develops in the counterclockwise sense.
The various panels depict the field for different combinations of the
values of r and s as indicated in the upper right corners.

Appendix):

S

(
K,Rz

(
2πj

r + s

)
p
)

= S(K,p). (9)

Here the vector K is along the z axis, so Rz(−αj/r)K = K.
The incident electron momentum is in the xy plane such that
p · êx = p cos θ . In addition, in the Appendix it is shown that
the ellipticity εK is also invariant with respect to the rotation
by the angle 2πj/(r + s) about the z axis.

III. NUMERICAL RESULTS

In this section we present numerical results for direct
recombination of electrons with He+ ions. We model the
s ground-state wave function of the He atom by a linear
combination of the Slater-type orbitals [54]. The energy of
the bound state of the He atom is EB = −24.59 eV. We use a
bicircular laser field defined by Eq. (6) with the fundamental
wavelength of 800 nm and the same laser field component
intensities Ir = Is = 1015 W/cm2. The coordinate system is
chosen in a such way that the electron momentum p lies in the
xy plane and the incident electron angle is θ = ∠(p,êx).
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FIG. 2. (Color online) Logarithm of the differential power spec-
trum for the laser-assisted radiative recombination of electrons with
He+ ions in the presence of the bicircular laser field (6) with the
fundamental wavelength of 800 nm, Ir = Is = 1015 W/cm2, and
φr = φs = 0 (r = 1, s = 2), as a function of the emitted x-ray
energy ωK. The incident electron energies for the curves from bottom
to top are Ep = 10, 20, 50, 100, and 200 eV, respectively. The
incident electron angle is θ = 0◦. The ordinate of the bottom curve
(Ep = 10 eV) is in atomic units, while all other curves are shifted up
by three orders of magnitude, consecutively.

A. Differential power spectrum and classical analysis

In Fig. 2 we present the differential power spectrum as
a function of the emitted-x-ray energy for a bicircular laser
field with r = 1, s = 2, and φr = φs = 0, the incident electron
angle θ = 0◦, and the incident electron energy Ep = 10,
20, 50, 100, and 200 eV. All these results are presented
on a logarithmic scale. The ordinate of the bottom curve
(Ep = 10 eV) is in atomic units and for a better presentation,
all other curves are shifted up by three orders of magnitude,
consecutively. Each of the energy spectra in Fig. 2 shows a
plateau with an abrupt cutoff whose position shifts to higher
photon energies when the incident electron energy increases.
In addition, one can notice that for all presented curves
characteristic simple or complex oscillatory structures appear.

Oscillatory structures and cutoff positions of the plateaus
in the energy spectra can be explained by the classical
analysis. The emitted-x-ray energy ωK as a function of the
recombination time t , obtained using Eq. (5), is presented in
Fig. 3. The incident electron angle and energy are θ = 0◦
and Ep = 50 eV, respectively, and (r,s) = (1,2). All other
laser and atomic parameters are set to the same values as
in Fig. 2. The number of contributing classical orbits depends
on the particular x-ray energy range that is clearly indicated
in Fig. 3 by horizontal red dashed lines. The intersections
of these horizontal lines and the curve ωK(t) are denoted by
the closed red circles. In the presented case, we have three
different intervals of ωK where only two or six solutions of
Eq. (5) per optical cycle contribute. In other words, we have
only two or six classical orbits per optical cycle that contribute
to the spectrum. These intervals are indicated by I, II, and
III. For ωK ∈ [34.4,87] eV (the region indicated by I) there
are only two solutions of Eq. (5). This means that the main
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FIG. 3. (Color online) Classical analysis of the direct recombina-
tion solutions for the parameters of Fig. 2. The emitted x-ray energy
ωK is presented as a function of the recombination time t , expressed
is units of T . The incident electron energy is Ep = 50 eV.

contribution to the integral over time t in the T -matrix element,
for a given emitted-x-ray energy ωK, comes from two different
times ti , i = 1,2. The interference of these two contributions
gives a simple interference structure. This is in accord with the
numerical results presented in Fig. 2 [see the green (middle)
curve and the corresponding above-mentioned interval of
x-ray energies]. These solutions merge into one solution for
t = 0.5T , which is indicated by the red closed circle. For the
x-ray energy ωK ∈ [87,127] eV (the region indicated by II) six
solutions of Eq. (5) contribute. The end points of this interval
are also indicated by the red closed circles. The interference of
these solutions gives a complicated structure and this is clearly
visible in Fig. 2. For the x-ray energies ωK ∈ [127,373] eV
(the region indicated by III), again only two solutions of
Eq. (5) contribute with the corresponding simple interference
structure. For the x-ray energies ωK below 34.4 eV and above
the cutoff value 373 eV there are no more real solutions.

In order to obtain stationary times that correspond to the
extremal values of ωK we have to solve equation obtained from
the condition dωK/dt = 0. Using Eq. (5) we obtain

[p + A(tm)] · E(tm) = 0. (10)

From the condition E(tm) = 0 it follows that

tm = T

π (r + s)

(
jπ − φr + φs

2

)
, (11)

where 0 � tm � T . For the chosen parameters from Fig. 3
(φr = φs = 0) we obtain four stationary points: t1 = 0, t2 =
T/3, t3 = 2T/3, and t4 = T . These times correspond to the
local (t2 and t3) and global (t1 and t4) maxima. This is in
accord with the numerical results presented in Fig. 3. The
other stationary times that correspond to the local and global
minima can be obtained from the condition p + A(tm) = 0.
The positions of these minima depend on the incident electron
angle and energy.

Inserting solutions of Eq. (10) into Eq. (5), we obtain the
corresponding maxima and minima of ωK. In such a way,
inserting tm given by Eq. (11) into Eq. (5), the cutoff position
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FIG. 4. (Color online) Classical analysis of the direct recombina-
tion solutions for the parameters of Fig. 2. The emitted x-ray energy
ωK is presented as a function of the recombination time t , expressed
is units of T . The incident electron energy for each curve is indicated
in the top right corner.

is determined by

ωKmax = |EB| + Ep + 1
2 A2(tm) + p · A(tm). (12)

Therefore, the cutoff position depends on the incident electron
energy and angle as well as the phases of bicircular field. The
increase of the electron energy leads to an increase of the cutoff
position. This is in accord with the numerical results presented
in Fig. 2.

In order to show the dependence of the width of the
indicated regions (I–III) on the incident electron energy, in
Fig. 4 we present the results obtained by solving Eq. (5) for
the same parameters as in Fig. 2. The five incident electron
energies are indicated in the top right corner. The widths of
all three labeled regions change as functions of the incident
electron energy. Thus, the interval of ωK with the impact of
two classical orbits (region I) becomes narrower when the
incident electron energy increases. The same is valid for region
II with the impact of six classical orbits. In contrast, the width
of region III becomes narrower when the incident electron
energy decreases. The reason for this is the decrease of the
cutoff value with decreasing Ep. The highest maximum for
each presented incident electron energy in Fig. 4 matches the
cutoff energy of the plateau of the corresponding curve in
Fig. 2. Comparing Figs. 2 and 4, we conclude that the results
obtained by numerical integration [Eqs. (1)–(3)] agree very
well with the estimates based on the classical analysis [Eq. (5)].

Another example of the LAR energy spectrum is presented
in Fig. 5. The incident electron angle is now θ = 180◦, while
the other parameters are the same as in Fig. 2. From the
numerical results presented in Figs. 2 and 5 we can see that the
cutoff positions for all incident electron energies for θ = 180◦
are lower than those of the θ = 0◦ case.

In order to additionally explore oscillatory structures, the
position of the cutoffs of the plateaus in the energy spectra,
and the above-mentioned regions with the impact of different
numbers of classical orbits on the spectrum, in Fig. 6 we
present ωK as a function of the recombination time t for
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FIG. 5. (Color online) Same as in Fig. 2 but for θ = 180◦.

Ep = 50 eV and θ = 180◦. As in the case of the numerical
results presented in Fig. 3, the number of solutions of Eq. (5)
depends on the particular value of the x-ray energy. Unlike
the case of the numerical results presented in Fig. 3, a region
with the impact of four classical orbits appears (see region
I). So, for ωK ∈ [25.5,45] eV there are four solutions of Eq.
(5). The corresponding interference structure becomes more
complicated than the structure in the case where only two
solutions interfere. With a further increase of the x-ray energy,
for ωK ∈ [45,144.2] eV (region II) only two classical orbits
interfere. Finally, for ωK ∈ [144.2,291] eV (region III), we
again obtain the contribution of four solutions of Eq. (5). This
leads to oscillations in the cutoff region. Below 25.5 eV and
above the cutoff value 291 eV there are no more real solutions.
Unlike the case of the numerical results presented in Fig. 3,
the region with the impact of six classical orbits does not exist
for the chosen parameters.

In Fig. 7 we present numerical results for θ = 180◦ and the
same parameters as in Fig. 4 for five different incident electron
energies indicated in the top right corner. The widths of all
three above-mentioned regions also change as functions of the
incident electron energy. So the interval of ωK with the impact

0 0.2 0.4 0.6 0.8 1
t/T

0

100

200

300

X
-r

ay
 e

ne
rg

y 
(e

V
)

I

II

III

FIG. 6. (Color online) Same as in Fig. 3 but for θ = 180◦.
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FIG. 7. (Color online) Same as in Fig. 4 but for θ = 180◦.

of four classical orbits (region I) becomes narrower when the
incident electron energy increases. In the case of Ep = 100 and
200 eV this region almost disappears (see the blue long-dashed
curve and magenta dot-dashed curve and the regions around
t/T ∈ [0,0.1] and t/T ∈ [0.9,1]). Region II with the impact
of two classical orbits gradually disappears with the decrease
of the incident electron energy. This region even completely
disappears for Ep = 10 eV (black solid curve). The reason
is the increase of the x-ray energy for t/T around 0 and 1
with the decrease of the incident electron energy. The width
of region III where four solutions contribute becomes wider
when Ep increases. This is in accord with the numerical results
presented in Fig. 5.

In order to obtain deeper insight into the regions that
correspond to different numbers of solutions of Eq. (5), in
Fig. 8 we present the differential power spectrum coded in false
color, as a function of the incident electron angle (horizontal
axis) and the x-ray energy (vertical axis). The laser and atomic
parameters are the same as in Fig. 2 with Ep = 20 eV. In Fig. 8
the regions with the impact of different numbers of solutions
are clearly distinguishable. All these regions have conical-like

FIG. 8. (Color online) Logarithm of the differential power spec-
trum in false color as a function of the incident electron angle and
the x-ray energy for Ep = 20 eV and the same laser and atomic
parameters as in Fig. 2.
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FIG. 9. (Color online) Same as in Fig. 8 but for Ep = 200 eV.

or similar shapes and arise as a result of crossing oscillatory
patterns in the spectrum. The regions where only two solutions
contribute are less complex than in the case where four or six
solutions of Eq. (5) contribute. Numerical results presented in
Fig. 8 are in accord with the results presented in Figs. 2–7.
The small region where only two solutions contribute to the
spectrum for θ = 180◦ is visible in Fig. 8 as well as the
existence of such a large region in the case of θ = 0◦.

In Fig. 9 we present results analogous to those presented
in Fig. 8 but for Ep = 200 eV. The regions with the impact
of different numbers of solutions of Eq. (5) are clearly
visible. Again they are formed due to the interference of
different periodically oscillatory structures. In this case the
above-mentioned regions are clearly pronounced. Similar to
the results presented in Fig. 8, the regions where only two
solutions contribute for θ = 0◦ and 180◦ are clearly visible.
This is in accord with the numerical results presented in Figs.
2–7 (see the magenta curves in these figures).

B. Symmetry considerations and polarization
of the emitted x rays

In order to additionally explore the symmetry of the LAR
by bicircular field, in Fig. 10 we present the differential power
spectrum for fixed incident electron energy Ep = 50 eV and
different combinations of (r,s). The other laser and atomic
parameters are the same as in Fig. 2. The symmetry effects are
clearly visible for all chosen combinations of (r,s) presented
in Fig. 10. They are in accord with Eq. (9) and the result of
the Appendix. In addition, with the increase of r + s, regions
of contributions of different numbers of solutions of Eq. (5)
become smaller with a higher frequency of repetition. Since
r + s is the same for the right panels of Fig. 10 [(r,s) = (1,4)
(top right panel) and (r,s) = (2,3) (bottom right panel)] the

FIG. 10. (Color online) Logarithm of the differential power spectrum in false color as a function of the incident electron angle and the
x-ray energy for fixed incident electron energy Ep = 50 eV and different combinations (r,s): (r,s) = (1,3) (top left panel), (r,s) = (1,4) (top
right panel), (r,s) = (1,5) (bottom left panel), and (r,s) = (2,3) (bottom right panel). The other laser and atomic parameters are the same as in
Fig. 2.
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FIG. 11. (Color online) Ellipticity εK in false color as a function
of the incident electron angle and the x-ray energy for the same
laser and atomic parameters as in Fig. 2 and for Ep = 200 eV and
(r,s) = (1,2) (top) and Ep = 50 eV and (r,s) = (1,4) (bottom).

obtained oscillatory structures are very similar. Furthermore,
a comparison of the panels from the first and second rows
shows that the increase of the value of s implies more complex
oscillatory structures.

The polarization of the emitted x rays satisfies similar
symmetry properties. This is visible in Fig. 11, where the
ellipticity is presented in false color as a function of the incident
electron angle and the x-ray energy for Ep = 200 eV for
(r,s) = (1,2) and Ep = 50 eV for (r,s) = (1,4). In the region
θ ∈ [0,2π/(r + s)] one can also notice the mirror symmetry
εK(θ ) = εK[2π/(r + s) − θ ]. It is important that there are
wide ranges of the incident electron angles and x-ray photon
energies where the polarization of emitted x rays is close to
circular. Such circular x rays can have important applications
in x-ray magnetic circular dichroism spectroscopy [55] and
for investigation of photoelectron circular dichroism in chiral
molecules [56]. As an example, in Fig. 12 we show for Ep = 50
eV, (r,s) = (1,2), and ωK = 109 eV the dependence of the
ellipticity εK on the angle θ . We see that for θ = 55◦ and 65◦
the ellipticity is εK = −1.

One of the possible difficulties is how to change the incident
electron angle in the experiment. We will now show that this
problem can easily be solved. Namely, in the experiment one
can fix the incident electron angle and investigate the angular

0 20 40 60 80 100 120
 θ (degrees)

-1

-0.5

0

0.5

1

 ε
K

FIG. 12. Polarization εK as a function of the incident electron
angle θ for Ep = 50 eV, (r,s) = (1,2), and the x-ray energy ωK =
109 eV. The other laser and atomic parameters are the same as in
Fig. 2.

dependence of the emitted-x-ray energy and polarization by
changing the phase φr (or φs), which is much simpler. Let
us prove this. In Fig. 13 we present our bicircular field for a
fixed value of φs = 0◦ and for φr = 0◦ (black solid line) and
φr = 60◦ (red dashed line). The impact of this change of the
phase φr from 0◦ to 60◦ is the rotation of bicircular field by the
angle α = 40◦ in the xy plane as indicated in the figure. We
have found a general connection between the phases φr and φs

and the angle α. For arbitrary (but fixed) values of φs , φr and
α for arbitrary r and s are connected by the relation

α = sφr

r + s
. (13)

On the other hand, for an arbitrary (but fixed) value of φr , the
required relationship between φs and α is given by

α = − φs

r + s
. (14)

This means that a change of the phase φr (φs) from zero
to an arbitrary (but fixed) value φr (φs) is equivalent to a

x

y

e _

e _

’

FIG. 13. (Color online) Bicircular ω–2ω field for fixed phase
φs = 0◦ and for two different values of the phase φr , φr = 0◦ (black
solid line) and φr = 60◦ (red dashed line). The change of phase φr ,
for fixed value of φs , corresponds to the rotation field around the
z axis by the angle α.

053416-7
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change of the incident electron angle from θ to θ ′ = θ + α, as
indicated in Fig. 13. This method can serve as a useful tool in
experiments.

IV. CONCLUSION

The laser-assisted electron-ion recombination could be
another potential source for generating coherent soft x rays
and thus further information about this process will be
useful in achieving this goal. The existing complementarity
between the LAR process and the well-known HHG, especially
in the case of a bicircular field, increases the importance
of these investigations. In fact, the HHG is a process that can
be explained using the three-step model, while the LAR is the
third step of the HHG process. This implies the use of a similar
theoretical formalism that is based on the S-matrix theory and
on the classical analysis. By applying this theory, we have
numerically investigated the emitted soft-x-ray spectrum as a
function of the incoming electron energy Ep for different inci-
dent electron angles θ . In our numerical calculations we have
found that the maximum energy of the emitted x rays is higher
for a higher incident electron energy. We have numerically
investigated the dependence of the cutoff position on the angle
θ and explained our results using classical analysis.

For all chosen combination of (r,s) we have obtained a max-
imal cutoff energy of the differential power spectrum for the
incident electron angles θ = j2π/(r + s) (j = 0,1, . . . ,r +
s). We have also concluded that in the case of a bicircular laser
field given by Eq. (6), simple or complex oscillatory structures
in the spectrum may appear. They were observed and explained
using our classical model. The reason for such oscillatory
behavior is the interference of a smaller or larger number of
classical orbits. The number of the contributing orbits strongly
depends on the electron energy Ep and the chosen incident
electron angle θ . In the (r,s) = (1,2) case we have concluded
that there exist regions with the interference of two, four, or
six classical orbits. In the general case, while analyzing the
dependence of the spectra on the incident electron angle θ for
a fixed value of Ep, we have observed regions with less- or
more-complex oscillatory structures. These regions may have
a conical-like shape or some other shape that depends on the
(r,s) combination used. The symmetry properties for the com-
binations (r,s) ∈ {(1,3),(1,4),(1,5),(2,3)} are also confirmed.
We have shown that both the differential power spectrum and
the ellipticity of the emitted x rays are invariant with respect
to the rotation of the incident electron momentum by the
angle 2π/(r + s). We have visualized this by presenting the
logarithm of the differential power spectrum and polarization
of the emitted x rays in false colors as functions of the incident
electron angle and the x-ray energy.

Furthermore, we have shown that the polarization of the
emitted x-ray photons can be close to circular for a particular
incident electron angle interval. Such circularly polarized soft
x rays can be used to study the chirality-sensitive properties
of the light-matter interactions. Examples are photoelectron
circular dichroism in chiral molecules [56] and x-ray magnetic
circular dichroism spectroscopy [55]. The energy of these
x rays can be larger than that of high-order harmonics gener-
ated by a bicircular field [33]. However, in comparison with the
HHG, which is a laser-induced process in which the electron

recombines with its parent ion, it is more difficult to prepare
electron and ion sources for LAR, so that one can expect that
LAR is less efficient for producing soft x rays than HHG.

Laser-assisted recombination would allow for very clean
experiments because one can specify the energy and the angle
of the incident electron with very high precision (this is not
so with the HHG process where recombination process is
difficult to fully control since it is preceded by ionization
and propagation, not to mention the macroscopic effects). In
addition, we have found that by changing the relative phase of
the bicircular field it is possible to rotate this field, which is
equivalent to the rotation of the incident electron beam. Thus, it
is possible to fix the incident electron angle and rotate the field
by changing the relative phase in order to fulfill the condition
for the generation of circularly polarized x rays, avoiding
experimentally complicated rotation of the electron-beam
source. It would also be interesting to explore the macroscopic
effect on the LAR process. Focal-averaged spectra for LAR
were presented in Ref. [20], but the phase matching, which is
important for HHG [57,58], was not considered.
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APPENDIX

In this Appendix we check the relation (9) and an analogous
relation for the ellipticity εK. Denoting the vector rotated by
the angle −αj = 2πjr/(r + s) around the z axis by the double
prime, we have p′′ = Rz(−αj )p and E′′(t + τj ) = E(t), where
we have used Eq. (8). With this notation the integral T(K,p′′)
[Eq. (3)] can be rewritten as∫ T

0

dt

T
exp

(
i(EB + ωK − Ep)t − ip′′ · α′′(t + τj )

− i

2

∫ t

dt ′′A′′2(t ′′ + τj )

)

×
∫

dr ψ∗
B (r)re−iK·r(2π )−3/2ei[p′′+A′′(t+τj )]·r. (A1)

The scalar product of two vectors is invariant with respect to
rotations, so p′′ · α′′(t + τj ) = p · α(t + τj ), A′′2(t ′′ + τj ) =
A2(t ′′ + τj ), p′′ · r = [Rz(αj )Rz(−αj )p] · [Rz(αj )r] = p · r′,
and A′′(t + τj ) · r = A(t + τj ) · r′, where the prime denotes
r′ = Rz(αj )r. The vector K is parallel to the z axis, so
K · r = K · r′. We choose the quantization axis for the
atomic bound state along the z axis and assume that
ψB(r) = ψB(r′). Using r = Rz(−αj )r′, dr = dr′, and the
substitution t ′ = t + τj , we get

T(K,p′′) = e−i(EB+ωK−Ep)τj

∫ τj +T

τj

dt ′

T
e−ip·α(t ′)

× exp

(
− i

2

∫ t ′

dt ′′A2(t ′′) + i(EB + ωK − Ep)t ′
)

×
∫

dr′ψ∗
B(r′)Rz(−αj )r′e−iK·r′

×(2π )−3/2ei[p+A(t ′)]·r′
. (A2)
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Since the integral in the interval [τj ,τj + T ] is the same as
the integral in the interval [0,T ], we can rewrite the above
relation as

T(K,p′′) = e−i(EB+ωK−Ep)τj Rz(−αj )T(K,p). (A3)

The corresponding T -matrix element is T(K,p′′) · ê′′∗
K =

T′′(K,p) · ê′′∗
K e−i(EB+ωK−Ep)τj = Tne

−i(EB+ωK−Ep)τj , so the
differential power spectrum is invariant with respect to the
rotation of p by the angle −αj , i.e., S(K,p′′) = S(K,p). Since
the invariance with respect to rotation by 2π about the z axis
is also valid, a more general rotational invariance with respect
to the rotation by the angle 2π [r(j + j ′) + sj ′]/(r + s)
(where j and j ′ are integers) is satisfied. Then it can be

shown that for arbitrary r = 1,2, . . . and s > r we have the
invariance with respect to rotation by the angle 2πj/(r + s),
i.e., the relation (9) is valid. This is clearly visible in
Fig. 10.

Using the result (A3), it can also be shown that the degree of
circular polarization ξK = Im (2T ∗

nxTny)/|Tn|2 [and therefore
the ellipticity εK, Eq. (4)] is invariant with respect to the
rotation by the angle −αj (and consequently by the angle
−αj/r , as it is explained above in the case of the differential
power spectrum). Namely, the phase factors in Eq. (A3) cancel
and, after multiplication of the rotated matrix elements T ∗

nx and
Tny , the imaginary part of the obtained result gives the factor
cos2 αj + sin2 αj = 1.
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[13] A. Jaroń, J. Z. Kamiński, and F. Ehlotzky, Phys. Rev. A 61,
023404 (2000); 63, 055401 (2001); Laser Phys. 11, 174 (2001);
J. Phys. B 34, 1221 (2001).

[14] M. Y. Kuchiev and V. N. Ostrovsky, Phys. Rev. A 61, 033414
(2000); J. Phys. B 34, 405 (2001).
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B. Milošević, Eur. Phys. J. Spec. Top. 160, 205 (2008).

[53] C. A. Mancuso, D. D. Hickstein, P. Grychtol, R. Knut, O. Kfir,
X. M. Tong, F. Dollar, D. Zusin, M. Gopalakrishnan, C. Gentry,
E. Turgut, J. L. Ellis, M.-C. Chen, A. Fleischer, O. Cohen, H.
C. Kapteyn, and M. M. Murnane, Phys. Rev. A 91, 031402(R)
(2015).

[54] A. A. Radzig and B. M. Smirnov, Reference Data on Atoms,
Molecules and Ions (Springer, Berlin, 1985).
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