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Time-optimal polarization transfer from an electron spin to a nuclear spin
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Polarization transfers from an electron spin to a nuclear spin are essential for various physical tasks, such
as dynamic nuclear polarization in nuclear magnetic resonance and quantum information processing on hybrid
electron-nuclear spin systems. We present time-optimal schemes for electron-nuclear polarization transfers
which improve on conventional approaches, and we thereby establish an important class of faster controls. We
highlight how time-optimal polarization transfers and their optimality are related to the time optimality of unitary
transformations. Moreover, our work develops generally applicable analytic methods for analyzing the limits in
controlling quantum systems.
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I. INTRODUCTION

As the gyromagnetic ratio of an electron is two to three
orders of magnitude larger than that of a nucleus, electron
spins are much easier polarized than nuclear spins. This
offers a way to improve the polarization of nuclear spins
by transferring polarization from electron spins to nuclear
spins; much higher nuclear spin polarization can be achieved
as compared to a direct polarization. This idea has been
widely used in various physical settings; for example, dynamic
nuclear polarization (DNP) [1–6] employs this idea to dramat-
ically improve the sensitivity of nuclear magnetic resonance
(NMR) [7,8]. It is also frequently used on various hybrid
electron-nuclear spin systems, such as organic single crystals
[9], endohedral fullerenes [10–12], phosphorous donors in
silicon crystals [13], and nitrogen-vacancy centers in diamond
[14–17]. For example, in the case of nitrogen-vacancy centers
in diamond, efficient polarization transfers are used to initialize
the quantum state of nuclear spins for quantum information
processing.

Efficient polarization transfers are practically achieved by
properly engineered pulse sequences whose design is studied
in the field of quantum control [18–23]. In recent years,
significant progress has been made in quantum control for both
numerical [24–37] and analytical [38–41] methods. Extensive
knowledge has been gained on optimal pulse sequences for
two- and three-level systems [42–56], two uncoupled spins
[57,58], and two coupled spins [59–65]. Further advances
have been made on how to optimally control multiple coupled
spins [66–91]. These methods have been successfully applied
in NMR [92,93] to designing broadband pulses [94–96] and
decoupling sequences [97–102]. They have also been utilized
in magnetic resonance imaging [25,103–105] and electron
paramagnetic resonance [106].
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In this context, our work contributes to the bottom-up
approach in quantum information processing of analyzing, for
example, the ultimate limits for controlling basic quantum sys-
tems. The knowledge obtained from these building blocks can
be leveraged later in time-efficient control schemes applicable
to medium-scale quantum information processing devices. Our
contribution in this general context is threefold: By completely
understanding the structure of time-optimal controls in this
particular setting of an electron-nuclear spin system, we first
identify ubiquitous features of general controlled quantum
systems. Secondly, we provide a detailed analysis of how
the time-optimal control of unitary transformations relates
to that of state-to-state transformations (i.e., polarization
transfers). Thirdly, we develop an arsenal of analytical tools
for ascertaining and validating time-optimal controls.

In particular, we consider in this article time-optimal pulse
sequences for polarization transfers from an electron spin to
a nuclear spin. Relaxation and decoherence are in practice
inevitable and result in a loss of signal. But their effect can
be mitigated by short pulse sequences which allow for highly
sensitive experiments. We analyze and explain how the form
of time-optimal sequences depends on the direction of the
polarization by studying time-optimal transfers for different
directions.

Recent analytical [107] and numerical [108,109] stud-
ies focused on low-field single-crystal experiments, where
the nuclear Larmor frequency and pseudosecular hyperfine
interaction (see Sec. 3.5 of Ref. [1]) are comparable in
magnitude. As in [110–113], we focus here on the cases
of secular hyperfine coupling (see Sec. 3.5 of Ref. [1]).
These assumptions are satisfied in liquid-state and high-field
solid-state DNP.

We analyze two particular cases of polarization transfers
and determine the corresponding time-optimal sequences. In
Sec. II, we consider the transfer from the state Sz of the
electron spin to the state Iz of the nuclear spin. The second
time-optimal transfer from Sz to Ix is presented in Sec. III. And
most interestingly, the corresponding optimal transfer time is
reduced to 78.5% when compared to the transfer from Sz to Iz,
which highlights that the transfer efficiency depends crucially
on the target state of the nuclear spin. We discuss our results
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in Sec. IV, and the possibility of a nonsinusoidal carrier wave
form is entertained in Sec. V. We conclude in Sec. VI, and
certain details are relegated to Appendices A and B.

II. TRANSFER FROM Sz TO Iz

In this section, we study the polarization transfer from the
initial state Sz to the final state Iz [114]. We assume a secular
hyperfine coupling (see Sec. 3.5 of Ref. [1]). In the laboratory
frame, the resulting Hamiltonian is given by

H = ωSSz + ωI Iz + 2πASzIz + 2πũx(t)Sx + 2πṽx(t)Ix,

(1)

where ωS and ωI denote the respective Larmor frequencies
of the electron and the nuclear spin, A represents the strength
of the secular hyperfine coupling, and ũx(t) and ṽx(t) are
the amplitudes of the control fields. Here, Sj = (σj ⊗ σ0)/2
acts on the electron spin and Ik = (σ0 ⊗ σk)/2 acts on

the nuclear spin with j,k ∈ {x,y,z}, where σ0 := (
1 0
0 1

)
denotes the identity matrix and the Pauli matrices are

σx := (
0 1
1 0

)
, σy := (

0 −i

i 0

)
, and σz := (

1 0
0 −1

)
. For typical NMR

settings, only a single radio-frequency coil is used which can
be assumed to be oriented along the x axis of the laboratory
frame. Hence, only a single control ṽx(t) appears for the
nuclear spin in the laboratory frame Hamiltonian of Eq. (1). We
assume in this work that the carrier wave form for the nuclear
spin has a sinusoidal shape, i.e., ṽx(t) = v(t) cos[ωrf

I t + φ(t)]
with amplitude v(t) � 2vmax and phase φ0. Here, ωrf

I is the
carrier frequency of the radio-frequency irradiation and 2vmax

denotes the maximal control amplitude (in the laboratory
frame). This choice of ṽx(t) is motivated by the properties
(e.g., bandwidth limitations) of the usually available wave
form generators and amplifiers. More general carrier wave
forms are discussed in Sec. V.

By switching to the rotating frame of ωSSz + ωrf
I Iz corre-

sponding to the carrier frequencies ωS and ωrf
I = ωI − ωoff

I and
applying the rotating wave approximation, we get an effective
Hamiltonian

Hrot = + ωoff
I Iz + 2πASzIz

+ H mw
rot + H rf

rot, where (2)

H mw
rot := 2πux(t)Sx + 2πuy(t)Sy,

H rf
rot := 2πvx(t)Ix + 2πvy(t)Iy.

One can obtain any desired offset term ωoff
I Iz in the drift term

of Hrot in Eq. (2) by suitably choosing the carrier frequency
ωrf

I [115]. For simplicity, ωoff
I is set to zero in the following.

The microwave-frequency control pulses on the electron spin
and the radio-frequency control pulses on the nuclear spin are
given by H mw

rot and H rf
rot, respectively. The control amplitudes

ux(t), uy(t), vx(t), and vy(t) satisfy the bounds√
u2

x(t) + u2
y(t) � umax and

√
v2

x(t) + v2
y(t) � vmax,

where umax and vmax denote the maximal available amplitudes
of the control fields in the rotating frame for a given
experiment. This is a result of the rotating wave approximation,
which reduces the maximal control amplitude of 2vmax in

laboratory frame to vmax in the rotating frame [8]. In the
following, we will assume that umax � A � vmax and neglect
the time needed to apply operations that can be generated by the
hyperfine coupling and the controls on the electron spin [116].

Time-optimal transformations are essentially only limited
by the weak controls on the nuclear spin. The optimal strategy
to achieve a desired transfer can be inferred from the structure
of cosets with respect to the fast operations [59,66,110]. Here,
the fast operations are given by the hyperfine coupling and
the strong controls on the electron spin. The transformation U

which transfers Sz to Iz = USzU
−1 will be suitably decom-

posed into a product U = U2U1. The unitary U1 transfers the
initial state Sz to the intermediate state 2SzIz = U1SzU

−1
1 , and

it can be generated using only fast operations. In addition,
the unitary U2 transfers the intermediate state 2SzIz to the
final state Iz = U2(2SzIz)U

−1
2 , and one has to use the weak

controls on the nuclear spin in order to generate U2. Below, we
will provide a time-optimal scheme to produce U2. This also
results in a time-optimal scheme for U as any faster scheme
for U would also imply a faster one for U2 = UU−1

1 .
The polarization transfer from Sz to Iz can be decomposed

into the following steps [117]:

Sz

(π/2)Sy−−−−→ Sx

πSzIz−−−→ 2SyIz

(π/2)Sx−−−−→ 2SzIz

πSβIy−−−→ Iz, (3)

where we denote

Sα :=
(1 0

0 0

)
⊗ σ0 and Sβ :=

(0 0
0 1

)
⊗ σ0,

then πSβIy = −πSzIy + πIy/2. As shown in Eq. (3), the
polarization transfer from Sz to 2SzIz is accomplished using an
INEPT-type transfer [8,118]: First, we apply a hard π/2 pulse
to the electron spin along the +y direction (i.e., Sy). Then, we
let the hyperfine coupling evolve for the duration of 1/(2A)
units of time. Another hard π/2 pulse on the electron spin along
the +x direction completes the transfer to 2SzIz. All of these
steps take negligible time, since they are either local operations
on the electron spin or operations which can be generated by
the coupling. In conclusion, we can completely focus on the
last step in Eq. (3) where we need to generate the propagator

Uβ
y (θ ) = exp(−iθSβIy) = exp

[
−i

(
−θSzIy + θ

2
Iy

)]
(4)

for θ = π . The operator in the exponent of U
β
y (θ ) in Eq. (4)

is a single-transition operator [1,8]. In particular, the operator
U

β
y (π ) = exp(−iπSβIy) describes a transition-selective π

rotation around the y axis in the subspace spanned by the
basis states |βα〉 and |ββ〉, where the subspace corresponds
to the β component of the nuclear spin doublet at frequency
ωI/(2π ) + A/2 [119] as shown in Figs. 1 and 2. Here, |α〉
and |β〉 are eigenstates of Sz and Iz, e.g., Sz|α〉 = |α〉/2 and
Sz|β〉 = −|β〉/2.

In the following, we determine a time-optimal scheme to
produce the unitary U

β
y (π ). The set of all unitaries which

transfer 2SzIz to Iz are discussed in Appendix A 1, where we
also show by extending the results in the current section that
choosing a different element from this set of unitaries does not
lead to a shorter transfer time.

To determine the optimal transfer, we switch to the
interacting frame of 2πASzIz by applying the transformation
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FIG. 1. Schematic depiction of the absorption profiles for (a)
2SzIz and (b) Iz.

exp(i2πASzIzt)Hrot exp(−i2πASzIzt). The Hamiltonian of
Eq. (2) changes to [120]

Hint = + 2πux(t)[cos(πAt)Sx − sin(πAt)2SyIz]

+ 2πuy(t)[cos(πAt)Sy + sin(πAt)2SxIz]

+ 2πvx(t)[cos(πAt)Ix − sin(πAt)2SzIy]

+ 2πvy(t)[cos(πAt)Iy + sin(πAt)2SzIx] (5)

which can be also written as

Hint = + 2πux(t)[cos(πAt)Sx − sin(πAt)2SyIz]

+ 2πuy(t)[cos(πAt)Sy + sin(πAt)2SxIz]

+ 2π [vx(t) cos(πAt)Ix + vy(t) sin(πAt)2SzIx]

− 2π [vx(t) sin(πAt) − vy(t) cos(πAt)]SαIy

+ 2π [vx(t) sin(πAt) + vy(t) cos(πAt)]SβIy, (6)

where SαIy = SzIy + Iy/2 and SβIy = −SzIy + Iy/2.
We aim at generating the operator U

β
y (π ) in mini-

mum time, which corresponds to maximizing the coefficient
2π [vx(t) sin(πAt) + vy(t) cos(πAt)] in front of SβIy . The
Cauchy-Schwarz inequality implies

[vx(t) sin(πAt) + vy(t) cos(πAt)]2

�
[
v2

x(t) + v2
y(t)

]
[sin2(πAt) + cos2(πAt)] � v2

max,

FIG. 2. In the polarization transfer from 2SzIz to Iz, the β

component of the nuclear spin doublet is rotated by an angle of
π around the y axis and the α component is left invariant (both
visualized in the interaction frame). Note that the electron spin is in
the state |β〉 on the left-hand side and in the state |α〉 on the right-hand
side.

where the second inequality is a consequence of the constraints
on the amplitude of the control fields. The maximal value
of 2π [vx(t) sin(πAt) + vy(t) cos(πAt)] is denoted by 2πvmax

and it can be achieved by choosing the controls

ux(t) = uy(t) = 0, (7a)

vx(t) = vmax sin(πAt), vy(t) = vmax cos(πAt). (7b)

To understand that this choice generates the desired opera-
tor, one can substitute the controls in the Hamiltonian with the
chosen values and obtains

Hint = + 2πvmax sin(πAt) cos(πAt)Ix

+ 2πvmax cos(πAt) sin(πAt)2SzIx

+ 2πvmax cos(2πAt)SαIy + 2πvmaxS
βIy.

Since A � vmax, average Hamiltonian theory implies that the
first three terms average out to zero; and one is left with the
desired Hamiltonian 2πvmaxS

βIy .
The minimum time to generate U

β
y (π ) is then fixed by the

relation 2πvmaxTmin = π , and one obtains

Tmin = 1/(2vmax).

The presented time-optimal control corresponds to a radio-
frequency irradiation at frequency ωI/(2π ) + A/2 with dura-
tion Tmin, which results in a transition-selective inversion of
the β line of the nuclear spin doublet. This belongs to the class
of controls presented in Ref. [110] and is also closely related to
selective population inversion (SPI) experiments [121–124].

We can also compute the maximal transfer efficiency
ηmax(T ) for a given time T . The operator U

β
y (θ ) transfers the

state 2SzIz to the state

Uβ
y (θ )(2SzIz)

[
Uβ

y (θ )
]† = cos2

(
θ
2

)
2SzIz+cos

(
θ
2

)
sin

(
θ
2

)
2SzIx

− cos
(

θ
2

)
sin

(
θ
2

)
Ix + sin2

(
θ
2

)
Iz.

(8)

For θ = 2πvmaxT , we get the maximal transfer efficiency

ηmax(T ) = sin2
(

θ
2

) = sin2(πvmaxT ) (9)

for the transfer to Iz. Note that ηmax(Tmin) = 1.
We compare our analytic results with numerical optimiza-

tions for achieving the transfer from Sz to Iz as shown in
Fig. 3 (cf. [111–113]). For these optimizations, the hyperfine
coupling constant is chosen as A = 10 MHz and the maximal
allowed radiation amplitudes are set to umax = 1 MHz and
vmax = 20 kHz [125]. In Fig. 3, the transfer is completed
after 25 μs = 1/(2vmax) units of time which agrees with
the analytically computed time. Moreover, the form of the
numerically optimized controls compares nicely with the ana-
lytic results: the values of ux(t) and uy(t) are most of the time
small (except for the beginning), and vx(t) and vy(t) have a
sinusoidal form with the maximal allowed amplitude.

III. TRANSFER FROM Sz TO Ix OR Iy

We analyze now how to time-optimally transfer polarization
from the state Sz to Ix (and similarly for the transfer to Iy).
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FIG. 3. Numerically optimized pulses for the polarization trans-
fer from Sz to Iz. The coupling strength is 10 MHz and the bounds
on the microwave and radio-frequency amplitudes are umax = 1 MHz
and vmax = 20 kHz, respectively. The maximal transfer efficiency is
reached after 25 μs. The insets show magnified parts of the controls
vx(t) and vy(t) in order to illustrate their form.

The considered transfer consists of the following steps:

Sz

(π/2)Sy−−−−→ Sx

πSzIz−−−→ 2SyIz

(π/2)Sx−−−−→ 2SzIz

(π/2)SαIy−(π/2)SβIy−−−−−−−−−−−→ Ix,

(10)

where π
2 SαIy − π

2 SβIy = πSzIy . As in Sec. II, we can focus
on generating the final propagator Ũ2 = exp(−iπSzIy) in the
product Ũ = Ũ2U1. The transfer Ix = ŨSzŨ

−1 is decomposed
into a fast transfer to the intermediate state 2SzIz = U1SzU

−1
1

and a slow transfer to final state Ix = Ũ2(2SzIz)Ũ
−1
2 . Building

on the results in this section, we prove in Appendix A 2 that
one cannot reduce the transfer time by substituting Ũ2 with a
different unitary V satisfying Ix = V (2SzIz)V −1.

Previously, the propagator exp(−iπSzIy) in the final step
has been achieved [110] by applying a transition-selective
radio-frequency −π/2 pulse along the y direction at the
β transition with frequency ωI/(2π ) + A/2 as well as a
transition-selective radio-frequency π/2 pulse along the y

direction at the α transition with frequency ωI/(2π ) − A/2
(see Fig. 4). In the rotating frame of Eq. (2), this irradiation
scheme on the nuclear spin corresponds to a radio-frequency
Hamiltonian of the form

H rf
rot = − 2π

vmax

2
cos(πAt)Ix − 2π

vmax

2
sin(πAt)Iy

+ 2π
vmax

2
cos(−πAt)Ix + 2π

vmax

2
sin(−πAt)Iy

= − 2πvmax sin(πAt)Iy.

Note that in this scheme the α and β transitions can only
be irradiated with a radio-frequency amplitude of vmax/2 in

FIG. 4. In the polarization transfer from 2SzIz to Ix the β

component of the nuclear spin doublet is rotated by −π/2 around
the y axis and the α component is rotated by π/2 around the y axis
(both visualized in the interaction frame).

order not to exceed the maximal available radio-frequency
amplitude vmax for the overall irradiation at the nuclear spin.
Hence, the duration for the simultaneous ±π/2 pulses along
the y direction at the α and β transitions is equal to 1/(2vmax).
This conventional transfer is optimal if one considers only
pulses at the frequencies ωI/(2π ) ± A/2 of the nuclear-spin
doublet (refer to [110] and the discussion in Sec. IV).

Here, we show that shorter pulses are possible if one con-
siders more general irradiation schemes. Without exceeding
vmax, shorter pulses can be obtained by irradiating at the
frequencies ωI/(2π ) ± A/2 with higher intensity since the
resulting higher amplitude can be then decreased by irradiating
at additional well selected frequencies. Our approach is quite
effective although it might seem counterintuitive at first.

In the interaction frame of 2πASzIz, the Hamiltonian is
again given by Eq. (5). In order to generate the operator
exp(−iπSzIy) in minimum time, we maximize the coefficient
−2πvx(t) sin(πAt) of 2SzIy . Note that

−2πvx(t) sin(πAt) � |−2πvx(t) sin(πAt)|
� 2πvmax| sin(πAt)|,

where the second equality is implied by the constraint |vx (t)| �√
v2

x(t) + v2
y(t) � vmax on the control amplitudes. Therefore,

the maximal value 2πvmax| sin(πAt)| for −2πvx(t) sin(πAt)
can be attained by choosing the controls

ux(t) = uy(t) = vy(t) = 0, (11a)

vx(t) = −sgn[sin(πAt)]vmax. (11b)

This means that vx(t) is a square wave such that vx(t) = vmax

when sin(πAt) < 0 and vx(t) = −vmax when sin(πAt) > 0.
Inserting the controls of Eq. (11) into Eq. (6) results in the
average Hamiltonian

H̄int = 4vmax(SαIy − SβIy). (12)

Creating the required ±π/2 rotations shown in Fig. 4 results
in the condition 4vmaxTmin = π/2 and we obtain the minimum
time

Tmin = π/(8vmax)

for generating exp(−iπSzIy) in the interaction frame. The
duration of the transfer is reduced to 78.5% of the length
of the conventional pulse sequence. By transforming the
operator back to the rotating frame, we obtain the op-
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FIG. 5. Numerically optimized pulses for the polarization trans-
fer from Sz to Ix . The coupling strength is 10 MHz and the
bounds on the microwave and radio-frequency amplitudes are given
by umax = 1 MHz and vmax = 20 kHz, respectively. The maximal
transfer efficiency is reached after 20 μs. The inset shows a magnified
part of the control vx(t) in order to illustrate its form.

erator exp(−iφSzIz) exp(−iπSzIy) exp(iφSzIz) where φ =
2πATmin denotes the phase accumulated during the time
Tmin = π/(8vmax). The effect of this superfluous phase φ can
be reversed using the hyperfine coupling 2πASzIz which takes
only a negligible time period as the coupling strength A is
much larger than the control strength vmax of the nuclear spin.
Thus, the minimum time in the rotating frame is also given by
π/(8vmax). Similarly as in Eq. (8), we compute the maximal
transfer efficiency

ηmax(T ) = sin(4vmaxT ) (13)

that can be reached for the polarization transfer from Sz to Ix

in a specified time T .
Transferring the state from Sz to Iy is similar. We

set ux(t) = uy(t) = vx(t) = 0 and maximize the coefficient
−2πvy(t) sin(πAt) of −2SzIx in Eq. (5) by setting vy(t) =
−sgn[sin(πAt)]vmax. The minimum time for this case is also
given by π/(8vmax).

A numerically optimized pulse sequence for transferring
polarization from Sz to Ix is shown in Fig. 5 (cf. [111–
113]). The maximal transfer efficiency is reached after 20 μs,
which is consistent with the analytical result of π/(8vmax) ≈
19.635 μs.

IV. DISCUSSION

A. Explaining the speedup in Sec. III

We see that the minimum time for transferring Sz to Ix or
Iy is shorter by a factor of π/4 ≈ 78.5% when compared to
the minimum time for transferring Sz to Iz. This factor can be
explained by a closer examination of the pulse sequences. The

FIG. 6. Decomposition of a square wave into sine waves: a large
number of harmonics sum to an approximate square wave. The first
harmonic has an amplitude of 4/π , while the square wave has an
amplitude of 1. Note that the amplitude and time in this figure are
considered as unitless.

radio-frequency sequence for the transfer from Sz to Iz shows a
sine-cosine wave modulation of maximal amplitude for the vx

and vy components (see Fig. 3). However, the radio-frequency
sequence for the transfer from Sz to Ix consists of a square wave
of maximal amplitude for the vx component of the control (see
Fig. 5). The higher effective amplitude at the two frequencies
ωI/(2π ) ± A/2 and the shorter transfer time can be explained
by decomposing the square wave into a sum of sine waves:

fsquare(t) = sgn[sin(πAt)] = 4

π

∑
n odd, n�1

1

n
sin(nAt).

This is illustrated in Fig. 6 where the first sine wave function
has an amplitude which is larger by a factor of 4/π when
compared to the amplitude of the square wave. Therefore, the
square wave contains implicitly a sine wave with a higher
effective amplitude. This implies that the duration of the
simultaneous ±π/2 rotations of the α and β components of the
nuclear spin doublet (see Fig. 4) is shorter by a factor of π/4.

The square-modulated transfer sequence is optimal but
needs infinite bandwidth. We also studied numerically how
the maximal transfer efficiency varies as a function of time
and bandwidth limitations. The results are shown in Fig. 7
(cf. [111–113]). In the case of infinite bandwidth, the results
are consistent with the analytical results. The transfer functions
sin2(πvmaxt) and sin(4vmaxt) for the respective transfers from
Sz to Iz and Ix have been obtained in Eqs. (9) and (13).

We compare our results to the time-optimal synthesis of
unitary transformations in [110]. Motivated by energy consid-
erations, only irradiations at the two resonance frequencies
ωI/(2π ) ± A/2 of the control system were considered in
[110]. This did not allow for the faster scheme obtained in
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FIG. 7. The maximal transfer efficiency (i.e., fidelity) is shown
for the transfers from Sz to Iz and Ix in (a). The coupling strength
is 10 MHz, and the control strengths are umax = 20 kHz and vmax =
1 MHz. In (b), data points for the transfer from Sz to Iz are also
shown for the bandwidth-limited cases with bounds of 5.0, 4.8, and
4.6 MHz. Similarly, data points for the transfer from Sz to Ix are
shown in (c).

Sec. III which has been also observed numerically in [111–
113]. The numerical results in Fig. 7 also show that the faster
scheme of Sec. III is—in a strict sense—only applicable in
the case of infinite bandwidth. It provides, in general, superior
results, but its benefit depends on the available bandwidth.

The irradiations at the different frequencies can be clearly
observed in Fig. 8 where the normalized amplitudes of the
short-time Fourier transform [126] are plotted for the relevant
cases (using the method and implementation of [127]). The
important difference between the controls of Fig. 3 for the
polarization transfer from Sz to Iz and the controls of Fig. 5
for the transfer from Sz to Ix manifest itself in the short-time
Fourier transforms of the v parts of the controls which are
visible in Figs. 8(c) and 8(d). In Fig. 8(c), one notices
the characteristic frequency of A/2 = 5 MHz. In contrast
to Fig. 8(c), many more frequencies appear in Fig. 8(d) at
multiples of the frequencies ±A/2. This agrees with the
square-wave form of the control vx in Fig. 5.

In a general context, our results can also be interpreted as a
connection between energy and time optimizations for given
bounds on the control amplitudes. The energy optimization
leads to a sinusoidal solution, while the time optimization
leads to a square wave (see Fig. 5). This phenomenon has been
also observed for the simultaneous inversion of two uncoupled
spins [57,58] where a minimum energy solution was related to
the first harmonic in the Fourier expansion of the time-optimal
solution. The same reasoning applies here to the solutions of
Sec. III.

B. Physical intuition for the time-optimal polarization transfers
of Secs. II and III

We discuss now how the time-optimal polarization transfers
obtained in Secs. II and III can be understood from a physical
point of view. Recall that we decompose the transfer from Sz

to Iz in Sec. II into a sequence of partial transfer step as given
in Eq. (3). As discussed in Sec. II, the last step

2SzIz

πSβIy−−−→ Iz (14)

from 2SzIz to Iz is the critical one for determining the time-
optimal control scheme. The unitary U

β
y (π ) = exp(−iπSβIy)

from Eq. (4) transfers 2SzIz to Iz, and the choice of this unitary
is readily inferred from Fig. 2. This corresponds to the physical
intuition of only flipping the β component by π to realize
the transfer from spin alignment to spin polarization as in
the classical SPI experiment [121–124]. Although the explicit
form of the time-optimal controls in Eq. (7) (see also Fig. 3)
implementing the unitary U

β
y (π ) could have been anticipated

from physical intuition, the detailed mathematical derivation of
Sec. II puts this on a sound foundation. Additional arguments
are required for completing the argument: all unitaries which
can achieve the polarization transfer in Eq. (14) are obtained
in Appendix A 1, and it is then verified that these unitaries do
not lead to faster control schemes. Therefore, our mathematical
analysis explains how and under which conditions the physical
intuition matches with the time-optimal solution.

A similar reasoning applies to the transfer form Sz to Ix ,
which is analyzed in Sec. III and where the last step in the
transfer sequence of Eq. (10) is given by

2SzIz

(π/2)SαIy−(π/2)SβIy−−−−−−−−−−−→ Ix. (15)

The corresponding unitary propagator exp(−iπSzIy) =
exp[−i(π

2 SαIy − π
2 SβIy)] again agrees with the physical

intuition to flip the α and β components by π/2 around
the y and −y axis, respectively, as illustrated in Fig. 4. The
time-optimal implementation for this propagator is given in
Eq. (11) (see also Fig. 5). Here, the optimal control scheme
differs significantly from the intuitive approach, which would
correspond to simultaneously irradiate transition-selective
pulses at the frequencies ωI/(2π ) ± A/2, and identifies a more
general class of controls than previously considered [110]
(see Sec. IV A). The analysis is completed in Appendix A 2
by verifying that all other unitaries achieving the transfer of
Eq. (15) cannot be implemented in a shorter time. In summary,
our results match well with physical insight but go well beyond
what can be grasped directly.
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FIG. 8. (Color online) Normalized amplitudes of the short-time Fourier transform for different controls: (a) u controls of Fig. 3, (b) u

controls of Fig. 5, (c) v controls of Fig. 3, and (d) v controls of Fig. 5. In (c), (essentially) only the characteristic frequency of A/2 = 5 MHz
is present. This is in contrast to (d) where also multiples of the frequencies ±A/2 appear.

V. NONSINUSOIDAL CARRIER WAVE FORMS

We discuss now the possibility and opportunities of non-
sinusoidal carrier wave forms for the electron and nuclear
spins. Here, we focus on the nuclear spin as the maximal
amplitude vmax limits the minimum polarization transfer times
in the rotating frame. But similar arguments might also be
used for the microwave carrier wave form in applications
where the minimum duration of an experiment is limited
by umax. As explained in Sec. II, we have considered so far
a sinusoidal carrier wave form ṽx(t) = v(t) cos[ωrf

I t + φ(t)],
which is motivated by the limited bandwidth of typical radio-
frequency wave form generators and amplifiers. Equation
(11) determines the time-optimal radio-frequency Hamiltonian
for transferring polarization from the state Sz to Ix in the
rotating frame. In the laboratory frame, the corresponding
radio-frequency Hamiltonian is given by

H rf = 4πvmax cos
(
ωrf

I t − π/2
)
sgn[sin(πAt)] Ix. (16)

However, it is conceivable (e.g., for applications at low
magnetic fields or for nuclei with small gyromagnetic ratios)
that the resonance frequency and the corresponding carrier
frequency ωrf

I of the controls are sufficiently small such that
nonsinusoidal wave forms (containing higher harmonics of the
carrier frequency ωrf

I ) can be created and amplified. One can

therefore envision a radio-frequency Hamiltonian for the ideal
case of infinite bandwidth as given by

H̃ rf = 4πvmax sgn
[

cos
(
ωrf

I t − π/2
)]

sgn[sin(πAt)]Ix. (17)

Assuming the same maximal radio-frequency 2vmax (in the
laboratory frame) and switching from the Hamiltonian H rf

in Eq. (16) to the Hamiltonian H̃ rf in Eq. (17), the radio-
frequency amplitude of the carrier frequency is implicitly
increased in the rotating frame by another factor of 4/π

(similarly as in discussed in Sec. IV). Consequently, the
polarization transfer from the state Sz to Ix would be achievable
using only (π/4)2 ≈ 61.7% of the conventional transfer time.

VI. CONCLUSION

We have presented time-optimal polarization transfers from
an electron spin to a nuclear spin for the case of secular
hyperfine couplings. In particular, we have analyzed the
transfers from the electron-spin state Sz to the nuclear-spin
states Iz and Ix . For the transfer to Ix , we could improve on
the duration of on-resonance sinusoidal solutions by applying
a control which has the form of a square wave. Our results
also highlight differences between optimizations for minimum
energy and minimum time. We have also discussed how these
differences are related to bandwidth limitations.
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On a more general scale, we have identified an important
class of faster controls which appears under certain model
assumptions (see Secs. III and IV A). Our proofs of the
time optimality for the considered polarization transfers rely
on the corresponding time-optimal implementations for all
unitaries which achieve the transfer (see Secs. II and III).
The analysis utilizes the specific structure and assumptions
for the quantum system consisting of one electron spin and
one nuclear spin [110], which imply that the control system
has the form of a symmetric space [128]. This considerably
simplifies our arguments [59,66], but other arguments are
possible in certain cases (cf. [75–77,83,91]). Nevertheless,
our technique for relating time-optimal implementations of
polarization transfers and unitary propagators by determining
all relevant unitary propagators (see Appendix A) illuminates
how to apply it more generally, and it complements approaches
featuring usually difficult to obtain maximal possible transfer
amplitudes as a function of the control duration [59,64,65].
In particular, the provided analytic arguments employ the
surjectivity of particular decompositions of unitaries into
canonical coordinates (see Appendices A and B). All these
techniques will be useful for analyzing the control structure of
general quantum systems.

We close by briefly discussing how experimental con-
straints and imperfections can impact the proposed control
schemes, which have been designed so that they take into
account the maximal available control amplitude and the
maximal bandwidth of the electronic system as determined
by arbitrary wave form generators, amplifiers, and resonators.
In Sec. IV A, we have also discussed how our analysis relates
to control schemes with minimal total energy, but we have
not considered experimental considerations about minimizing
the total energy or average power usage more generally
[129]. In addition to experimental constraints relating to
the control amplitudes, experimental imperfections of the
suggested control sequences might have to be considered
in practical applications [130]. Potential experimental im-
perfections include unknown scaling factors of the control
amplitudes due to the spatial inhomogeneity of the control
field (i.e., the microwave and radio-frequency fields in the
case of conventional DNP experiments using large ensembles
of spin systems in macroscopic sample volumes [131,132]) or
due to the experimental accuracy with which the control fields
can be calibrated (e.g., in the case of individual spin systems
in quantum information processing [14–17]). In addition,
experimental imperfections are imperfectly calibrated pulse
phases [133], amplitude and phase transients [106,134], timing
errors in the creation and switching of of control amplitudes
[133], slow temporal variations of control amplitudes (such
as the so-called power droop due to heating effects in the
electronics) [133], noise (i.e., fast temporal variations) on the
control amplitudes based on imperfect electronics [135], and
variations of the external magnetic field B0. In particular, all
these experimental imperfections will in general be of different
size for the electron and nuclear control channels. For spectro-
scopic DNP applications, where fidelities above 0.98 would
be more than sufficient, it is expected that currently available
hardware and arbitrary wave form generators [106,136,137]
should make it possible to realize the control schemes proposed
here. In the case of quantum information applications with

desired fidelities above 0.9999 more sophisticated corrections
schemes might be required (e.g., pulse fixing [138]).
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APPENDIX A: DECOMPOSITION OF UNITARIES

1. Unitaries which transfer 2Sz Iz to Iz

All unitaries in SU(4) can be be decomposed as K1AK2

with a slow evolution A := exp[−i(αSαIy + βSβIy)] and
fast unitaries K1 and K2 which can be generated by
controls on the electron spin and the secular hyperfine

coupling (cf. [59,66,110,128]); recall that Sα = (
1 0
0 0

) ⊗ σ0

and Sβ = (
0 0
0 1

) ⊗ σ0. The unitaries that transfer 2SzIz to

Iz can be determined as solutions to the matrix equation
Iz = K1AK2(2SzIz)K

†
2A

†K†
1 . The fast unitaries K1 and K2

can be parametrized using canonical coordinates of the second
kind (see Sec. 2.8 of [139], Sec. 2.10 of [140], or Chap. III,
Sec. 4.3 of [141]), i.e.,

K1 := e−ia7Sx e−ia6Sy e−ia5Sz

× e−ia42SxIze−ia32SyIze−ia22SzIze−ia1Iz , (A1a)

K2 := e−ib1Sx e−ib2Sy e−ib32SxIze−ib42SyIz

× e−ib5Sze−ib62SzIze−ib7Iz . (A1b)

The surjectivity of the representations in Eqs. (A1) is
verified in Appendix B. As the unitary K1 commutes with
Iz and parts of K2 commute with 2SzIz, the matrix equation
simplifies to

Iz = Ae−ib1Sx e−ib2Sy e−ib32SxIze−ib42SyIz (2SzIz)

× eib42SyIzeib32SxIzeib2Sy eib1Sx A†.

With the help of the computer algebra system MAPLE [142],
one can verify that either α = 2πz1 and β = π + 2πz2 or
α = π + 2πz1 and β = 2πz2 with z1,z2 ∈ Z holds. In Sec. II
of the main text, we focused on the first case assuming that
α = 0 and β = π (i.e., z1 = z2 = 0); all other cases are similar.

2. Unitaries which transfer 2Sz Iz to Ix

Similarly as in Appendix A 1, the unitaries can be decom-
posed into a product K1AK2 of fast unitaries K1, K2, and a
slow evolution A = exp[−i(αSαIy + βSβIy)]. In particular,
all unitaries which transfer 2SzIz to Ix have to satisfy the
matrix equation Ix = K1AK2(2SzIz)K

†
2A

†K†
1 . By observing

trivial commutators, the matrix equation simplifies to

Ix = e−ia42SxIze−ia32SyIze−ia22SzIze−ia1IzA

× e−ib1Sx e−ib2Sy e−ib32SxIze−ib42SyIz (2SzIz)

× eib42SyIzeib32SxIzeib2Sy eib1Sx A†

× eia1Izeia22SzIzeia32SyIzeia42SxIz .
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With the help of the computer algebra system MAPLE [142], one
can infer that β = α − π + 2πz holds for z ∈ Z. In Sec. III
of the main text, we consider the case of A = exp[−πiSzIy]
which corresponds to α = π/2, β = −π/2, and z = 0. This
choice is actually optimal: It follows from Eq. (6) in the main
text that

α =
∫ T

0
−2π [vx(t) sin(πAt) − vy(t) cos(πAt)] dt,

β =
∫ T

0
2π [vx(t) sin(πAt) + vy(t) cos(πAt)] dt

holds for any given time T . Consequently, β − α =∫ T

0 4πvx(t) sin(πAt)dt . One applies the condition β = α −
π + 2πz and obtains

∫ T

0 4πvx(t) sin(πAt)dt = −π + 2πz.
This implies that∣∣∣∣

∫ T

0
4πvx(t) sin(πAt)dt

∣∣∣∣ � | − π + 2πz| � π.

On the other hand, one has | ∫ T

0 4πvx(t) sin(πAt)dt | �∫ T

0 4πvmax| sin(πAt)|dt = 8vmaxT (see Sec. III). In order to
satisfy the condition β = α − π + 2πz, the time T has to
fulfill the inequality 8vmaxT � π . One gets a lower bound
Tmin � π/(8vmax) on the minimum time Tmin. In summary, the
scheme presented in Sec. III of the main text is optimal as it
saturates the lower bound.

APPENDIX B: VERIFICATION OF THE SURJECTIVITY
OF THE REPRESENTATIONS IN EQ. (A1)

In order to verify the surjectivity of K1 in Eq. (A1a) it is
sufficient to verify the surjectivity of the product

K̃1 = K̃1(a7,a6,a5,a4,a3,a2)

:= e−ia7Sx e−ia6Sy e−ia5Sze−ia42SxIze−ia32SyIze−ia22SzIz

which consists of the first six elements of K1 as the seventh
element commutes with all the other ones. First we show that
there exists a′

4, a′
3, and a′

2 such that

e−ia7Sx e−ia6Sy e−ia5Sze−ia42SxIze−ia32SyIze−ia22SzIz

= e−ia′
42SxIze−ia′

32SyIze−ia′
22SzIze−ia7Sx e−ia6Sy e−ia5Sz ,

(B1)

which can be written as

e−ia′
42SxIze−ia′

32SyIze−ia′
22SzIz

= e−ia7Sx e−ia6Sy e−ia5Sz (e−ia42SxIze−ia32SyIze−ia22SzIz )

× eia5Szeia6Sy eia7Sx .

The effect of the conjugation with exp(−ia5Sz) is

e−ia5Sze−ia42SxIze−ia32SyIze−ia22SzIzeia5Sz

= e−ia5Sze−ia42SxIzeia5Sz

× e−ia5Sze−ia32SyIzeia5Sze−ia5Sze−ia22SzIzeia5Sz

= e−ia4[cos(a5)2SxIz+sin(a5)2SyIz]

× e−ia3[cos(a5)2SyIz−sin(a5)2SxIz]e−ia22SzIz

= e−ia′′
42SxIze−ia′′

3 2SyIze−ia′′
2 2SzIz ,

where the last step follows from the Euler-angle decomposi-
tion. Similar arguments for the conjugations with e−ia6Sy and
e−ia7Sx demonstrate Eq. (B1). Any element in the connected
Lie group that is infinitesimally generated by the elements
−iSx , −iSy , −iSz, −i2SxIz, −i2SyIz, and −i2SzIz can be
achieved by a finite product of elements having the form of
K̃1; this is a consequence of Lemma 6.2 in [143]. We apply
Eq. (B1) and the Euler-angle decomposition multiple times
and obtain K̃1(a7,a6,a5,a4,a3,a2)K̃1(ã7,ã6,ã5,ã4,ã3,ã2) =
K̃1(c7,c6,c5,c4,c3,c2) for certain values of c7, c6, c5, c4, c3,
and c2. In summary, we have verified the surjectivity of the
representations K̃1 and K1.

Similar as for Eq. (B1), one can verify that

e−ia5Sze−ia42SxIze−ia32SyIz = e−ia′
42SxIze−ia′

32SyIze−ia5Sz

holds for some a′
4 and a′

3. Consequently, the surjectivity of K1

implies the surjectivity of K2.
An alternative second argument for the surjectivity of

Eq. (A1a) applies the decomposition K ′
1A

′K ′
2 for the set

K = exp(k) of all fast operations where K ′
i = exp(k′) and A′ =

exp(a′). This decomposition is a consequence of the Cartan
decomposition k = k′ ⊕ p′ where the corresponding linear
subspaces are given by k′ := span{−iSx,−iSy,−iSz,−iIz},
p′ := span{−i2SxIz,−i2SyIz,−i2SzIz}, and the Abelian sub-
algebra a′ := span{−i2SzIz} ⊆ p′ [128]. The decomposition
K ′

1A
′K ′

2 implies that the decomposition

U ′ = UeiπSzIz = e−id1Sx e−id2Sy e−id3Sze−id42SzIz

× e−id5Sze−id6Sx e−id7Sy e−id8Iz

is a surjective parametrization of the set of all fast operations.
Therefore, the surjectivity is also verified for

U = e−id1Sx e−id2Sy e−id3Sze−id42SzIz

× e−id5Sze−id6Sx e−id7Sy e−id8Ize−iπSzIz

= e−id1Sx e−id2Sy e−i(d3+d5)Sze−i(d4+π/2)2SzIz

× eid62SyIze−id72SxIze−id8Iz

= e−id1Sx e−id2Sy e−id ′
3Sze−id ′

42SxIz

× e−id ′
52SyIze−id ′

52SzIze−id8Iz ,

where the last equality follows from the Euler-angle decompo-
sition. This completes the second argument for the surjectivity
of Eq. (A1a).
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Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P.
Neumann, and J. Wrachtrup, Nature (London) 506, 204 (2014).

[17] C. Müller, X. Kong, J.-M. Cai, K. Melentijević, A. Stacey,
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D Manifolds, Mathématiques et Applications Vol. 43 (Springer,
Berlin, 2004).

[42] D. J. Tannor and A. Bartana, J. Phys. Chem. A 103, 10359
(1999).

[43] U. Boscain, G. Charlot, J.-P. Gauthier, and H.-R. Jauslin, J.
Math. Phys. 43, 2107 (2002).

[44] U. Boscain, T. Chambrion, and G. Charlot, Discrete Contin.
Dyn. Syst. Ser. B 5, 957 (2005).

[45] U. Boscain and P. Mason, J. Math. Phys. 47, 062101 (2006).
[46] D. Sugny, C. Kontz, and H. R. Jauslin, Phys. Rev. A 76, 023419

(2007).
[47] B. Bonnard and D. Sugny, SIAM J. Control Optim. 48, 1289

(2009).
[48] B. Bonnard, M. Chyba, and D. Sugny, IEEE Trans. Autom.

Control 54, 2598 (2009).
[49] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny,

Phys. Rev. Lett. 104, 083001 (2010).
[50] M. Lapert, Y. Zhang, S. J. Glaser, and D. Sugny, J. Phys. B 44,

154014 (2011).
[51] Y. Zhang, M. Lapert, D. Sugny, M. Braun, and S. J. Glaser,

J. Chem. Phys. 134, 054103 (2011).
[52] A. D. Boozer, Phys. Rev. A 85, 012317 (2012).
[53] V. Mukherjee, A. Carlini, A. Mari, T. Caneva, S. Montangero,

T. Calarco, R. Fazio, and V. Giovannetti, Phys. Rev. A 88,
062326 (2013).

[54] A. Garon, S. J. Glaser, and D. Sugny, Phys. Rev. A 88, 043422
(2013).
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Herbrüggen, D. Sugny, and F. Wilhelm, Eur. Phys. J. D (to
be published), see also arXiv:1508.00442.

[131] T. E. Skinner, K. Kobzar, B. Luy, R. Bendall, W. Bermel,
N. Khaneja, and S. J. Glaser, J. Magn. Reson. 179, 241
(2006).

[132] T. E. Skinner, M. Braun, K. Woelk, N. I. Gershen-
zon, and S. J. Glaser, J. Magn. Reson. 209, 282
(2011).

[133] R. Prigl and U. Haeberlen, in Advances in Magnetic and
Optical Resonance, edited by W. S. Warren (Academic Press,
San Diego, 1996), Vol. 19, pp. 1–58.

[134] I. N. Hincks, C. E. Granade, T. W. Borneman, and D. G. Cory,
Phys. Rev. Appl. 4, 024012 (2015).

[135] S. Kallush, M. Khasin, and R. Kosloff, New J. Phys. 16, 015008
(2014).

[136] T. Kaufmann, T. J. Keller, J. M. Franck, R. P. Barnes, S. J.
Glaser, J. M. Martinis, and S. Han, J. Magn. Reson. 235, 95
(2013).

[137] A. Doll, S. Pribitzer, R. Tschaggelar, and G. Jeschke, J. Magn.
Reson. 230, 27 (2013).

[138] D. Lu, A. Brodurch, J. Park, H. Katiyar, and R. Jochym-
O’Conner, T. Laflamme, arXiv:1501.01353.

[139] D. Elliott, Bilinear Control Systems: Matrices in Action
(Springer, London, 2009).

[140] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their
Representations (Springer, New York, 1984).

[141] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 1–3
(Springer, Berlin, 1989).

[142] Maplesoft, Maple 18 (2014).
[143] V. Jurdjevic and H. Sussmann, J. Diff. Eq. 12, 313

(1972).

053414-12

http://dx.doi.org/10.1021/ja00497a058
http://dx.doi.org/10.1021/ja00497a058
http://dx.doi.org/10.1021/ja00497a058
http://dx.doi.org/10.1021/ja00497a058
http://dx.doi.org/10.1039/c39730000611
http://dx.doi.org/10.1039/c39730000611
http://dx.doi.org/10.1039/c39730000611
http://dx.doi.org/10.1039/c39730000611
http://dx.doi.org/10.1016/0022-2364(73)90120-0
http://dx.doi.org/10.1016/0022-2364(73)90120-0
http://dx.doi.org/10.1016/0022-2364(73)90120-0
http://dx.doi.org/10.1016/0022-2364(73)90120-0
http://dx.doi.org/10.1002/mrc.1270130317
http://dx.doi.org/10.1002/mrc.1270130317
http://dx.doi.org/10.1002/mrc.1270130317
http://dx.doi.org/10.1002/mrc.1270130317
http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1016/j.jmr.2014.10.004
http://dx.doi.org/10.1016/j.jmr.2014.10.004
http://dx.doi.org/10.1016/j.jmr.2014.10.004
http://dx.doi.org/10.1016/j.jmr.2014.10.004
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://arxiv.org/abs/arXiv:1508.00442
http://dx.doi.org/10.1016/j.jmr.2005.12.010
http://dx.doi.org/10.1016/j.jmr.2005.12.010
http://dx.doi.org/10.1016/j.jmr.2005.12.010
http://dx.doi.org/10.1016/j.jmr.2005.12.010
http://dx.doi.org/10.1016/j.jmr.2011.01.026
http://dx.doi.org/10.1016/j.jmr.2011.01.026
http://dx.doi.org/10.1016/j.jmr.2011.01.026
http://dx.doi.org/10.1016/j.jmr.2011.01.026
http://dx.doi.org/10.1103/PhysRevApplied.4.024012
http://dx.doi.org/10.1103/PhysRevApplied.4.024012
http://dx.doi.org/10.1103/PhysRevApplied.4.024012
http://dx.doi.org/10.1103/PhysRevApplied.4.024012
http://dx.doi.org/10.1088/1367-2630/16/1/015008
http://dx.doi.org/10.1088/1367-2630/16/1/015008
http://dx.doi.org/10.1088/1367-2630/16/1/015008
http://dx.doi.org/10.1088/1367-2630/16/1/015008
http://dx.doi.org/10.1016/j.jmr.2013.07.015
http://dx.doi.org/10.1016/j.jmr.2013.07.015
http://dx.doi.org/10.1016/j.jmr.2013.07.015
http://dx.doi.org/10.1016/j.jmr.2013.07.015
http://dx.doi.org/10.1016/j.jmr.2013.01.002
http://dx.doi.org/10.1016/j.jmr.2013.01.002
http://dx.doi.org/10.1016/j.jmr.2013.01.002
http://dx.doi.org/10.1016/j.jmr.2013.01.002
http://arxiv.org/abs/arXiv:1501.01353
http://dx.doi.org/10.1016/0022-0396(72)90035-6
http://dx.doi.org/10.1016/0022-0396(72)90035-6
http://dx.doi.org/10.1016/0022-0396(72)90035-6
http://dx.doi.org/10.1016/0022-0396(72)90035-6



