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Time-optimal control fields for quantum systems with multiple avoided crossings
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We study time-optimal protocols for controlling quantum systems which show several avoided level crossings
in their energy spectrum. The structure of the spectrum allows us to generate a robust guess which is time optimal
at each crossing. We correct the field applying optimal control techniques in order to find the minimal evolution
or quantum speed limit (QSL) time. We investigate its dependence as a function of the system parameters and
show that the QSL time gets proportionally smaller to the well-known two-level case as the dimension of the
system increases. Working at the QSL, we study the control fields derived from the optimization procedure and
show that they present a very simple shape, which can be described by a few parameters. Based on this result,
we propose a simple expression for the control field and show that the full time evolution of the control problem
can be analytically solved.
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I. INTRODUCTION

The development of future communication and information
technologies is expected to rely heavily on the precise manip-
ulation of physical systems at the nano- and subnanoscale. For
this reason, coherent control of quantum systems has become
a major goal in physical sciences in recent decades. In this
context, the design and implementation of quantum control
methods has raised a lot of interest, and many theoretical [1–3]
and experimental [4,5] works have been devoted to this subject.

Controlled quantum operations are typically intended to
be performed in the fastest possible way in order to avoid
unwanted environmental effects, which can destroy the co-
herence properties of the system. Because of this, deriving
time-optimal control protocols is a goal of major importance.
This task is usually tackled by means of quantum optimal
control (QOC) theory. There, the typical problem is to derive
the shape of the control field λ(t) required in order to optimize a
particular dynamical process for a quantum system described
by a Hamiltonian H (λ). For example, a typical objective in
quantum control is to perform a transition from a given initial
state |ψ0〉 to another target state |ψg〉. In some cases, the
optimization can be carried out analytically [6–9], but most
generally it is approached numerically [10–12].

One of the weak points of the usual algorithms employed
for solving QOC problems (such as Krotov or GRAPE [13,14],
although interesting alternatives have been proposed recently
[15,16]) is that the solution for the field λ(t) often appears
to be hardly realizable in practice [17]. This originates from
the fact that the value of the field at each instant acts as
an independent control (i.e., there are no constraints derived
from the truncation of a given basis set of functions [18]).
Of course, this allows for a much faster convergence of
the optimization procedure, but the resulting control field
can present nonsmooth fluctuations which would require a
large field bandwidth to be implemented. Moreover, from a
theoretical perspective, the complex shape of the field usually
prevents us from understanding the physical mechanisms
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involved in the control processes. In spite of this feature,
QOC theory has been proven to show deep connections
with the fundamentals of quantum mechanics. Caneva et al.
[19] studied the performance of QOC in various systems
as a function of the (fixed) evolution time T that is fed to
the algorithm. They found that the optimization converged
successfully only when T was above a certain threshold, which
they identified with the quantum speed limit (QSL) time, TQSL.
The concept of QSL was introduced originally by Mandelstam
and Tamm [20], who showed that a generalization of the usual
time-energy uncertainty relation imposed bounds on the speed
of evolution of a quantum system. Since then, many authors
have explored the QSL in various situations [21–32].

In this work, we study time-optimal control processes
in quantum systems which show several local two-level
interactions in the form of avoided crossings (ACs) in their
energy spectrum. This situation is of interest in a wide variety
of quantum mechanical systems, such as molecular dipoles
interacting with electric fields [33,34], ultracold atoms in
optical lattices [35], Rydberg atoms [36], and superconducting
qubits [37]. Using this particular interaction between the states
of the system, we generate initial guesses for the control
protocols using piecewise-constant functions derived from
previous studies [38,39]. In a recent work, we studied the QSL
time for these protocols by using QOC and showed that the
calculated QSL time is, in general, smaller than the sum of the
optimal times for each avoided crossing [40]. Here, we focus
on the analysis of the optimal control protocols which lead to
such speedup. For that purpose, we numerically investigate the
control fields that generate the time-optimal evolution and find
that they can be fully characterized by just a few parameters.
This allows us to propose a simple analytical dependence for
the control field. Finally, for this protocol, we show that the
full time evolution can be analytically solved and the results
are in full agreement with the numerical optimization.

This article is organized as follows. In Sec. II, we present
the model of a quantum system showing an avoided crossing
(AC) in its energy spectrum and describe its most important
features. We then expand this minimal model to include several
ACs, for which we present the actual model Hamiltonian of
our interest. We also discuss the control problems that can
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be posed for this system and present an intuitive solution. In
Sec. III, we present the basics of optimal control theory and
describe its implementation in quantum systems. In Sec. IV,
we briefly discuss the results obtained by implementing QOC
for control processes involving several ACs, and then study
the QSL time as a function of the different parameters of the
system. In Sec. V, we describe in detail the optimal control
fields that we obtain and discuss the physical mechanisms
involved in the observed speedup. Based on this analysis, we
propose a simple analytical expression for the optimal control
field and show that the associated Schrödinger equation can be
solved analytically. Finally, Sec. VI contains some concluding
remarks.

II. MODEL, AVOIDED CROSSINGS,
AND CONTROL PROTOCOLS

In this section, we present the models which describe the
systems of our interest, which show avoided level crossings in
their energy spectrum. We propose simple control protocols
for achieving state transfer and discuss its time optimality.

A. A single avoided crossing

We first consider a quantum two-level system described by
the following Hamiltonian matrix:

H (λ) = �

2
σx + λσz =

(
λ �

2
�
2 0

)
, (1)

which is written in the basis {|0〉,|1〉}. These states are
usually called the diabatic states of the system, in which
the Hamiltonian turns diagonal when the control parameter
λ → ±∞. In general, the eigenvalues {Ek} (k = 0,1) of H

form a hyperbolae in the (λ,E) plane, whose vertex represents
an avoided crossing (AC) with an energy gap �. This spectrum
is depicted in Fig. 1(a). The eigenstates of H as a function of
λ form the adiabatic basis {|gλ〉,|eλ〉} and have an asymptotic
correspondence with their diabatic counterparts, i.e., |g−∞〉 =
|0〉 and |e−∞〉 = |1〉 (and vice versa for λ → +∞).

The model presented above is ubiquitous in quantum
mechanics as it accounts for many interesting phenomena, such
as Landau-Zener transitions [41], Landau-Zener-Stuckelberg
interferometry [42], and quantum phase transitions [43]. We
are interested in the control problems that can be formulated
when � is regarded as a fixed parameter and λ can vary in
time. A famous example is the problem of driving this system
from the state |g+λ0〉 to |g−λ0〉 for some λ0 ∈ R. This can be
done by slowly changing the field λ(t) from +λ0 to −λ0 so as
to generate an adiabatic evolution. However, if the process
is intended to be performed in the shortest possible time,
then another choice of λ(t) is needed. Interesting discussions
about the solution to this problem, which include numerical,
experimental, and analytical studies, can be found in the
literature [7,31,44–46]. Here we will focus on a particular
result. When λ0 → ∞, the control problem stated above
reduces to the full population transfer between |0〉 and |1〉.
The optimal time for such process is given by

T
(1)
S = π

�
, (2)

(a)

(e)

(b)

(c)

(d)

FIG. 1. (Color online) (a) Energy spectrum for the two-level
Hamiltonian (1) as a function of the control parameter λ. (b) Control
field λ(t) as a function of time for a simple realization of complete
population transfer between the diabatic states. Note that time is
represented on the vertical axis. (c),(d) Same as (a) and (b), but for
the three-level Hamiltonian (4). (e) Schematical representation of the
energy spectrum of Hamiltonian HN (λ) [cf. Eq. (3)] as a function of
control parameter λ. In the most general setting, the spectrum shows
N − 1 avoided crossings separated by ε0, each of which generates a
coupling between states |n〉 and |n + 1〉 with n < N − 1.

and can be achieved simply by setting λ(t) = 0 from t = 0 to
t = T

(1)
S , given of course that |ψ0〉 = |0〉. Then, the state can

be frozen in the final state for t > T
(1)
S by applying a quench

from λ = 0 to some value |λ| � �. An example of this type
of control field is depicted in Fig. 1(b).

B. Multiple avoided crossings

The two-level model described in the previous section can
be extended and generalized to account for the presence of
several ACs in a many-level scenario. Here we construct a
model for such situation. Consider an N -level system with the
following Hamiltonian:

HN (λ) =
[ N−1

2 ]∑
n=0

(λ − n ε0)|2n〉〈2n|

+
[ N−2

2 ]∑
n=0

n ε0|2n + 1〉〈2n + 1|

+
N−2∑
n=0

�n

2
(|n〉〈n + 1| + |n + 1〉〈n|), (3)
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where [x] denotes the integer part of x and {|n〉} is the basis
of diabatic states. When �n = 0 for n = 0,1, . . . ,N − 2, the
Hamiltonian is diagonal in that basis and the energy spectrum
consists merely of a series of horizontal and diagonal straight
branches with degeneracies at values of λij = (i + j )ε0 cor-
responding to states |2i〉 and |2j + 1〉. If one of the couplings
is nonzero, say �n �= 0, the degeneracy at λn = nε0 is lifted
and an AC is generated with a minimum energy gap of �n. As
a consequence, transitions between the states |n〉 and |n + 1〉
become permitted. The overall shape of the energy spectrum
for this model is schematically depicted in Fig. 1(e). There,
it can be seen that ε0 measures how far apart the locations of
the ACs are. Note that when all of the interaction rates are
nonzero, the number of ACs equals N − 1. In a regime where
ε0 � �n for all n, this model is very convenient for analyzing
dynamical processes which are dictated by local two-level
interactions. This can be seen as follows: if the system is
initially prepared in some state |n〉 and the control parameter λ

does not deviate much from the position of the corresponding
AC (i.e., |λ − λn| 	 �n [47]), then the dynamics of the system
is effectively confined to a two-dimensional subspace, as the
remaining N − 2 levels can be adiabatically eliminated [48].
This is the key characteristic of this model and we will expand
on its consequences on the QSL analysis later on.

Evaluating Eq. (3) for N = 2, we recover the two-level (one
AC) Hamiltonian of Eq. (1). Taking the next step in complexity,
the case N = 3 renders the following Hamiltonian matrix:

H3(λ) =
⎛
⎝ λ �0

2 0
�0
2 0 �1

2
0 �1

2 λ − ε0

⎞
⎠, (4)

which has two ACs, one at λ0 = 0 and another at λ1 = ε0. The
corresponding gaps are �0 and �1 when ε0 � �0,�1. The
energy spectrum for this case is depicted in Fig. 1(c). This
model has been widely studied in many different contexts
[48–50], as it is suitable for describing a three-level atom in a
� configuration. Note that, in that case, the parameters �0 and
�1 correspond to detunings between the energy levels and the
frequencies of two external laser fields, which are generally
regarded as the control fields, while λ and ε0 are related to
the bare energy splittings. In this work, this is not the case, as
the off-diagonal couplings are fixed and we implement control
protocols by solely varying λ(t).

For this multiple AC model, we are interested in control
processes which connect diabatic states of the system. Without
loss of generality, we consider the initial state |ψ0〉 = |0〉 and
define the process PK as the one which drives the system to the
state |K〉, with 0 � K � N − 1 (generalization to a different
diabatic initial state is straightforward). Our goal will be to
find the control field λK (t) which generates PK in a time T .
Note that if the ACs are sufficiently isolated, a solution exists
which is independent of N . Based on the discussion above,
a straightforward, yet powerful solution can be drawn [39].
By successively setting the control field λ(t) = λn constant
during time intervals of length π/�n, with 0 � n � K − 1,
the dynamics navigates through the K ACs, turning them on
and ensuring full population transfer one at a time. The system
then evolves through the sequence |0〉 → |1〉 → · · · → |K〉.
Note that the shape of the control function is then characterized

by a series of sudden changes of the value of λ, and so we name
it a “sudden-switch” field, λ(S)

K (t), which is depicted for K = 2
in Fig. 1(d). The total evolution time for this protocol equals

T
(K)
S ≡

K−1∑
n=0

π

�n

. (5)

We point out here that this control scheme can be seen as
a particular case of a more general well-known result from
quantum optics [51], namely, that a general unitary operator
acting in an N -dimensional Hilbert space can be generated by
arranging N (N − 1)/2 beam splitters and N (N + 1)/2 phase
shifters. The analogy can be constructed as follows. When
considering a single AC, as in Eq. (1), and a control field
λ = 0 acting for some time interval 0 < t < τ , the dynamics
in the diabatic basis is given by(

b0

b1

)
=

( √
R −i

√
T

−i
√

T
√

R

)(
a0

a1

)
, (6)

where a0,1 and b0,1 describe the initial and final state of
the system, and we have defined the variable reflectivity
R = cos2(�

2 τ ) and transmittance T = 1 − R as a function of
� and τ . We can see here that the unitary matrix in expression
(6) is the one given by a beam splitter (and an additional phase
shift which is of no interest here). If we choose τ = T

(1)
S as

in expression (2), then full population inversion is achieved,
meaning that the transmittance is T = 1. Lower values of τ

will generate intermediate values of R and T , causing some
population to be reflected back to the same level or transmitted
through the other level. Then, successively connecting ACs as
proposed in this section can be thought of as an arrangement
of beam splitters and phase shifts. As we mention before, here
we are interested in control protocols which connect diabatic
states, and we see here that it suffices to use T = 1 beam
splitters to reach that goal. A more general control target was
discussed in Ref. [52].

A number of observations are appropriate here. First, note
that the protocol proposed is not unique, since the process can
also be realized by adiabatically changing λ(t) as to navigate
through the ACs. The system then also evolves sequentially
between diabatic states, but much more slowly [38,52]. Also, it
is important to point out that we have constructed the model in
Eq. (3) in such a way that the degeneracies between states |n〉
and |n + k〉 (for k �= 1) are exact and cannot be lifted. For this
protocol, this means that there is only one path in the energy
spectrum between |0〉 and |K〉, which involves exactly K ACs.
We point out that we do not lose generality by making this
assumption: if there were a shorter path between those states,
it would be equivalent to a process PL with L < K , which is
accounted for in our model. Finally, let us remark that the total
protocol time given by Eq. (5) is a sum which terms are of the
form of Eq. (2), and so we can state that the control saturates
the QSL bound at each AC. In the following, we investigate
whether or not this feature implies that the whole protocol is
itself optimal.

III. OPTIMAL CONTROL THEORY

Here we outline the theoretical formulation of a basic QOC
problem, its solution, and a feasible method for its numerical
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implementation. Details of this derivation can be found, for
example, in Ref. [53].

Consider a quantum system described by a state |ψ(t)〉 in
a finite-dimensional Hilbert space H undergoing an evolution
dictated by the Schrödinger equation (we take � = 1 from
here on)

i
d

dt
|ψ(t)〉 = H (t)|ψ(t)〉, (7)

satisfying |ψ(0)〉 = |ψ0〉. We suppose that the Hamiltonian of
the system H (t) has the form

H (t) = H0 + λ(t)Hi, (8)

where H0 and Hi are the free (or drift) and interaction (or
control) Hamiltonians, which are time independent, and we
define real-valued function λ(t) as the control field. The
general QOC problem is formulated as follows: given H0,
Hi , an initial state |ψ0〉, a hermitic operator P , and a total
evolution time T , we wish to find λ(t) such that the system,
initially prepared in |ψ0〉, evolves to a state |ψ(T )〉, in which
the expectation value of P is maximal. Formally, we wish to
maximize the following functional:

J1[ψ] ≡ 〈ψ(T )|P |ψ(T )〉. (9)

In the following, we will restrict ourselves to the case
in which the goal of the QOC problem is to maximize
the probability of reaching a certain target state |ψg〉. For
that purpose, the operator P is defined as the projector
P = |ψg〉〈ψg| and so J1[ψ] = |〈ψ(T )|ψg〉|2.

In order to correctly formulate the QOC problem, two
additional conditions have to be imposed. The first one is
the minimization of the quantity

∫ T

0 α(t)λ2(t)dt , where α(t)
is a weight function. This requirement is essential in order to
prevent the divergence of the total-energy cost of the control
process [10,53]. Note that the factor α(t) allows for selective
weighting at different times, thus allowing the induction of
certain special features in the control field (e.g., a given shape,
or its initial and final values [17]). As a consequence, we also
wish to maximize

J2[λ] = −
∫ T

0
α(t)λ2(t)dt. (10)

Finally, a restriction has to be imposed to the joint
maximization of Eqs. (9) and (10) in order to guarantee that
the dynamical equation (7) is satisfied at all times. For that
purpose, we introduce an auxiliary state |χ (t)〉 as a Lagrange
multiplier so that we seek to maximize a third functional,

J3[χ,ψ,λ] = −2 Im

{∫ T

0
〈χ (t)|

[
i

d

dt
− H (t)

]
|ψ(t)〉dt

}
.

(11)
In conclusion, bringing together expressions (9) through

(11), we get that the QOC problem is cast as the maximization
of the functional

J [χ,ψ,λ] = J1[ψ] + J2[λ] + J3[χ,ψ,λ]. (12)

Optimization of this functional is achieved by imposing δJ =
0, which renders three independent equations (one for each
variable of the functional). First, solving δχJ = 0 trivially
gives Eq. (7), as expected from the inclusion of the Lagrange

multiplier. Then, the relation δψJ = 0 takes us to the following
equation for the auxiliary state |χ〉:

i
d

dt
|χ (t)〉 = H (t)|χ (t)〉 and |χ (T )〉 = P |ψ(T )〉. (13)

Note that this expression is the Schrödinger equation for
state |χ (t)〉, with boundary condition given by its final value,
|χ (T )〉. Finally, by solving δJλ = 0, an expression can be
derived for the control field,

λ(t) = 1

α(t)
Im{〈χ (t)|Hi |ψ(t)〉}. (14)

The problem of obtaining a set {|ψ(t)〉,|χ (t)〉,λ(t)} that si-
multaneously solves Eq. (7) together with Eqs. (13) and (14) is,
of course, impossible to tackle analytically. Instead, an iterative
algorithm has to be implemented. Here we briefly describe a
widely used method [54,55], due originally to Krotov [13]:
(i) the procedure starts by choosing an initial guess λ0(t) for
the control field; (ii) using that field, the initial state |ψ0〉 is
evolved according to Eq. (7) from t = 0 to t = T ; (iii) the
boundary condition for |χ (t)〉 is set by projecting |χ (T )〉 =
P |ψ(T )〉, and the state is evolved backwards also following
Eq. (7), from t = T to t = 0; (iv) the state |ψ0〉 is now
propagated forward again, but the field is updated following
the rule λ(t) → λ(t) + 1

α(t) Im{〈χ (t)|Hi |ψ(t)〉} at each instant;
(v) steps (iii) and (iv) are repeated N times until a certain
threshold is reached for the value of the cost functional J1.

IV. QSL IN A SYSTEM WITH MULTIPLE ACs

In this section, we numerically investigate the QSL time
for the control processes described in the previous section.
For that purpose, we use optimal control techniques inspired
by the basic idea introduced by Caneva et al. [19] that the
optimization performance is limited by the maximum speed
allowed by quantum evolution. The basic procedure is as
follows. First, we fix the state dimension N and choose a
control process PK (which starts in |0〉 and targets |K〉) for the
model described in Sec. II. Then, we run the optimization
algorithm in order to find the control field λK (t) which
generates the desired process, for different values of the total
evolution time T . In each run, this procedure takes as an input
the value of T and an initial guess for the field λ

(0)
K (t). In order to

choose these inputs, we take advantage of the physical features
of the model discussed in the previous section. The values of T

were taken from an interval centered around T
(K)
S ; cf. Eq. (5).

Note that if the ACs are well isolated, we are certain that
the sudden-switch field generates the desired process when
T = T

(K)
S . Similarly, the initial guess for the control function

was chosen to be close to the sudden-switch field. Actually,
we used

λ
(0)
K (t) = a(t)λ(S)

K (b t) + c(t), (15)

where b is a parameter which shrinks or expands the shape
of the function to fit the total evolution time (i.e., b = 1
when T = T

(K)
S ), while a(t) is a function which smooths the

discontinuities of λ
(S)
K and c(t) is a small linear correction. The

latter functions are introduced in order to force the algorithm
to take a minimum number of steps (of the order of 100) before
the required convergence is achieved.
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(a)

(b)

FIG. 2. (Color online) A typical procedure for determining the
QSL time TQSL for a particular control process. This example
corresponds to a PK=2 process in a Hilbert space of dimension N = 3
[cf. Eq. (4)], where ε0 = 10�0 and �1 = �0. (a) Infidelity Im as
a function of the step number m for each optimization. (b) Second
derivative I ′′

m of the curves in (a). The dotted line corresponds to the
minimum value of T which asymptotically renders I ′′

m < 0 and so is
identified as TQSL within the error margin. Thin full lines correspond
to T < TQSL, while thick full lines correspond to T > TQSL.

Each run of the algorithm finishes after a fixed number
of steps or when the process is sufficiently converged. As
discussed in Sec. III, this is determined by evaluating the value
of the infidelity at each step m, which is defined as

Im ≡ 1 − |〈ψg|ψ (m)(T )〉|2 = 1 − J1[ψ (m)(T )], (16)

where J1 is the functional of Eq. (9) and |ψ (m)(t)〉 is the state
of the system obtained at step m of the algorithm. The function
Im decreases monotonically as m increases, but its shape and
asymptotic behavior critically depend on the input parameters.
In Fig. 2(a), we plot this function for a particular case, as an
example. We argue, as in Ref. [19], that the infidelity cannot
decrease indefinitely if the fixed evolution time T is smaller
than the QSL time. In that case, Im should look asymptotically
flat. We use this feature to obtain the estimator of the QSL time
T

(K)
QSL. Formally, for each value of T , we look at the second

derivative of Im (with respect to m) [see Fig. 2(b)] and analyze
its sign. Then, the minimum value of T which gives I ′′(k) < 0
asymptotically is chosen as the QSL time.

We now turn our focus to the model of Eq. (4) which
presents two ACs. As discussed in the previous section, this is
the next step in complexity following the analytically solvable
two-level system. We begin by considering the QSL time
for process P1, for which the system starts in state |0〉 and
evolves to |1〉, in the minimum possible time. Note that this
process involves just one AC, as seen from the sudden-switch
protocol introduced in the previous section. In Fig. 3, we plot
the calculated QSL time T

(1)
QSL for this case as a function of ε0,

the parameter which measures the distance between the ACs in
the energy spectrum (see Fig. 1), for fixed values of interaction
parameters �0,�1. There, it can be seen that T

(1)
QSL is larger

than T
(1)
S = π/�0 for small values of ε0. This is reasonable

(b)

(a)

FIG. 3. (Color online) (a) QSL time calculated from the optimal
control procedure (see text for details) as a function of ε0/�0, for
processes P1 (crossing one AC) and P2 (crossing two ACs). Dashed
lines correspond to expression (5), i.e., the time required by the
sudden-switch protocol in each case, T (1)

S and T
(2)
S . (b) Ratio between

the calculated QSL time TQSL for processes PK and the corresponding
sudden-switch protocol evolution time T

(K)
S as a function of K . The

dashed line shows the K−1 scaling of the data points. For all cases,
the distance between the ACs was set to ε0 = 10�, and �n = 1 for
all n = 0,1, . . . ,K − 1.

in this regime since the ACs are closer together and thus
interact considerably, which leads to significant variations of
the interaction rates (see Ref. [48] for more details). Away from
that regime, T

(1)
QSL converges to T

(1)
S , which is the well-known

result for the two-level system. This is a sound result since only
the states |0〉 and |1〉 are involved in the process. However,
it is interesting to point out that this behavior allows us to
quantitatively define the regime in which the ACs are well
isolated. In the case shown in the figure, for which �0 = �1,
this is achieved for ε0/�A � 5.

Next, we discuss control process P2, which involves both
ACs. Following the same procedure as for the previous case,
we get the results of Fig. 3(a). There, it can be seen that
the estimated QSL time T

(2)
QSL is smaller than the sudden-

switch evolution time T
(2)
S . Remarkably, this result holds in

all cases, even for large ε0. The difference between T
(2)

QSL
and our prediction is larger for small ε0, and decreases as
the ACs are brought apart. However, for ε0/�0 as large
as 100, the difference is still larger than 7%. This striking
behavior indicates that the QOC optimization can generate
successful (i.e., with arbitrary fidelity) control processes which
are significantly shorter in time than the double sudden switch,
a process which is time optimal at each AC, as discussed above.
We point out that this behavior persists even when the relative
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magnitude of the gap sizes �0,�1 is modified [40]. We will
analyze the physical mechanisms that cause this speedup in
the next section.

Finally, we address the results obtained for the QSL time for
control processes involving more than two ACs, i.e., PK with
K > 2. Applying the same procedure outlined in the previous
paragraphs, we obtained TQSL for various values of the number
of avoided crossings K involved in the process. In Fig. 3(b), we
plot the ratio between TQSL and T

(K)
S as a function of K . There,

it can be seen that the optimal evolution time (measured with
respect to the corresponding sudden-switch protocol evolution
time) decreases as the number of ACs involved increases. This
means that as more ACs get involved in the evolution, the
connection between diabatic states can be performed faster.
However, the improvement reaches a saturation point for large
values of K .

V. OPTIMAL CONTROL FIELDS

A. Numerical analysis of the optimized fields

We now turn to analyze the shape of the control fields
derived via the optimization procedure outlined in the previous
section. We will focus on the optimal fields obtained for
T = TQSL, but for larger evolution times its description is
similar. In Figs. 4(a) and 4(b), we plot the optimized field
λ(t) together with the evolution of the populations for two
particular cases: processes involving two ACs (K = 2) and
three ACs (K = 3). At first sight, it can be seen that the field
shows oscillations which are mounted on a steplike function.
The latter feature is preserved from the sudden-switch field,
which we used as an initial guess for the optimization. Fourier
transform of the driving signal reveals that there is only one
dominant frequency fε , which, together with the maximum
amplitude Amax, characterizes the overall shape of the field.
Remarkably, this behavior is common to all high-order control
processes studied in our model, even for K > 3. In order

(a) (b)

FIG. 4. (Color online) (a) Initial and optimized control fields λ(t)
for process P2, using �1/�0 = 1 and ε0/�0 = 10. Inset shows the
time evolution of the populations for each one of the diabatic states
|k〉 (k = 0,1,2), given by the optimized field. Evolution time is set
at T = T

(2)
QSL  0.91T

(2)
S . (b) Same as (a) for process P3, with same

parameter values and �2/�0 = 1 as well. Evolution time is set at
T = T

(3)
QSL  0.85T

(3)
S .

FIG. 5. (Color online) Frequency fε (right axis) and maximum
oscillation amplitude Amax (left axis) of the optimal field for process
P2 (see Fig. 4) as a function of ε0. Dashed lines indicate linear
dependences of both quantities with ε0.

to quantitatively analyze the driving field, we studied the
dependence of fε and Amax as a function of the distance ε0

between the ACs. Results are shown in Fig. 5 for K = 2, where
the linear dependence of both quantities with ε0 is clear and
can even be regarded as exact for the frequency, for which we
can write fε = ε0/2π . Note that from the inset of Fig. 4, it can
be seen that the diabatic states which do not correspond either
to the initial or the target state do not get fully populated,
as opposed to the dynamics of the sudden-switch protocol
discussed in Sec. II B. We remark here that a similar result
for the optimized evolution of the populations was shown in
Ref. [35]. There, the authors investigated control in a system
of bosonic atoms in a double-well potential. Interestingly,
they show that this type of dynamics is present even for
piecewise-constant control fields and for strong interaction
between the ACs, as opposed to our case where we allow for
any wave form for the field and consider isolated ACs.

The regular behavior shown by the numerically optimized
control field has some interesting consequences. First, note
that as ε0 increases and the avoided crossings get further
apart, the driving field will require a bigger intensity and a
larger bandwidth in order to be implemented. In practice, at
some point this requirement will no longer be fulfilled, and
most likely the QSL time will tend to T

(K)
S for all practical

purposes. This is indeed reasonable since technical limitations
would then imply that the ACs are effectively isolated, with no
possible coupling between them. However, from a theoretical
standpoint, this is a much different scenario than the one
usually obtained in QOC optimization, where the broad
bandwidth requirements originate from the highly irregular
features of the optimized field. In our case, the control function
λ(t) can be readily described by a few parameters. We associate
this remarkable feature with the special characteristics of
our model, which shows localized two-level interactions in
a many-level spectrum, a scenario which is common in many
different physical setups, as previously mentioned.

B. Analytical approximate solution for the
time-dependent problem

The shape of the field also gives us interesting insight
about the physical mechanisms involved in the observed
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enhancement of the QSL time for these control processes [40].
Remarkably, we found that an analytical approximation for
the time-dependent evolution can be drawn that is inspired
from the results of the optimization process. We will show
this solution in the following for the case K = 2, although
the idea can be extended to higher-order processes. Recall the
Hamiltonian H3(λ) from Eq. (4), which can be written as the
sum of its nondiagonal and diagonal parts,

H3(λ) = HND + HD(λ), (17)

in such a way that HND depends on the coupling parameters
�0 and �1 while the dependence on the control parameter is
concentrated in HD(λ). We propose the following expression
for the driving field:

λ(t) =
{
λAcos(ωt + φ), 0 � t < tm
ε0 + λA cos[ω(t − tm) + φ̃], tm � t � T .

(18)

This field has the form of a stepwise constant function
with oscillations of angular frequency ω mounted on each
step (note that from the previous analysis, we can infer that
ω = ε0). The field then oscillates around a fixed value at each
step, corresponding to the localization of the two ACs: at t = 0
it begins at λ = λ0 = 0, and then turns to λ = λ1 = ε0 at some
t = tm. The overall shape of λ(t) then emulates the optimized
field seen in Fig. 4(a), with the difference that we use a constant
amplitude λA for the oscillating term, for convenience.

Let us first consider the dynamics from t = 0 to t = tm. We
propose that the total evolution operator for this evolution can
be factorized as

U0(t,0) = U
(A)
0 (t)U (B)

0 (t), (19)

where U0(A)(t) = exp[−i
∫ tm

0 HD(t ′)dt ′] is diagonal in the
diabatic basis and the superscript emphasizes the fact that
we are working on the AC located at λ = λ0 = 0. The
problem is then to find the unitary operator U (B)(t), which
satisfies the Schrödinger equation in the interaction picture
iU̇ (B)(t) = H̃ND(t)U (B)(t), with H̃ND ≡ U

(A)†
0 HNDU

(A)
0 be-

ing the corresponding transformed Hamiltonian, which takes
the form

H ′
ND(t) = e−iλi

2

⎛
⎝ 0 e2iλi �0 0

�0 0 eiε0t�1

0 e2i(λi−ε0t)�1 0

⎞
⎠, (20)

where we have defined λi ≡ λi(t) = ∫ tm
0 λ(t ′)dt ′ =

λA

ω
sin(ωt + φ) − φ0 and φ0 = λA

ω
sin(φ). The unitary

evolution problem is then cast in terms of this time-dependent
Hamiltonian. The key to consider here is that the exponentials
that appear in the previous expression can be written in
Fourier series using the identity

eiz sin γ =
n=∞∑

n=−∞
Jn(z)einγ , (21)

where Jn(z) symbolizes the Bessel J function of order n. The
results we obtained from the QOC procedure indicate that
the frequency of the driving at each step ω is much larger
than �0,�1. Then, most of the terms in Eq. (20) oscillate
very quickly and can thus be neglected. This kind of rotating-
wave approximation is typically invoked when analyzing high-

frequency modulation of periodic potentials [56], for example
in a cold-atom setup [57]. Formally, we approximate

e−i[λi (t)−ε0t] = eiφ0
∑

n

Jn

(
λA

ω

)
e−i(nω−ε0)−inφ

= ei(φ0−φ)J1

(
λA

ω

)
�1, (22)

where we used the argument of the previous paragraph to
identify the term n = 1 as the resonant one and set the
field angular frequency ω = ε0, which was expected from the
numerical analysis of the optimal fields. Its straightforward
to calculate the rest of the elements of the Hamiltonian of
Eq. (20), which can be approximated by a time-independent
expression,

H ′
ND = 1

2

⎛
⎜⎜⎝

0 e−iφ0�′
0 0

eiφ0�′
0 0 ei(φ0−φ)�′

1

0 e−i(φ0−φ)�′
1 0

⎞
⎟⎟⎠, (23)

where we have introduced the renormalized interaction rates

�′
0 ≡ J0

(
λA

ε0

)
�0,

�′
1 ≡ J1

(
λA

ε0

)
�1. (24)

Then, the evolution of the system for 0 � t < tm is com-
pletely determined by the evolution operator in Eq. (19) where
U

(B)
0 (t) = exp(−iH ′

NDt). Note that this factor introduces the
couplings between the diabatic states which generate the time
evolution of the operators. The role of the driving in this
process is clear. In the absence of the oscillatory field, i.e.,
λA = 0, Eq. (24) gives �′

0 = �0 and �′
1 = 0, and so only

states |0〉 and |1〉 can be connected in this evolution. This is
exactly what we expected from the sudden-switch protocol and
the adiabatic elimination procedure discussed in Sec. II. When
the oscillatory field is turned on, �0 decreases and �1 takes
a nonzero value, thus weakly coupling states |1〉 and |2〉. This
generates an evolution where the target state of the protocol
|2〉 can draw a portion of the population of the other levels
even when the dynamics is mainly dictated by the first AC.
Thanks to this feature, the evolution towards the target state
is accelerated, thus providing the overall enhancement of the
QSL time shown in the previous section. Note that Eq. (24)
formalizes the fact that the amplitude λA cannot be neglected
with respect to ε0. Moreover, setting λA/ε0 to a constant value
is consistent with the analysis shown in Fig. 4(c), where both
quantities showed a linear correlation.

An analogous procedure can be done for the evolution
between t = tm and t = T , in such a way that we can finally
write, for the whole evolution,

U (t) =
{

U
(A)
0 (t)U (B)

0 (t), 0 � t < tm

U
(A)
1 (t)U (B)

1 (t)U (A)
0 (tm)U (B)

0 (tm), tm � t � T ,

(25)

where we have defined U
(A)
1 (t) = exp[−i

∫ T

tm
HD(t ′)dt ′]

and U
(B)
1 (t) = exp[−iH ′′

ND(t − tm)] with an effective
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(a)

(c)

(b)

(d)

FIG. 6. (Color online) (a),(c) Optimized and analytical proposal
of Eq. (18) for the control field as a function of time. (b),(d) Time
evolution of the populations for each of the diabatic states. Thin
dashed lines correspond to the analytical solution of Eq. (25). (a),(b)
Case ε0 = 10�0. (c),(d) Case ε0 = 20�0.

time-independent Hamiltonian given by

H ′
ND = 1

2

⎛
⎜⎝

0 e−i(φ̃0−φ̃)�′′
0 0

ei(φ̃0−φ̃)�′′
0 0 eiφ̃0�′′

1

0 e−iφ̃0�′′
1 0

⎞
⎟⎠. (26)

The renormalized interaction rates are now interchanged
with respect to the previous case,

�′′
0 ≡ J1

(
λA

ε0

)
�0,

�′′
1 ≡ J0

(
λA

ε0

)
�1, (27)

which is natural since in the second step the dominant
interaction is due to the AC between states |1〉 and |2〉. In
Fig. 6, we show the time evolution of the populations for
different cases, as predicted by the analytical formula (25).
There, it can be seen how this expression approximates very
well the optimized evolution, even though the driving fields
are not exactly equal. If we look at the overall shape of the
driving field, an interesting interpretation can be drawn. At
each AC, the high-frequency oscillations displayed by the
driving field effectively switch on the adjacent ACs, allowing
for the population of other energy levels. In turn, this provides
the mechanism for the overall speedup of the control process.
Finally, we point out that the solution we provide here is based

(a) (b)

FIG. 7. (Color online) Results of the optimization procedure
using different initial guesses for the control field. Top: Optimized
control field as a function of time. Bottom: Infidelity Im as a function
of the step number m for each optimization. (a) Initial guess is a linear
function. (b) Initial guess is a sinusoidal function. For both cases, we
used the same parameter values as in Fig. 4(a).

on the process PK=2, which is the next step in complexity of
the two-level case, where these effects are, of course, absent.
We believe that a similar procedure could be applied to find
analytical expressions for higher-order processes.

C. Initial guess and performance of the optimization

We recall that the previous analytical discussion was
motivated by the fact that the control field obtained from QOC
had a simple shape. This, in turn, is related to the fact that the
optimized field preserved certain features of the initial guess
λ0(t) that we employed, for example, the stepwise structure.
We will now briefly discuss the role of the initial guess in the
optimization. Note that the results we showed in Sec. IV are
independent of the initial guess that we propose for the field.
However, this election changes the overall performance of the
optimization. In Fig. 7, we show the infidelity and optimized
field obtained for two choices of λ0(t) that are different from
the one shown in Fig. 4. In one of the cases, shown in Fig. 7(a),
the field has a linear dependence and connects the positions
of the ACs. The corresponding optimized field develops fast
oscillations and overall looks very similar to the one in Fig. 4.
Moreover, the frequency of the oscillations fε is the same
for both cases, and the total number of iterations required for
the convergence of the algorithm is also of the same order
(around 4000). On the other hand, in Fig. 7(b), we used as an
initial guess a sinusoidal field, with initial and final value at
λ = λ0 = 0, and for which we deliberately changed the parity
with respect to the other cases. In that case, the number of
iterations required by the optimization to converge increases
by a factor of 10. Moreover, the optimized fields have a very
irregular shape, showing peaks of very large amplitude (50
times bigger than the other cases).
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As we mentioned previously, the fact that the QSL time
for control processes can be drawn from the optimization
procedure enforces the power of QOC as a tool in this context.
The results we show here also tell us that the performance of
QOC, and its ability to give us information about the physical
mechanisms involves in control processes, can be enhanced by
properly providing the optimization with a good initial guess.
In this case, we have done so by analyzing the characteristics
of the system and, more precisely, by studying the structure of
the energy spectrum.

VI. FINAL REMARKS

In this work, we studied time-optimal quantum control
in systems with multiple avoided crossings in their energy
spectrum. Based on previous works [38,39], we are able
to elaborate protocols which generate the desired control
processes. We used these protocols as initial guesses for
an optimization procedure which leads us to several results.
Following recent work [40], we discussed how the quantum
speed limit time for these systems as a function of the
separation between the AC is enhanced with respect to the
result derived from the two-level approximation. We observed
that when the dimension of the system is increased (and with
it, the number of ACs involved in the dynamical process),

the speedup becomes more pronounced. Having obtained the
control protocols at the QSL, we numerically analyzed the
shape of the fields derived from the optimization. We found
that they showed a very regular behavior, characterized by
the presence of single-frequency oscillations mounted on a
stepwise function. Based on these results, we were able to
construct a model for the control problem which we solved
analytically. This model also allows us to qualitatively explain
that the main feature behind the optimization was the collective
dynamics of multiple avoided crossings. This result provides
some interesting physical insight into the scaling of optimal
control with the dimension of the state space, and may help
one to understand more complex setups which have been
numerically studied recently [58]. Finally, we studied how the
outcome and performance of the optimization were modified
when varying the initial guess for the control protocol. We
found that using different initial guesses can lead to very
different shapes of the optimized control field. This behavior
indicates that a preliminary analysis of the system spectrum,
as done here, can act as a preoptimization method, as it leads
us to a good choice of the initial guess.

ACKNOWLEDGMENTS

We acknowledge support from CONICET (Argentina),
UBACyT (Argentina), and ANPCyT (Argentina).

[1] M. Shapiro and P. Brumer, Quantum Control of Molecular
Processes (Wiley-VCH, Berlin, 2011).

[2] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, 2009).

[3] D. D’Alessandro, Introduction to Quantum Control and Dynam-
ics (Chapman & Hall/CRC, Boca Raton, FL, 2008).

[4] D. Meshulach and Y. Silberberg, Nature (London) 396, 239
(1998).

[5] D. Press, T. Ladd, B. Zhang, and Y. Yamamoto, Nature (London)
456, 218 (2008).

[6] N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63,
032308 (2001).

[7] G. C. Hegerfeldt, Phys. Rev. Lett. 111, 260501 (2013).
[8] B. Russell and S. Stepney, Phys. Rev. A 90, 012303 (2014).
[9] D. C. Brody, G. W. Gibbons, and D. M. Meier, New J. Phys. 17,

033048 (2015).
[10] W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953

(1998).
[11] W. Zhu and H. Rabitz, J. Chem. Phys. 109, 385 (1998).
[12] P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106,

190501 (2011).
[13] V. F. Krotov, Global Methods in Optimal Control Theory (Marcel

Dekker, New York, 1996).
[14] S. G. Schirmer and P. de Fouquieres, New J. Phys. 13, 073029

(2011).
[15] B. Bartels and F. Mintert, Phys. Rev. A 88, 052315 (2013).
[16] T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A 84,

022326 (2011).
[17] K. Sundermann and R. de Vivie-Riedle, J. Chem. Phys. 110,

1896 (1999).

[18] K. Moore and H. Rabitz, J. Chem. Phys. 137, 134113 (2012).
[19] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero,

V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501
(2009).

[20] L. Mandelstam and I. Tamm, J. Phys. (USSR) 9, 249 (1945).
[21] G. N. Fleming, Nuovo Cimen. A 16, 232 (1973).
[22] K. Bhattacharyya, J. Phys. A 16, 2993 (1983).
[23] P. Pfeifer, Phys. Rev. Lett. 70, 3365 (1993).
[24] N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).
[25] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 67,

052109 (2003).
[26] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).
[27] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga,

Phys. Rev. Lett. 110, 050403 (2013).
[28] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos

Filho, Phys. Rev. Lett. 110, 050402 (2013).
[29] S. Deffner and E. Lutz, Phys. Rev. Lett. 111, 010402 (2013).
[30] S. Deffner and E. Lutz, J. Phys. A 46, 335302 (2013).
[31] P. M. Poggi, F. C. Lombardo, and D. W. Wisniacki, Europhys.

Lett. 104, 40005 (2013).
[32] O. Andersson and N. Heydari, J. Phys. A 47, 215301 (2014).
[33] F. J. Arranz, R. M. Benito, and F. Borondo, J. Chem. Phys. 120,

6516 (2004).
[34] P. M. Poggi, F. J. Arranz, R. M. Benito, F. Borondo, and D. A.

Wisniacki, Phys. Rev. A 90, 062108 (2014).
[35] M. C. Tichy, M. K. Pedersen, K. Molmer, and J. F. Sherson,

Phys. Rev. A 87, 063422 (2013).
[36] E. Vliegen, H. J. Wörner, T. P. Softley, and F. Merkt, Phys. Rev.

Lett. 92, 033005 (2004).
[37] L. DiCarlo et al., Nature (London) 460, 240 (2009).

053411-9

http://dx.doi.org/10.1038/24329
http://dx.doi.org/10.1038/24329
http://dx.doi.org/10.1038/24329
http://dx.doi.org/10.1038/24329
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1103/PhysRevLett.111.260501
http://dx.doi.org/10.1103/PhysRevLett.111.260501
http://dx.doi.org/10.1103/PhysRevLett.111.260501
http://dx.doi.org/10.1103/PhysRevLett.111.260501
http://dx.doi.org/10.1103/PhysRevA.90.012303
http://dx.doi.org/10.1103/PhysRevA.90.012303
http://dx.doi.org/10.1103/PhysRevA.90.012303
http://dx.doi.org/10.1103/PhysRevA.90.012303
http://dx.doi.org/10.1088/1367-2630/17/3/033048
http://dx.doi.org/10.1088/1367-2630/17/3/033048
http://dx.doi.org/10.1088/1367-2630/17/3/033048
http://dx.doi.org/10.1088/1367-2630/17/3/033048
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1103/PhysRevA.88.052315
http://dx.doi.org/10.1103/PhysRevA.88.052315
http://dx.doi.org/10.1103/PhysRevA.88.052315
http://dx.doi.org/10.1103/PhysRevA.88.052315
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1063/1.477856
http://dx.doi.org/10.1063/1.477856
http://dx.doi.org/10.1063/1.477856
http://dx.doi.org/10.1063/1.477856
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1088/0305-4470/16/13/021
http://dx.doi.org/10.1088/0305-4470/16/13/021
http://dx.doi.org/10.1088/0305-4470/16/13/021
http://dx.doi.org/10.1088/0305-4470/16/13/021
http://dx.doi.org/10.1103/PhysRevLett.70.3365
http://dx.doi.org/10.1103/PhysRevLett.70.3365
http://dx.doi.org/10.1103/PhysRevLett.70.3365
http://dx.doi.org/10.1103/PhysRevLett.70.3365
http://dx.doi.org/10.1016/S0167-2789(98)00054-2
http://dx.doi.org/10.1016/S0167-2789(98)00054-2
http://dx.doi.org/10.1016/S0167-2789(98)00054-2
http://dx.doi.org/10.1016/S0167-2789(98)00054-2
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevA.67.052109
http://dx.doi.org/10.1103/PhysRevLett.103.160502
http://dx.doi.org/10.1103/PhysRevLett.103.160502
http://dx.doi.org/10.1103/PhysRevLett.103.160502
http://dx.doi.org/10.1103/PhysRevLett.103.160502
http://dx.doi.org/10.1103/PhysRevLett.110.050403
http://dx.doi.org/10.1103/PhysRevLett.110.050403
http://dx.doi.org/10.1103/PhysRevLett.110.050403
http://dx.doi.org/10.1103/PhysRevLett.110.050403
http://dx.doi.org/10.1103/PhysRevLett.110.050402
http://dx.doi.org/10.1103/PhysRevLett.110.050402
http://dx.doi.org/10.1103/PhysRevLett.110.050402
http://dx.doi.org/10.1103/PhysRevLett.110.050402
http://dx.doi.org/10.1103/PhysRevLett.111.010402
http://dx.doi.org/10.1103/PhysRevLett.111.010402
http://dx.doi.org/10.1103/PhysRevLett.111.010402
http://dx.doi.org/10.1103/PhysRevLett.111.010402
http://dx.doi.org/10.1088/1751-8113/46/33/335302
http://dx.doi.org/10.1088/1751-8113/46/33/335302
http://dx.doi.org/10.1088/1751-8113/46/33/335302
http://dx.doi.org/10.1088/1751-8113/46/33/335302
http://dx.doi.org/10.1209/0295-5075/104/40005
http://dx.doi.org/10.1209/0295-5075/104/40005
http://dx.doi.org/10.1209/0295-5075/104/40005
http://dx.doi.org/10.1209/0295-5075/104/40005
http://dx.doi.org/10.1088/1751-8113/47/21/215301
http://dx.doi.org/10.1088/1751-8113/47/21/215301
http://dx.doi.org/10.1088/1751-8113/47/21/215301
http://dx.doi.org/10.1088/1751-8113/47/21/215301
http://dx.doi.org/10.1063/1.1665984
http://dx.doi.org/10.1063/1.1665984
http://dx.doi.org/10.1063/1.1665984
http://dx.doi.org/10.1063/1.1665984
http://dx.doi.org/10.1103/PhysRevA.90.062108
http://dx.doi.org/10.1103/PhysRevA.90.062108
http://dx.doi.org/10.1103/PhysRevA.90.062108
http://dx.doi.org/10.1103/PhysRevA.90.062108
http://dx.doi.org/10.1103/PhysRevA.87.063422
http://dx.doi.org/10.1103/PhysRevA.87.063422
http://dx.doi.org/10.1103/PhysRevA.87.063422
http://dx.doi.org/10.1103/PhysRevA.87.063422
http://dx.doi.org/10.1103/PhysRevLett.92.033005
http://dx.doi.org/10.1103/PhysRevLett.92.033005
http://dx.doi.org/10.1103/PhysRevLett.92.033005
http://dx.doi.org/10.1103/PhysRevLett.92.033005
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121


P. M. POGGI, F. C. LOMBARDO, AND D. A. WISNIACKI PHYSICAL REVIEW A 92, 053411 (2015)

[38] G. E. Murgida, D. A. Wisniacki, and P. I. Tamborenea, Phys.
Rev. Lett. 99, 036806 (2007).

[39] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, Phys. Rev.
A 87, 022315 (2013).

[40] P. M. Poggi, F. C. Lombardo, and D. W. Wisniacki, J. Phys. A
48, 35FT02 (2015).

[41] C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).
[42] S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1

(2010).
[43] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,

105701 (2005).
[44] M. G. Bason et al., Nat. Phys. 8, 147 (2012).
[45] N. Malossi, M. G. Bason, M. Viteau, E. Arimondo, R. Mannella,

O. Morsch, and D. Ciampini, Phys. Rev. A 87, 012116
(2013).

[46] G. C. Hegerfeldt, Phys. Rev. A 90, 032110 (2014).
[47] M. J. Sánchez, E. Vergini, and D. A. Wisniacki, Phys. Rev. E

54, 4812 (1996).
[48] I. Lizuain, J. Echanobe, A. Ruschhaupt, J. G. Muga, and D. A.

Steck, Phys. Rev. A 82, 065602 (2010).
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