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Frequency shifts and relaxation rates for spin-1/2 particles moving in electromagnetic fields
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We discuss the behavior of the Larmor frequency shift and the longitudinal relaxation rate due to nonuniform
electromagnetic fields on an assembly of spin-1/2 particles, in adiabatic and nonadiabatic regimes. We also show
some general relations between the various frequency shifts and between the frequency shifts and relaxation
rates. The remarkable feature of all our results is that they are obtained without any specific assumptions on
the explicit form of the correlation functions of the fields. Hence, we expect that our results are valid both for
a diffusive and ballistic regime of motion and for arbitrary cell shapes and surface scattering. These results can
then be applied to a wide variety of realistic systems.
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I. INTRODUCTION

The behavior of a system of spins interacting with static
and time-varying magnetic fields is a very broad topic and
has been the subject of intense study for decades. A very
important application is to the study of spins interacting with
the randomly fluctuating fields associated with a thermal
reservoir. Bloembergen et al. [1] have treated this problem
using physical arguments based on Fermi’s golden rule and
showed that the relaxation induced by the fields associated
with a thermal reservoir is proportional to the power spectrum
of the fluctuating fields evaluated at the Larmor frequency
ω0 = γB0 (where γ is the gyromagnetic ratio and B0 is an
applied constant and uniform field), which is given by the
Fourier transform of the autocorrelation function of these
fluctuating fields evaluated at ω0. Wangsness and Bloch [2]
and then Bloch [3] approached the problem using second-order
perturbation theory applied to the equation of motion of the
density matrix and Redfield [4,5] (see also [6]) carried this
calculation forward to show that the relaxation indeed depends
on the spectrum of the autocorrelation of the fluctuating fields.

Another source of randomly fluctuating fields is the
stochastic motion of spins (e.g., diffusion) through a region
with an inhomogeneous magnetic field. To study this problem
Torrey [7] introduced a diffusion term into the Bloch equation
applied to the bulk magnetization of a sample containing many
spins (Torrey equation). Cates et al. [8] then rewrote the Torrey
equation to apply to the density matrix and solved this equation
to second order in the varying fields using an expansion in the
eigenfunctions of the diffusion equation. McGregor [9] applied
the Redfield theory to this problem using diffusion theory to
calculate the autocorrelation function of the fluctuating fields
experienced by spins diffusing through a (uniform gradient)
inhomogeneous field. Recently, Golub et al. [10] showed that
these two approaches [8,9] are identical. A useful review of
the field is [11].

Another problem that can be treated by these methods
is the case of a gas of spins contained in a cell subject to
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inhomogeneous magnetic fields and a strong electric field as
in experiments to search for a nonzero electric dipole moment
(EDM) of neutral particles such as the neutron [12] or various
atoms or molecules [13]. This was shown by Pendlebury
et al. [14] using a second-order perturbation approach to
the classical Bloch equation, to lead to an unwanted, linear
in electric field, frequency shift (often called a false EDM
effect), which can be the largest systematic error in such
experiments. Lamoreaux and Golub [15] have shown, using
a standard density-matrix calculation (Redfield theory), that
the false EDM frequency shift is given, to second order, by
certain correlation functions of the fields experienced by the
moving particles.

Barabanov et al. [16] gave analytic expressions for the
relevant correlation functions for a gas of particles moving
in a cylindrical vessel exposed to a magnetic field with a linear
gradient along with an electric field. Petukhov et al. [17]
and Clayton [18] showed how to determine the correlation
functions for arbitrary geometries and spatial field dependence
for cases where the diffusion theory applies, while Swank
et al. [19] showed how to calculate the spectra of the
relevant correlation functions for gases in rectangular cells in
magnetic fields of arbitrary position dependence even in those
cases where the diffusion theory does not apply. Recently,
Afach et al. [20] measured a frequency shift that is linearly
proportional to an applied electric field (false electric dipole
moment) for a system consisting of Hg atoms moving in
a confined gas exposed to parallel electric and magnetic
fields.

Pignol and Roccia [21] have initiated a program to search
for universal expressions giving general results valid for all
geometries and scattering conditions in the gas and gave such
a result for the false EDM effect valid in the nonadiabatic
(low frequency) limit. Further steps in this direction were
taken by Guigue et al. [22], who provided a universal result
for frequency shifts induced by inhomogeneous fields in the
adiabatic (high-frequency) limit and for the relaxation rate �1

in the case where diffusion theory applies. In this work we
extend the search for universal expressions of frequency shifts
and relaxation for both the adiabatic and nonadiabatic (high-
and low-Larmor-frequency) limits.
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II. FREQUENCY SHIFTS AND RELAXATION RATES
FROM REDFIELD THEORY

We consider the case of a gas of spin-1/2 particles inside
a trap with a gyromagnetic ratio γ evolving in a slightly
inhomogeneous magnetic field �B(�r) = �B0 + �b(�r). One can
define the holding magnetic field �B0 = B0�ez and the Larmor
precession frequency ω0 = γB0. The inhomogeneities �b can
be taken to have 〈�b〉 = �0, where 〈· · · 〉 represents the ensemble
average over all particles in the trap. In addition to this
inhomogeneity, the particles can move with a velocity �v in
an electric field �E. For simplicity, one can consider that the
direction of this electric field is aligned with the holding
magnetic field �E = E�ez. These particles will experience an
effective motional magnetic field �E × �v/c2. The transverse
components of the total magnetic inhomogeneity will then
depend on the position and the velocity of the particles in the
trap

Bx = bx − E

c2
vy, (1)

By = by + E

c2
vx. (2)

These transverse inhomogeneities induce a shift δω of the
precession frequency and a longitudinal relaxation rate �1.
Correct to second order in the perturbation b, the frequency
shift δω, the longitudinal relaxation rate �1, and the transverse
relaxation rate �2, involving the Fourier spectra of the
inhomogeneity correlation functions, are given by the Redfield
theory [5,6,9,22]:

δω = γ 2

2
{Re[Sxy(ω0) − Syx(ω0)] + Im[Sxx(ω0) + Syy(ω0)]},

(3)

�1 = γ 2{Re[Sxx(ω0) + Syy(ω0)] + Im[Syx(ω0) − Sxy(ω0)]},
(4)

�2 = �1

2
+ γ 2Szz(ω = 0), (5)

with

Sij (ω) =
∫ ∞

0
eiωτ 〈Bi(0)Bj (τ )〉dτ. (6)

This result is valid in cases where the field fluctuations are
stationary in the statistical sense and where the measurements
are made over a time scale T � τcorr where the correlation
time τcorr is the time scale for which the correlation functions
go to zero. In the case of particles evolving in both an
inhomogeneous magnetic field and an electric field, the
frequency shift δω and relaxation rate �1 can be decomposed
as

δω = δωB2 + δωE2 + δωBE, (7)

�1 = �1(B2) + �1(E2) + �1(BE), (8)

with

δωB2 = γ 2

2
Im

∫ ∞

0
eiω0τ 〈bx(0)bx(τ ) + by(0)by(τ )〉dτ, (9)

δωE2 = γ 2E2

2c4
Im

∫ ∞

0
eiω0τ 〈vx(0)vx(τ ) + vy(0)vy(τ )〉dτ,

(10)

δωBE = γ 2E

c2
Re

∫ ∞

0
eiω0τ 〈bx(0)vx(τ ) + by(0)vy(τ )〉dτ,

(11)

�1(B2) = γ 2Re
∫ ∞

0
eiω0τ 〈bx(0)bx(τ ) + by(0)by(τ )〉dτ, (12)

�1(E2) = γ 2E2

c4
Re

∫ ∞

0
eiω0τ 〈vx(0)vx(τ ) + vy(0)vy(τ )〉dτ,

(13)

�1(BE) = 2γ 2E

c2
Im

∫ ∞

0
eiω0τ 〈bx(0)vx(τ ) + by(0)vy(τ )〉dτ.

(14)

This shift of the Larmor frequency and relaxation rates cannot
be further simplified to a form valid for all values of the holding
magnetic field and independent of the particle motion in the
trap. However, due to the properties of the Fourier transform,
there are universal relations that hold for all types of particle
motion and all shapes of trap geometry for values of Larmor
frequency (magnetic field) large and small relative to the
inverse transit time of particles across the cell λ/v (see below).

III. SPIN DYNAMICS AND PARTICLE MOTION REGIMES

In general, two length scales describe the motion of a gas
of particles in a cell: (i) the mean free path between particle
collisions noted lc and (ii) the mean distance between two
points on the wall, which can be evaluated by the Clausius
expression λ = 4V/S, where V and S are the volume and the
surface of the cell. We define Knudsen’s number as Kn = lc

λ
.

At high pressure, Kn � 1: This is the diffusive regime where
the propagation of the particles is described by the diffusion
equation, characterized by the diffusion coefficient D. At low
pressure, Kn � 1: This is the ballistic regime where the parti-
cles travel in straight lines across the cell in free molecular flow.

The correlation time τcorr corresponds to the typical time
necessary for a particle to probe the magnetic inhomogeneity.
Since one usually has to deal with large-scale inhomogeneities,
τcorr is of the order of the average time between successive
collisions with the trap walls. Therefore, it depends on the
geometry of the trap and on the properties of the particle
motion inside this trap. In the case of a gas at atmospheric
pressure, the correlation time is about 1 s for a cubic trap
with 10-cm sides. For rarefied gas confined in the trap, τcorr is
approximately equal to 1 ms. This time scale can be compared
with the Larmor precession frequency ω0. The limit when ω0

is much bigger than 1/τcorr is called the adiabatic regime. This
regime can be interpreted as the particle spins following the
local magnetic field. It is also valid when the particles are
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FIG. 1. Classification of the different regimes for an R = 5 cm
radius spherical cell filled with polarized 3He gas as a function of
pressure and holding magnetic field.

moving slowly in the trap or if they encounter a great number
of collisions with other particles between two collisions
with walls. In contrast, the regime is called nonadiabatic if
ω0τc � 1. This limit physically appears when the particles are
able to probe the whole magnetic inhomogeneity within times
shorter than a Larmor period. It is also sometimes referred to
as the regime of motional narrowing. This phenomenon can be
observed in systems immersed in very weak magnetic fields
or if the thermal particles are in a ballistic regime in a small
container.

For a given trap geometry, these regimes depend on the
pressure of the spin gas and on the holding magnetic field.
Figure 1 shows this classification as a function of pressure
and holding field for a 3He gas contained in a spherical cell
with a 5-cm radius. The superadiabatic regime corresponds
to the situation where the gas is in a diffusive regime and the
spin motion is adiabatic between two interparticles’ collisions.
In this case, we have the condition ω0τcoll � 1, with τcoll the
time between two interparticles’ collisions. The correlation
functions calculated in [19] are valid in this region as is Eq. (12)
in [9].

To illustrate this classification, let us consider some realistic
systems of particular relevance for our study. The cylindrical
RAL-Sussex-ILL trap [14], used to measure the neutron
EDM, contains ultracold neutrons (UCNs) and a mercury
comagnetometer, immersed in a 1-μT holding magnetic field.
The small particle numbers of each species and the size of
the trap (47-cm diameter and 12-cm height) lead to a large
Knudsen number and so to the ballistic regime. However, the
speeds of the two particle species are very different: While
the mercury atoms are at thermal equilibrium and have an
average speed of several hundred meters per second, the
UCNs are moving at a few meters per second. Therefore,
the mercury comagnetometer is in the ballistic nonadiabatic
regime whereas UCNs are in the ballistic adiabatic limit. In the
case of a gas at atmospheric pressure, such as a polarized 3He
gas [17], in a several-μT holding field, the particle motion
follows the diffusion equation and the number of Larmor

precessions done by the spins between two collisions with
the walls is very high. This kind of systems is thus in the
diffusive adiabatic regime.

As shown in [21,22], the leading order of frequency
shifts (9)–(11) for adiabatic and nonadiabatic regimes can be
expressed as powers of ω0τcorr or 1/ω0τcorr. To do so, we
apply a succession of integrations by parts of the integrals
defining the frequency shifts. This is the purpose of the two
next sections. Section IV presents the simplified expression of
the frequency shift in the adiabatic regime. The nonadiabatic
regime will be considered in Sec. V. The well-known case of
uniform magnetic gradients will be discussed in Sec. VI.

IV. ADIABATIC REGIME: HIGH MAGNETIC FIELD OR
SLOW PARTICLES AND ARBITRARY FIELDS

The adiabatic regime corresponds to systems that satisfy
ω0 � 1/τcorr. We want to expand the frequency shift (7) in
power series of 1/ω0. One way to obtain such an expression
consists in applying several integrations by parts

∫ ∞

0
sin(ω0τ )f (τ )dτ =

[− cos(ω0τ )

ω0
f (τ )

]∞

0

+ 1

ω0

∫ ∞

0
cos(ω0τ )

df

dτ
(τ )dτ, (15)

∫ ∞

0
cos(ω0τ )f (τ )dτ =

[
sin(ω0τ )

ω0
f (τ )

]∞

0

− 1

ω0

∫ ∞

0
sin(ω0τ )

df

dτ
(τ )dτ. (16)

Equations (15) and (16) assume that the function f and its
derivative are integrable. We define ḟ = df

dτ
. Using the fact

that the correlation functions go to zero at infinite time, we
can write

δωB2 = γ 2

2ω0

〈
b2

x + b2
y

〉 − γ 2

2ω3
0

〈bx(0)b̈x(0) + by(0)b̈y(0)〉

− γ 2

2ω3
0

∫ ∞

0
cos(ω0τ )〈bx(0)

...
b x(τ ) + by(0)

...
b y(τ )〉dτ,

(17)

δωE2 = γ 2E2

2c4ω0

〈
v2

x + v2
y

〉

+ γ 2E2

2c4ω0

∫ ∞

0
cos(ω0τ )〈vx(0)v̇x(τ ) + vy(0)v̇y(τ )〉dτ,

(18)

δωBE = γ 2E

c2ω2
0

〈bx(0)v̇x(0) + by(0)v̇y(0)〉

−γ 2E

cω2
0

∫ ∞

0
cos(ω0τ )〈bx(0)v̈x(0) + by(0)v̈y(0)〉dτ.

(19)

Making the reasonable assumption that the correlation
functions and their derivatives are continuously decaying to
0 for τ → ∞, we apply the Riemann-Lebesgue lemma [23]
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TABLE I. Expressions of the leading terms of the frequency shifts induced by the transverse magnetic and motional fields, in the adiabatic
and nonadiabatic limits.

Frequency Adiabatic limit Nonadiabatic limit
shift (UCNs) (Hg)

δωB2
γ 2

2ω0
〈b2

x + b2
y〉 + γ 2

6ω3
0
〈v2〉〈| �∇bx |2 + | �∇by |2〉 γ 2

2 ω0

∫ ∞
0 τ 〈bx(0)bx(τ ) + by(0)by(τ )〉dτ

δωE2
γ 2E2

3c4ω0
〈v2〉 − γ 2E2

2c4 ω0〈x2 + y2〉
δωBE − γ 2E

c2ω2
0
(〈 ∂bx

∂x
v2

x〉 + 〈 ∂by

∂y
v2

y〉) γ 2E

c2 〈bxx + byy〉

and arrive at the conclusion that the last terms in Eqs. (17)–(19)
go to zero faster than the other terms in each equation.
The frequency shift expressions can be written as [see also
Eq. (27)–(29)]

δωB2 = γ 2

2ω0

〈
b2

x + b2
y

〉 − γ 2

2ω3
0

〈bx(0)b̈x(0) + by(0)b̈y(0)〉

+O(1/(ω0τcorr)
5), (20)

δωE2 = γ 2E2

2c4ω0

〈
v2

x + v2
y

〉 + O(1/(ω0τcorr)
3), (21)

δωBE = γ 2E

c2ω2
0

〈bx(0)v̇x(0) + by(0)v̇y(0)〉 + O(1/(ω0τcorr)
4).

(22)

Using the expressions for the derivatives of the correlation
functions presented in the Appendix and assuming that
velocities in different directions are uncorrelated and 〈v2

x〉 =
〈v2

y〉 = 〈v2
z 〉 = 1

3 〈v2〉, we obtain

δωB2 = γ 2

2ω0

〈
b2

x + b2
y

〉 + γ 2

6ω3
0

〈v2〉〈| �∇bx |2 + | �∇by |2〉

+O(1/(ω0τcorr)
5), (23)

δωE2 = γ 2E2

3c4ω0
〈v2〉 + O(1/(ω0τcorr)

3), (24)

δωBE = γ 2E

c2ω2
0

(〈
∂bx

∂x
v2

x

〉
+

〈
∂by

∂y
v2

y

〉)
+ O(1/(ω0τcorr)

4).

(25)

These results are presented in Table I. The first term in Eq. (23)
corresponds to the leading order of the frequency shift in the
adiabatic regime [22].

It is instructive to note that these results can be obtained in
another way. One can rewrite Eq. (6) as

Sij (ω) =
∫ ∞

0
eiωτ 〈Bi(0)Bj (τ )〉dτ =

∫ ∞

0
eiωτ f (τ )dτ (26)

and expand f (τ ) in a Taylor series

Sij (ω) =
∫ ∞

0

(
f (0) + ḟ (0)τ + · · · + f (n)(0)

τn

n!

)
eiωτ dτ

=
(

f (0) + ḟ (0)
∂

∂(iω)
+ · · · + f (n)(0)

n!

∂n

∂(iω)n

)

×
∫ ∞

0
eiωtdτ

= f (0)
i

ω
− ḟ (0)

1

ω2
+ f̈ (0)

1

iω3
+ · · ·

+ f (n)(0)
(−1)n

ωn+1in−1
. (27)

Taking the real part (that is, the relaxation rate for the B2,E2

terms and the frequency shift for the EB terms), we obtain

Re[Sij (ω)] = −ḟ (0)
1

ω2
+

...
f (0)

ω4
+ · · · , (28)

which is equivalent to Eq. (14) of [22] and (19) above, but now
we have another form of the correction term and we can use
this to calculate the frequency range where the first term is a
good approximation. For the imaginary part (B2,E2 frequency
shifts and EB relaxation) we find

Im[Sij (ω)] = f (0)

ω
− f̈ (0)

ω3
+ · · · , (29)

which is equivalent to Eq. (17) of [22] and Eq. (20) above. In
addition, we find

�1(B2) = γ 2

[
− 1

ω2
0

〈bx(0)ḃx(0) + by(0)ḃy(0)〉

+ 1

ω4
0

〈bx(0)
...
b x(0) + by(0)

...
b y(0)〉

]
, (30)

�1(E2) = γ 2E2

c4

[
− 1

ω2
0

〈vx(0)v̇x(0) + vy(0)v̇y(0)〉

+ 1

ω4
0

〈vx(0)
...
v x(0) + vy(0)

...
v y(0)〉

]
, (31)

�1(BE) = 2γ 2E

c2

[
1

ω0
〈bx(0)vx(τ ) + by(0)vy(τ )〉|τ=0

+ 1

ω3
0

〈bx(0)v̈x(0) + by(0)v̈y(0)〉
]
. (32)

Using the results presented in the Appendix, we can write

�1(B2) = − γ 2

2ω2
0

〈�v · �∇(
b2

x + b2
y

)〉 + O(1/(ω0τcorr)
4), (33)

�1(E2) = −γ 2E2

ω2
0c

4
〈vxv̇x + vyv̇y〉 + O(1/(ω0τcorr)

4), (34)

�1(BE) = 2γ 2E

ω0c2
〈bxvx + byvy〉 + O(1/(ω0τcorr)

3). (35)

We expressed the correlation function derivatives in (23)–
(25), (33), and (35) as volume averages of the velocity and
magnetic field, in the adiabatic limit. These expressions are
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therefore independent of the particle motion in the cell. The
high-frequency limits for δωB2 , δωE2 , �1(B2), and �1(BE) are
universal.

The first term in (33) behaves as 1/ω2
0 and has been

calculated in [22] in the diffusive adiabatic regime. However,
the diffusion theory breaks down at times shorter than the
collision time τcoll, so at high frequencies (ω0τcoll � 1) the
spectrum deviates from that expected on the basis of diffusion
theory. The high-frequency (superadiabatic) limit is correctly
given by [19], using a correlation function that is valid for
all times, namely, the first term in (33) goes to zero as
the velocity is initially uncorrelated with position and the
very-high-frequency behavior goes as 1/ω4

0. The result of [19]
shows how the behavior goes from the ∼1/ω2

0 predicted
by diffusion theory at high frequencies to ∼1/ω4

0 as ω0τcoll

becomes on the order of or greater than 1.

V. NONADIABATIC REGIME: WEAK MAGNETIC FIELD
OR FAST PARTICLES AND ARBITRARY FIELDS

We now consider the nonadiabatic limit ω0τcorr � 1. To
expand the frequency shift expressions in terms of power of ω0,
we simply apply the same procedure of recursive integrations
by parts, changing the part that is integrated:

∫ ∞

0
sin(ω0τ )f (τ )dτ

=
[

sin(ω0τ )
∫ τ

0
f (t)dt

]∞

0

−ω0

∫ ∞

0
cos(ω0τ )

∫ τ

0
f (t)dtdτ, (36)

∫ ∞

0
cos(ω0τ )f (τ )dτ

=
[

cos(ω0τ )
∫ τ

0
f (t)dt

]∞

0

+ω0

∫ ∞

0
sin(ω0τ )

∫ τ

0
f (t)dtdτ. (37)

When applying these relations to Eqs. (9)–(11) we obtain

δωE2 = −γ 2E2

2c4
ω0〈x2 + y2〉 + γ 2E2

2c4
ω2

0

∫ ∞

0
sin(ω0τ )

×〈x(0)x(τ ) + y(0)y(τ )〉dτ, (38)

δωBE = −γ 2E

c2
〈bxx + byy〉 + γ 2E

c2
ω0

∫ ∞

0
sin(ω0τ )

×〈bx(0)x(τ ) + by(0)y(τ )〉dτ. (39)

One can see that the last terms on the right-hand sides
of Eqs. (38) and (39), as well as Eq. (9), involve Fourier
transforms of correlation functions that depends exclusively
on position. Since we are in the limit ω0τcorr � 1 we need
to consider only the first-order expansion of the involved
trigonometric functions: sin(ω0τ ) ≈ ω0τ . (For times τ � τcorr

the correlation function goes to zero). Applying this method

to Eqs. (9), (38), and (39), we obtain

δωB2 ≈ γ 2

2
ω0

∫ ∞

0
τ 〈bx(0)bx(τ ) + by(0)by(τ )〉dτ, (40)

δωE2 ≈ −γ 2E2

2c4
ω0〈x2 + y2〉 + γ 2E2

2c4
ω3

0

×
∫ ∞

0
τ 〈x(0)x(τ ) + y(0)y(τ )〉dτ, (41)

δωBE ≈ − γ 2E

c2
〈bxx + byy〉

+ γ 2E

c2
ω2

0

∫ ∞

0
τ 〈bx(0)x(τ ) + by(0)y(τ )〉dτ. (42)

The last terms in Eqs. (41) and (42) cannot be calculated
for any arbitrary trap geometry; however, one can see that they
behave as ω2

0τ
2
corr when ω0τcorr goes to zero. This means that

the expressions of the frequency shifts are dominated by the
first term on the right-hand side. These results are presented
in Table I. Similarly, since cos ω0τ ≈ 1, Eqs. (12)–(14)
become

�1(B2) = γ 2
∫ ∞

0
〈bx(0)bx(τ ) + by(0)by(τ )〉dτ, (43)

�1(E2) = γ 2E2

c4
ω2

0

∫ ∞

0
〈x(0)x(τ ) + y(0)y(τ )〉dτ, (44)

�1(BE) = 2γ 2E

c2
ω0

∫ ∞

0
〈bx(0)x(τ ) + by(0)y(τ )〉dτ, (45)

from which the low-frequency limits follow immediately.

VI. MAGNETIC FIELD LINEARLY DEPENDENT ON
POSITION (UNIFORM GRADIENTS)

In this case, which is what is usually treated theoretically
and applies to most experimental situations, one can simplify
the derivatives in terms of trajectory correlation functions
without any evolution equation and derive a variety of
relationships. Let us consider a magnetic inhomogeneity �b
dependent linearly on the position of a spin:

bx = Gxx, (46)

by = Gyy, (47)

where the relation Gx + Gy = − ∂bz

∂z
= −Gz holds by the

divergence theorem.

A. General relations for fields with linear gradients and
cylindrical symmetry

1. Expressions relating frequency shifts with frequency shifts

In the common case of cylindrical field symmetry (with
arbitrary cell shape) the correlation functions of interest
are 〈vx(0)vx(τ ) + vy(0)vy(τ )〉, 〈x(0)vx(τ ) + y(0)vy(τ )〉, and
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〈x(0)x(τ ) + y(0)y(τ )〉, which satisfy the relations

〈x(0)vx(τ ) + y(0)vy(τ )〉 = − d

dτ
〈x(0)x(τ ) + y(0)y(τ )〉, (48)

〈vx(0)vx(τ ) + vy(0)vy(τ )〉 = d

dτ
〈x(0)vx(τ ) + y(0)vy(τ )〉

= − d2

dτ 2
〈x(0)x(τ ) + y(0)y(τ )〉.

(49)

Then

Sxv(ω) = −iωSxx(ω) + 〈x2 + y2〉, (50)

Svv(ω) = −iωSxv(ω). (51)

According to Eqs. (9)–(11) we find

δωBE = KBERe[Sxv(ω)] = −KBEIm[Svv(ω)/ω]

= −KBE

KE2

δωE2

ω
, (52)

with KBE = γ 2GzE

2c2 , KB2 = γ 2G2
z

8 , and KE2 = γ 2E2

2c4 . The last
expression was obtained in [14] for the case of particles
moving in a cylinder with specular reflecting walls and no
gas collisions, but our result holds for any cell shape and type
of particle motion. Equation (39) can be written as

δωBE = γ 2EGz

2c2
〈x2 + y2〉 − γ 2EGz

2c2
ω0

×
∫ ∞

0
sin(ω0τ )〈x(0)x(τ ) + y(0)y(τ )〉dτ (53)

= γ 2EGz

2c2
〈x2 + y2〉 − 4Eω0

c2Gz

δωB2 , (54)

so Eq. (54) represents a method of measuring the linear in E

shift without applying an electric field. To do this one would
apply a known constant gradient and look for a frequency shift
dependent on the square of the gradient. The possibility of
the volume average field being changed by application of the
gradient can be accounted for by taking the part of the shift
proportional to the square of the gradient. Another method
would be to measure the relaxation rate due to the application
of the gradient as discussed in the next section.

2. Expressions relating frequency shifts and relaxation rates

As the correlation functions defined in Eqs. (9)–(14) are all
causal, that is, they are zero for τ < 0, their real and imaginary
parts are related by a dispersion relation [24] and we can
write

δωBE = KBE{〈x2 + y2〉 − ωIm[Sxx(ω)]} (55)

= KBE

[
〈x2 + y2〉 − ω

π

∫ ∞

−∞

Re[Sxx(ω′)]
ω − ω′ dω′

]
(56)

= KBE

[
〈x2 + y2〉 − ω

π

1

2KB2

∫ ∞

−∞

�1(B2)

ω − ω′ dω′
]

(57)

= KBE

[
〈x2 + y2〉 − 1

KB2

ω2

π

∫ ∞

−∞

�1(B2)(ω′)
ω2 − ω′2 dω′

]
(58)

= KBE

[
〈x2 + y2〉 − 1

KE2

ω2

π

∫ ∞

−∞

�1(E2)(ω′)
(ω2 − ω′2)ω′2 dω′

]
.

(59)

Equations (58) and (59) are particularly interesting because
they allow measurement of the frequency dependence of δωBE ,
the shift, linear in E, that produces a serious systematic error
in the searches for particle electric dipole moments without
application of an electric field. By applying a gradient ∂bz

∂z

larger than any existing gradients and measuring �1(B2)(ω)
one can reconstruct the frequency dependence of δωBE . For
the case of a noncylindrically symmetric cell we can apply rela-
tively large gradients ∂bx,y/∂x,y and thus measure, separately,
the spectra of the correlation functions in the two directions.
While according to (58) we need to know the relaxation for
all frequencies, the necessary range of measurement is limited
because the known high- and low-frequency limits are reached
rather quickly (30) and (43). Substituting (13) into (59), we
obtain a form of the relation that has been obtained by another
method in [15].

3. Expressions relating relaxation rates with relaxation rates

For completeness we give relations between the relaxation
rates that are obtained in a similar way:

�1(E2) = KE2

KB2
ω2�1(B2) = KE2

KBE

ω�1(BE). (60)

The relaxation caused by the electric field alone �1(E2) has
been discussed in [25].

B. Adiabatic regime: High magnetic field or slow particles for
fields with uniform gradients

We specify Eqs. (23)–(25) to the case of a uniform gradient

δωB2 = γ 2

2ω0

〈
b2

x + b2
y

〉 + γ 2

2ω3
0

{
G2

x

〈
v2

x

〉 + G2
y

〈
v2

y

〉}

+O
(
1/ω5

0τ
5
corr

)
, (61)

δωE2 = γ 2E2

2c4ω0

〈
v2

x + v2
y

〉 + O
(
1/ω3

0τ
3
corr

)
, (62)

δωBE = − γ 2E

c2ω2
0

{
Gx

〈
v2

x

〉 + Gy

〈
v2

y

〉} + O
(
1/ω4

0τ
4
corr

)
. (63)

Similarly, the relaxation rates can be expressed as

�1(B2) = −γ 2 1

ω2
0

[
G2

x〈xvx〉+ G2
y〈yvy〉

] + O
(
1/ω4

0τ
4
corr

)
, (64)

�1(BE) = 2γ 2E

c2

[
1

ω0
〈Gxxvx + Gyyvy〉 + O

(
1/ω3

0τ
3
corr

)]
.

(65)

The first term in Eq. (61) corresponds to Eq. (18) in [22].
It is remarkable that it is possible to derive a simple and
universal expression for the third-order term proportional to
ω−3

0 in Eq. (61).
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C. Low-field high-velocity limit for fields
with uniform gradients

For uniform gradients (47), the expression of δωBE (42)
can be simplified to

δωBE = −γ 2E

c2
〈Gxx

2 + Gyy
2〉 + γ 2E

c2
ω2

0

×
∫ ∞

0
τ 〈Gxx(0)x(τ ) + Gyy(0)y(τ )〉dτ (66)

= −γ 2E

c2
〈Gxx

2 + Gyy
2〉 + O

(
ω2

0τ
2
corr

)
. (67)

Also (40) becomes

δωB2 ≈ γ 2

2
ω0

∫ ∞

0
τ
〈
G2

xx(0)x(τ ) + G2
yy(0)y(τ )

〉
dτ (68)

and (41)

δωE2 = −γ 2E2

2c4
ω0〈x2 + y2〉 + γ 2E2

2c4
ω3

0

×
∫ ∞

0
τ 〈x(0)x(τ ) + y(0)y(τ )〉dτ. (69)

Similarly,

�1(B2) = γ 2
∫ ∞

0

〈
G2

xx(0)x(τ ) + G2
yy(0)y(τ )

〉
dτ, (70)

�1(E2) = γ 2E2

c4
ω2

0

∫ ∞

0
〈x(0)x(τ ) + y(0)y(τ )〉dτ, (71)

�1(BE) = 2γ 2E

c2
ω0

∫ ∞

0
〈Gxx(0)x(τ ) + Gyy(0)y(τ )〉dτ, (72)

so in the low-frequency limit there are no universal or
quasiuniversal expressions.

VII. CONCLUSION

In this paper we have investigated the asymptotic behavior
of the spin relaxation and related frequency shifts due to
the restricted motion of particles in nonuniform magnetic
and electric fields. Simple universal expressions (valid for
any form of gas container and any spatial form of the field)
were obtained for the observables δω and �1 for adiabatic
and nonadiabatic regimes of spin motion. The remarkable
feature of all our results is that they were obtained without any
specific assumptions about the explicit form of the correlation
functions. Hence, we expect that our results are valid for both
diffusive and ballistic regimes of motion. These results can

then be applied to a wide variety of realistic systems. They are
especially important in the context of experiments searching
for the electric dipole moment using trapped particles, for the
frequency shifts proportional to electric fields are of utmost
importance. In particular we have given general relations
between various frequency shifts and relaxation rates.
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APPENDIX: USEFUL EXPRESSIONS OF
CORRELATION FUNCTIONS

We derive three useful relations for the derivative of certain
correlation functions in terms of volume averages. Let us
consider an inhomogeneity bi , with i = x or y,

d

dτ
〈bi(0)bi(τ )〉|τ=0

= 〈bi(0)ḃi(0)〉 (A1)

=
〈
bi

�∇bi · d�r
dτ

〉
(A2)

=
〈
bi

∂bi

∂x
vx

〉
+

〈
bi

∂bi

∂y
vy

〉
+

〈
bi

∂bi

∂z
vz

〉
(A3)

= 1
2

〈�v · �∇b2
i

〉
, (A4)

d2

dτ 2
〈bi(0)bi(τ )〉|τ=0

= 〈bi(0)b̈i(0)〉 (A5)

= −〈ḃi(0)ḃi(0)〉 (A6)

= −
〈(

�∇bi · d�r
dτ

)2〉
(A7)

=
〈(

∂bi

∂x
vx

)2〉
+

〈(
∂bi

∂y
vy

)2〉
+

〈(
∂bi

∂z
vz

)2〉
(A8)

=
〈(

∂bi

∂x

)2〉〈
v2

x

〉 +
〈(

∂bi

∂y

)2〉〈
v2

y

〉 +
〈(

∂bi

∂z

)2〉〈
v2

z

〉
, (A9)

d

dτ
〈bi(0)vj (τ )〉|τ=0

= −〈 ˙bi(0)vj (0)〉 = −〈( �∇bi · �v)vj 〉 (A10)

= −
〈
∂bi

∂j
v2

j

〉
. (A11)
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