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The electron and photon scattering data of an atom are crucial for many scientific fields, including
plasma physics, astrophysics, and so on. For high enough but nonrelativistic incident energies, the first Born
approximation is applicable for calculating these data, in which the key physics quantity is the generalized
oscillator strength (GOS). In high-energy electron impact excitation processes, atoms will be excited into various
excited states including strongly perturbed Rydberg and adjacent continuum states. How to calculate these
quantities of a nontrivial many-electron atom rapidly and accurately is still a great challenge. Based on our
eigenchannel R-matrix method R-eigen, we further extend it to calculate the GOS of a whole channel in an
atom, which includes all Rydberg and adjacent continuum states. The J π = 1− states of argon are chosen as
an illustrating example. The calculation results are in good agreement with the available benchmark absolute
experimental measurements. The calculated eigenchannel GOS matrix elements are smooth functions of the
excitation energy and momentum transfer. From such smooth eigenchannel GOS matrix elements, we can
obtain the GOS of any specific excited state through multichannel quantum defect theory, e.g., infinite Rydberg
(including a strongly perturbed one), autoionization, and continuum states.
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I. INRODUCTION

The electron and photon scattering data of an atom are
crucial for many scientific fields, including plasma physics,
astrophysics, and so on [1]. For high enough but nonrel-
ativistic incident energies, the first Born approximation is
applicable [2,3] for calculating these data, in which the key
physics quantity is the generalized oscillator strength (GOS).
The GOS (also called the form factor in other fields such
as nuclear and particle physics) describes quantitatively the
inelastic scattering processes of a fast electron (photon) within
the first Born approximation (FBA), where the differential
scattering cross section is proportional to the GOS. The GOS
is a function of the momentum transfer K and energy transfer
�E of the target. In the limit of zero momentum transfer,
the GOS becomes equal to the optical oscillator strength
(OOS) [2]. This connects the high-energy electron impact
excitation process with the photoabsorption or photoionization
processes. Therefore GOS offers unique information about the
nature of the electronic transitions and the electron scattering
process of atoms and molecules. It is also a basic ingredient
for the study of intercombination transitions in collisions of
electrons with Rydberg atoms [4] and for the calculation of
a collision of a Rydberg atom with a neutral atom in the
free electron model [5]. It can be used in calculations of the
stopping power of electrons, which is the key physical quantity
to describe the energy deposition of electrons passing through
matter [6] and hence is very necessary for many fields, such
as radiology, health physics [7], and so on.
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Numerous experimental and theoretical investigations have
been carried out over the past 60 years [2,3,8] and both
have made great progress. Benchmark absolute experimen-
tal measurements have been successfully carried out for
valence-shell excitations of noble atoms of He [9], Ne [10],
Ar [11,12], and Kr [13] by high-energy electron energy loss
spectroscopy (EELS) and by inelastic x-ray scattering (IXS)
recently [14,15]. Bethe has calculated the GOS of the hydrogen
atom, known as the Bethe surfaces, to exemplify and illustrate
the general features of the GOS [16]. From then on, various
theoretical methods have been developed, such as the calcu-
lation using hydrogen-like wave functions with an effective
nuclear charge [17], the independent particle model [18], the
random phase approximation with exchange [19], the R-matrix
method [20] and so on. However, these investigations are
mainly focused on some specific transitions among the low
excited states of targets, which cannot satisfy the needs in
many related scientific fields. For example, for the calculation
of stopping power, the GOS of all kinematically accessible
exited states of an atom or molecule, including discrete as
well as continuum states are needed [6]. Furthermore, for
theoretical studies of non-hydrogen-like atoms, the GOS is
very sensitive to the quality of many-electron wave functions,
where the convergence is not easy to achieve. Therefore, the
appropriate theoretical method to provide enormous reliable
GOS data of non-hydrogen-like atoms needs to be developed.

Based on the analytic continuation property of scattering
matrices, there exist intimate relations between atomic energy
levels and the related electron-ion collision processes [21–24].
In the framework of multichannel quantum defect theory
(MQDT) [21–24], with a set of physical parameters (i.e.,
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short-range scattering matrices) which vary smoothly with the
excitation energy, all the Rydberg states, autoionization states,
and adjacent continuum states can be described in a unified
manner [21–24]. According to MQDT, the energy eigenstate
is a superposition of eigenchannels and the coefficients of the
superposition can be calculated analytically by the boundary
conditions at infinity. Thus the calculation of the transition
matrix elements from a specific initial state to any final state
can be reduced to the calculation of the transition matrix
elements from a specific initial state to final eigenchannels,
which vary smoothly with the final eigenchannel energy. We
have developed the eigenchannel R-matrix method (ECR)
referred to as R-eigen and R-R-eigen [25], to directly calculate
short-range scattering matrices as well as eigenchannel wave
functions in the whole energy regions of interest, i.e., either
the discrete energy region or the continuum energy region, on
equal footing. With our ECR method, the short-range scatter-
ing matrices in the discrete energy region can be calculated
with enough accuracy which can be determined readily by
comparisons with precise spectroscopic measurements [26]
based on multichannel quantum defect theory (MQDT)
[21–24]. Through the analytical continuation properties of
short-range scattering matrices, their accuracy in the whole
energy regions can be ascertained [25]. With the corresponding
high-quality eigenchannel wave functions, various transition
matrix elements can be readily calculated, such as the OOS
of the optical transitions. For the optical transition processes,
the OOS of infinite-bound-type Rydberg states will connect
with the continuum photoionization cross sections through
the physical quantities oscillator strengths densities (OOSD),
where the OOS and OOSD is linked by density of states
(DOS) [27]. It is straightforward to extend this concept to
define the generalized oscillator strength densities (GOSD),
by which the GOS of infinite Rydberg, autoionization, and
continuum states of a nontrivial many-electron atom can be
treated in a unified manner.

In the present work, we further develop the eigenchannel
R-matrix method to calculate the GOSD of atoms. The multi-
channel transition matrix elements of GOS of eigenchannels
can be calculated and found to be smooth functions of the
momentum transfers and the excitation energies. From such
smooth eigenchannel GOS matrix elements, we can obtain
the GOSD of any specific excited state very quickly through
MQDT without missing any one, e.g., infinite Rydberg (includ-
ing a strongly perturbed one), autoionization, and continuum
states (correspond to impact ionization process). Furthermore,
the information of short-range dynamical interactions can be
unveiled in detail from our treatment, such as the s − d wave
mixings due to the quadrupole polarization interaction. As an
illustrative example, we will present our recent calculation
results of Ar, which are in good agreement with the available
absolute benchmark experiments [11,12,15].

II. THEORETICAL METHOD AND CALCULATION
RESULTS

For high-energy electron impact excitation processes,
atoms will be excited into various excited states, i.e., various
strongly perturbed Rydberg and adjacent continuum states.
Since there are infinite excited states involved in the high-

energy electron collision processes, how to calculate these
wave fuctions of a many-electron atom rapidly and accurately
is a great challenge. Over the years, the R-matrix approach has
been successfully developed as an ab initio method for treating
a variety of dynamical processes in atomic physics [24,28–30],
including the bound states and continuum states. However, the
traditional R-matrix method treats each state separately, which
is inconvenient to calculate all states together and ascertain the
accuracies. From the point of view of MQDT, the N-electron
ion core target states and the excited electron with the appropri-
ate angular momentum couplings form channels for the N + 1-
electron excited complex with a specific total angular momen-
tum. The wave functions belonging to the same channel will
share some common properties. Recently, we have extended
both the nonrelativistic and relativistic versions of the eigen-
channel R-matrix (ECR) method, referred to as R-eigen and R-
R-eigen, respectively [25], from the earlier Breit-Pauli [28] and
Dirac R-matrix codes [29]. With the ECR method, we are able
to calculate the short-range scattering matrices corresponding
to the physical parameters associated with the multichannel
quantum defect theory (MQDT) [21–24] and the related wave
functions for both the discrete and continuous energy regions
of interest. Various physical quantities can then be derived
from a straightforward application of the MQDT procedure.

For excited Ar atoms with Jπ = 1−, in the energy
regions near the first and second ionization thresholds
[Ar+(2P3/2)I3/2 and Ar+(2P1/2)I1/2], there are N = 5 phys-
ical ionization channels, namely, Ar+(2P3/2)nd3/2/εd3/2,
Ar+(2P3/2)nd5/2/εd5/2, Ar+(2P3/2)ns1/2/εs1/2, Ar+(2P1/2)
ns1/2/εs1/2, and Ar+(2P1/2)nd3/2/εd3/2, where nd3/2/εd3/2

represents a bound or continuum d3/2 orbital wave function,
respectively. Adopting our modified R-eigen code [25], the
short-range scattering matrix S (with the dimension of N ×
N = 5 × 5) in the energy region of interest can be calculated
directly. The physical eigenchannel parameters of MQDT
(i.e., five eigen-quantum defects μα and a 5 × 5 orthogonal
transformation matrix Uiα) are related to the S matrix as

SJπ =1−
ij =

N∑
α=1

Uiα exp(i2πμα) Uαj . (1)

For the orthogonal transformation matrix Uiα , it can
be further expressed in N × (N − 1)/2 = 10 independent
generalized Euler angles θlm [22,25]. Our calculated MQDT
physical eigenchannel parameters in Jπ = 1− symmetry of
Ar are shown in Fig. 1. Because of the analytical property of
the short-range S matrix, both μα and θlm vary smoothly with
energies E across the ionization thresholds and calculations
only for a few energy points are needed, as shown in Fig. 1.
Note that, as the energy region varies, the number of physical
eigenchannel may change because of the mathematical prop-
erties of Coulomb wave functions (i.e., εl = E − Ii > εc

l =
−1/l2, with Ii the threshold of the ion core �i and εc

l the lowest
orbital energy of the l scattering wave [21,25]. The physical
states of any Rydberg type �iεl should be in the energy regions
E = Ii + εl > Ec = Ii + εc

l . For a specific energy point, only
the physical channels with their channel energies that satisfy
the above criterion are relevant to the physical states (i.e.,
energy eigenstates). Since the physical states associated with
the negative orbital energy channels are discrete, there exists
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FIG. 1. (Color online) Eigen-quantum defects μα , Euler angles
θk for Uiα matrix in J π = 1− symmetry of Ar. The vertical dotted
blue line indicates the connection position of two channels and five
channels. The vertical dashed red line is the position of the ionization
threshold of 2P3/2.

an interval between Ec and Ep (the energy of the first physical
state of that channel), where the calculations with two different
numbers of physical channels should be identical [25]. The
physical parameters of the same eigenchannel in such different
channel calculations should interface smoothly. In the case of
present Jπ = 1− symmetry, the three d-wave physical chan-
nels, namely, Ar+(2P3/2)nd3/2/εd3/2, Ar+(2P3/2)nd5/2/εd5/2,
and Ar+(2P1/2)nd3/2/εd3/2, cannot exist below the energy
Ec = I3/2 + εc

l=2 = −1/l2 = −0.25 Ry (I3/2 is zero by our
definition). As shown in Fig. 1, the interface energy point
we choose for the two-channel and five-channel calculation is
around -0.17 Ry, above which the first energy level of the d

Rydberg series begins.
The corresponding eigenchannel wave functions [21–24]

in the energy region of interest can also be calculated directly
using the ECR method. Within the reaction zone (i.e., within
the R-matrix box radius), the eigenchannel wave functions
can be obtained by solving the N + 1-electron problem
variationally. Outside the reaction zone, the eigenchannel wave
functions with normalization per unit energy can be expressed
rigorously as [21–24]

�α =
N∑

i=1

�iUiα(fi cos πμα − gi sin πμα) r � r0, (2)

where the index α represents the α th eigenchannel and the
indices i are the five ionization channels, fi and gi are the
regular and irregular Coulomb radial wave functions with
normalization per unit energy.

Our eigenchannel calculations have been performed with
30 Ar+ target states which will form about 100 channels,
and 200–300 Ar* bound type configuration state functions
(CSFs). Among the 100 channels, there are only five physical
channels as mentioned above; more specifically, their radial
wave functions at r = r0 are linear combinations of the radial
Coulomb wave functions with both positive and negative
orbital energies. The rest of the channels and the bound type

FIG. 2. (Color online) Upper: Quantum defect −ν3/2(mod 1) vs
ν1/2 plot of Ar. Various open points are experimental level positions.
The solid periodic curves for Eq. (4) and dashed lines for Eq. (5) are
shown. The vertical dashed red line indicates the I3/2 threshold and
the vertical dotted blue line denotes the smooth connection between
the two-physical channel calculation and the five-physical channel
calculation. Lower: The corresponding oscillator strength densities,
where the symbols are consistent with the one in the upper panel.

CSFs are defined as computational channels. They are included
in our calculation to assure that the electron correlations are
taken into account adequately. With the calculated μα and
Uiα , the physical energy-eigen-wave functions are the linear
combination of eigenchannel wave functions [21–24]

�(E) =
∑

α

Aαψα(E), (3)

with the mixing coefficients Aα determined by electron asymp-
totic boundary conditions based on MQDT [21–24]. For bound
states, the asymptotic boundary conditions require [21–24]

N=5∑
α

Uiα sin π (νi + μα)Aα = 0 for all i, (4)

with the effective principal quantum numbers νi defined as

E(a.u.) = Ii + εi = Ii − 1

2ν2
i

, for all i (5)

Based on Eqs. (4) and (5), all energy levels of a strongly
perturbed Rydberg series can be calculated without missing
any energy levels. As shown in the upper panel of Fig. 2, the
calculated energy levels are represented as the cross points
[namely, the roots of Eqs. (4) and (5)] between the periodic
solid curves for Eq. (4) and the dashed curves for Eq. (5) [25].
Note that based on the present calculated μα only adjusted by
a few percent and the calculated Uiα without any adjustment,
excellent agreements between the calculated energy levels and
the precise spectroscopic levels denoted as the open points [26]
have been achieved, as shown in the upper panel of Fig. 2.

Above the I3/2 threshold, there are three open physical
ionization channels, i.e., Ar+(2P3/2)εd3/2, Ar+(2P3/2)εd5/2,
and Ar+(2P3/2)εs1/2. Thus, there are three collision eigenphase
shifts π · τρ at a fixed ν1/2, which are the three roots of
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FIG. 3. (Color online) The eigenchannel GOS matrix elements of J π = 1− symmetry of Ar.

Eq. (4) [22] with the index ρ denotes the three branches.
Very interestingly, the three branches τρ smoothly connect
with three branches of −ν3/2(mod1) below the I3/2 threshold
as shown in the upper panel of Fig. 2. This smooth connection
is the consequence of the analytic continuation properties
of short-range scattering matrices. Since each energy level
belongs to a specific ρ branch, we can clearly see the relations
between energy levels and resonant scattering phase shifts
in this way. More specifically, the three branches are shown
in three different colors in the figure, where the blue one
represents the phase shift with s-wave feature, the red and
cyan ones represent the phase shifts of two d waves. Below the
I3/2 threshold, the energy levels form three strongly perturbed
Rydberg series denoted as �,©,� and two perturbing Rydberg
series denoted as �,� respectively, with ©,� having the
s-wave character and �,�,� having the d-wave character. The
upper panel of Fig. 2 can also tell us the information of short-
range dynamical interactions. For example, the avoid crossings
of three eigenphase shifts at the positions of about ν1/2 = 2.9,
3.9 illustrate very clearly the strong s − d wave mixings due to
the quadrupole polarization interaction. Therefore it should be
more physically transparent to characterize the spectroscopic
data in the present way. Some more discussions will be
presented later in combination with the lower panel of Fig. 2.

With the calculated eigenchannel wave functions ψα(E),
various physics quantities can be readily calculated, which
should also be the smooth function of energy E. Let us focus
on the GOS matrix elements. Within the Born approximation,
the high-energy electron impact excitation differential cross
sections can be written as [20]

dσn

d�
= k′

k

∣∣f B
n (k̂,k̂′)

∣∣2 = 2

�En

k′

k

Fn(�En,K)

K2
(6)

with the incident high-energy electron momentum �k, the
scattered electron momentum �k′, the excitation energy �En =
En − Eo, the momentum transfer

−→
K = −→

k′ − �k. Fn(�En,K)
is the GOS, which can be expressed as

Fn(�En,K) = 2�En

K2

∣∣∣∣∣∣〈�(En)|
N∑

j=1

ei �K·�rj |�0〉
∣∣∣∣∣∣
2

. (7)

In the limit of zero momentum transfer (K = 0), the
GOS becomes equal to the OOS. This relation connects

the high-energy electron-impact excitation process with the
photoabsorption process. The eigenchannel matrix elements
of GOS is defined as

Gα =< ψα|
N∑

j=1

ei �K·�rj |�o > /K. (8)

Note that when the momentum transfer K = 0 for dipole-
allowed transitions, Gα is identical to the matrix element of
oscillator strength Dα [24]. Figure 3 displays the calculated
eigenchannel matrix elements Gα . As shown in Fig. 3, Gα is
a smooth function of energy E and momentum transfer K. We
can also see that the Gα surfaces of two s waves will intersect
with the Gα = 0 surface, which in turn will form the nodal
structure of the GOS surfaces. For the Gα surfaces of three d

waves, it will not intersect with the Gα = 0 surface, where no
nodal structures will exist. These results are consistent with
the laws of the nodal structure obtained from the analysis of
the independent particle wave functions [31].

Thus according to Eqs. (3) and (7), the GOS of any
energy level En of a strongly perturbed Rydberg series can
be expressed as

Fn(�En,K) = 2�En

N2
n

∣∣∣∣∣
∑

α

GαAα,n

∣∣∣∣∣
2

, (9)

with the reduced generalized matrix elements Gα defined in
Eq. (8), the mixing coefficients Aα,n as the solutions of Eq. (4)
for the nth energy level corresponding to (ν3/2,n,ν1/2,n) and
the normalization factor N2

n is defined as Eqs. (2.7) and (2.8)
in [22].

For the optical processes, the OOS of infinite bound-type
Rydberg states will connect with the continuum photoion-
ization cross sections through the physical quantities OOSD,
which is the OOS multiplied by the DOS (i.e., dn/dE) [27].
It is straightforward to extend this concept to the GOS. The
GOS Fn of the Rydberg state (ν1/2,n,ρ,ν3/2,n,ρ) will reside in

the corresponding GOSD dFn
(ρ)

dE
, where

dFn
(ρ)(�E,K)

dE
=

(
dn

dE

)
n,ρ

· Fρ
n (�E,K)

= 2(E − E0)
∣∣∑

α GαAα,n,ρ

∣∣2

N3/2,n,ρ

. (10)

052712-4



UNIFIED CALCULATION OF GENERALIZED OSCILLATOR . . . PHYSICAL REVIEW A 92, 052712 (2015)

FIG. 4. (Color) The generalized oscillator strength densities of
Ar from initial state 3p6J π = 0+ to final channel J π = 1−.

The expressions for ( dn
dE

)n,ρ and N3/2,n,ρ can be found in
Eqs. (5.1) and (2.8) in [22], respectively. Note that as we
discussed above, the ν3/2,n of the nth energy level will connect
with a specific branch of autoionization phase shift τρ above the
threshold. Therefore we use ρ here to represent this character.

Let us first look at the special case of K = 0, which is
directly related to the optical processes. The calculated three

df (ρ)

dE
corresponding to the three ρ branches are shown in three

different colors in the lower panel of Fig. 2, with the blue one
representing the s wave, the red and cyan ones representing
the two d waves. The experimental oscillator strength fn

of the Rydberg state (ν1/2,n,ρ,ν3/2,n,ρ) [32] will reside in the

corresponding oscillator strength density dfn
(ρ)

dE
as shown in

the lower panel of Fig. 2, denoted as �,©,�, �,�. These
symbols are consistent with the ones defined in the upper
panel of Fig. 2. We can see that the dfn

(ρ)

dE
also belongs to a

specific df (ρ)

dE
branch. It is interesting to note that above the I3/2

threshold the oscillator strength densities of the overlapping
autoionization resonances should be

df

dE
=

3∑
ρ

df (ρ)

dE
=

3∑
ρ

2(E − E0)
∣∣∑

α DαAα,ρ

∣∣2

N3/2,ρ

, (11)

as shown by the dashed line in the lower panel of Fig. 2.
The corresponding three branches of the generalized oscil-

lator strength densities dFn,ρ (�En,K)
dE

can be readily calculated
and shown in Fig. 4. Because of an extra dimension of variable
K, the three branches of curves in the lower panel of Fig. 2
will extend to three branches of surfaces, as shown in Fig. 4.
Such three surfaces contain all the information of the GOS
of all Rydberg states and adjacent continua in the Jπ = 1−
symmetry.

A few available experimental generalized oscillator
strength densities [11,12] are also shown in Fig. 4. For
detailed examinations between the calculated and experi-
mental GOS [11,12,15,33–34], Fig. 5 displays comparisons

FIG. 5. (Color online) The comparison of the generalized oscillator strength of Rydberg states 3p54s[3/2]1, 3p54s ′[1/2]1, 3p53d[3/2]1,
and 3p53d′[3/2]1 with the experimental measurement.
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for the generalized oscillator strength of Rydberg states
3p54s[3/2]1, 3p54s ′[1/2]1, 3p53d[3/2]1, and 3p53d′[3/2]1.
As shown in Fig. 5, our calculated GOS of these low excited
states are in good agreement with the recent experimental
measurements [11,12,15]. At K = 0, the GOS is equal to
OOS, our calculated GOS is also in good agreement with
experimental OOS values [32,35]. It is interesting to note that
our calculated GOS are in closer agreement with recent IXS
measurement [15] than previous EELS experiments [11,12],
especially around the minima point (higher momentum trans-
fer K). Because the GOS are determined by EELS experiment
on the condition that the first Born approximation is satisfied,
which strongly depends on the incident electron energies used
in the experiments. On the other side, the GOS are measured
by IXS experiment directly [15]. The differences between
the EELS and IXS results at higher K demonstrate that the
first Born approximation is not adequate for describing the
electron scattering process at large scattering angles (i.e., large
momentum transfer K) at incident energy of 2500 eV.

III. SUMMARY

We would like to conclude with the following comments.
Using our modified R-matrix code R-eigen [25], we can
directly calculate the short-range scattering matrices with good
analytical properties in the entire energy region, from which
we can obtain all energy levels and the related scattering cross
sections with accuracies comparable to spectroscopic preci-
sion. With the corresponding high-quality eigenchannel wave

functions, various transition matrix elements can be readily
calculated, such as the generalized oscillator strength densities
(GOSD). The GOSD is directly related to the high-energy
electron impact excitation cross sections. In eigenchannel
representation, the GOS matrix elements of the excited states
in an eigenchannel form a surface, which is a smooth function
of the momentum transfers and the excitation energies. From
such smooth GOS matrix elements, we can obtain the GOSD of
any specific excited state through multichannel quantum defect
theory, e.g., infinite Rydberg (including a strongly perturbed
one), autoionization, and continuum states. As an example, we
show the calculation results of an Ar atom, which are in good
agreement with available benchmark experiments [11,12,15].
The present calculation method of the GOSD from an initial
state to final channels can be extended to the case of initial
channels to final channels [36], which will be of great
importance to astrophysical studies.
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