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Antiproton stopping in H2 and H2O
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Stopping powers of antiprotons in H2 and H2O targets are calculated using a semiclassical time-dependent
convergent close-coupling method. In our approach the H2 target is treated using a two-center molecular
multiconfiguration approximation, which fully accounts for the electron-electron correlation. Double-ionization
and dissociative ionization channels are taken into account using an independent-event model. The vibrational
excitation and nuclear scattering contributions are also included. The H2O target is treated using a neonization
method proposed by C. C. Montanari and J. E. Miraglia [J. Phys. B 47, 015201 (2014)], whereby the ten-electron
water molecule is described as a dressed Ne-like atom in a pseudospherical potential. Despite being the
most comprehensive approach to date, the results obtained for H2 only qualitatively agree with the available
experimental measurements.
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I. INTRODUCTION

The study of energy loss as heavy charged particles
travel through matter is of fundamental importance in many
fields, including medical radiation therapy [1], aviation and
space exploration [2], and astrophysics [3]. The development
of sources of low-energy antiprotons is drawing significant
attention to the area of antiproton scattering from atoms and
molecules (see the review of Kirchner and Knudsen [4]). With
potential application to radiotherapy and oncology, interest
in the processes occurring during antiproton scattering from
atoms and molecules is growing (see, e.g., Refs. [5,6]).

Stopping-power measurements for antiprotons in a gas
of H2 were first performed by Adamo et al. [7] at the
CERN Low Energy Antiproton Ring (LEAR) facility. To
obtain the stopping power they first simultaneously measured
the spatial coordinates and annihilation times of antiprotons
traveling through a gas of H2. The measured quantities
were then expressed in terms of the stopping power with
the resulting equations solved numerically using parameters
to obtain the best fit to the data. Agnello et al. [8] later
repeated the experiment using the same technique due to errors
in the pressure scale of the original measurements. This led
to significantly different results, thus superseding the earlier
ones given by Adamo et al. [7]. Lodi Rizzini et al. [9] later
reanalyzed the data with an emphasis on the Barkas effect [10].

From a theoretical perspective, Bethe [11] was the first
to develop a quantum-mechanical approach to calculating
stopping powers in atomic targets. However, his general
formula is applicable only at sufficiently high projectile
energies due to the first Born and dipole approximations used
in the approach. When Bethe’s theory is applied to molecules
Bragg’s additivity rule [12] is usually used. With significant
developments in the field of hadron therapy the importance
of highly accurate calculations of heavy projectile interactions
with matter has been growing. The most recent calculations of
antiproton stopping in H2 have been performed by Lühr and
Saenz [13]. They used a semiclassical close-coupling approach
to the solution of the time-dependent Schrödinger equation.
The radial wave function was expanded in a B-spline basis
with the H2 target described using an effective one-electron

treatment. Poor agreement with the experiment of Agnello
et al. [8] was obtained. However, good agreement with the
original (incorrect) data of Adamo et al. [7] was seen. Lühr
and Saenz [13] concluded that a two-electron description of
H2 was required to reduce uncertainties in the calculations and
also test the accuracy of the latest experimental measurements.
The only other H2 calculations available have been performed
by Schiwietz et al. [14,15] using a quasiatomic general-
ized adiabatic-ionization (AI) method which is valid at low
energies.

There are a number of calculations for antiproton stopping
in atomic hydrogen. These are usually compared with the
experimental data for its molecular counterpart divided by 2.
Schiwietz et al. [14,15] performed calculations using atomic-
orbital close coupling and distorted-wave Born methods, while
Cabrera-Trujillo et al. [16] used electron nuclear dynamics
(END) formalism. Both concluded that disagreement with
experiment around and below the stopping maximum was due
to neglecting molecular structure effects in their calculations.

Recently, we applied a semiclassical time-dependent con-
vergent close-coupling (CCC) method to calculations of
antiproton stopping powers in the atomic targets of H, He, Ne,
Ar, Kr, and Xe [17]. For H we obtained excellent agreement
with other theoretical calculations, while for He our results
were in best agreement with experiment when compared to
other theories. In this paper we extend the method to antiproton
stopping in the molecular targets of H2 and H2O. The results
presented in this paper improve upon the current theory of
Lühr and Saenz [13] by employing a correlated two-electron
multiconfiguration molecular treatment of H2 and taking into
account double ionization and dissociative ionization via an
independent-event model. In addition, we include vibrational
excitation and the so-called nuclear stopping power. When
calculating the dominant electronic stopping power, we use
an analytic orientation averaging technique to account for all
possible orientations of the H2 molecule and compare this to
the average over three orientations.

The H2O target is treated using a neonization method
proposed by Montanari and Miraglia [18], whereby the ten-
electron water molecule is described as a dressed Ne-like atom
in a pseudospherical potential. Our calculations should provide

1050-2947/2015/92(5)/052711(7) 052711-1 ©2015 American Physical Society

http://dx.doi.org/10.1088/0953-4075/47/1/015201
http://dx.doi.org/10.1088/0953-4075/47/1/015201
http://dx.doi.org/10.1088/0953-4075/47/1/015201
http://dx.doi.org/10.1088/0953-4075/47/1/015201
http://dx.doi.org/10.1103/PhysRevA.92.052711


BAILEY, KADYROV, ABDURAKHMANOV, FURSA, AND BRAY PHYSICAL REVIEW A 92, 052711 (2015)

a guideline for future experiments on antiproton stopping in
H2O.

This paper is set out as follows. Section II outlines the
method. The results of calculations are presented in Sec. III.
Section IV discusses the status of the experiment and theory.
Finally, in Sec. V we draw conclusions.

II. TIME-DEPENDENT CONVERGENT
CLOSE-COUPLING METHOD IN IMPACT-PARAMETER

REPRESENTATION

The time-dependent CCC method has been applied to cal-
culations of ionization cross sections for antiprotons incident
on H2 [19,20] and H2O [21]. Here we summarize the method
for these targets.

A. H2 target

A semiclassical impact-parameter approach is used
whereby the relative motion of the incident antiproton is
treated classically, whereas the target electrons are treated fully
quantum mechanically. The antiproton is assumed to have a
straight-line trajectory [R(t) = b + vt], where v is velocity
and b is impact parameter. We expand the total (electronic)
scattering wave function in terms of a complete set of target
pseudostates �α , that is,

�(t,r,R,d) =
∑

α

Aα(t,b,d) exp(−iεαt)�α(r,d), (1)

where εα is the energy of the target electronic state α, R
is the position vector of the antiproton relative to the target
center of mass, r collectively denotes the position vectors of
all target electrons, and d is the relative coordinate of the target
nuclei in the laboratory frame. The probability for transitions
into electronic bound and continuum states is defined by the
expansion coefficients Aα . Substitution of the total scatter-
ing wave function (1) into the time-dependent Schrödinger
equation yields a set of coupled-channel differential equations
for the expansion coefficients Aα , which are solved with the
condition that the target is initially in the ground state. In
order to find orientation-averaged transition probabilities we
factor out the orientation-dependent parts from our equations,
and after analytically integrating over all orientations of the
molecular axis we obtain a system of differential equations for
the orientation-independent part of the scattering amplitudes
Aαλμ. Orientation-averaged probabilities for transition of the
target from the ground state to some final state f at fixed
internuclear distance d are then defined by

pf (b) =
∑
λμ

1

2λ + 1
|Af λμ(t = +∞,b,d)|2, (2)

where λ and μ are limited by the maximum allowed total
orbital angular momentum and b is the magnitude of the impact
parameter. Scattering cross sections are obtained as the integral
of the probability over impact parameters:

σf = 2π

∫ ∞

0
pf (b)bdb. (3)

For H2 target structure calculations the Born-Oppenheimer
approximation is utilized with the internuclear distance fixed at

the ground-state equilibrium value of d = 1.4487 a.u. Target
pseudostates �α(r) are obtained via diagonalization of the
H2 Hamiltonian in a set of antisymmetrized two-electron
configurations constructed from one-electron orbitals. These
orbitals are built using Laguerre functions,

ξkl(r)=
[

λl(k − 1)!

2(k + l)(k + 2l)!

]1/2

(λlr)l+1 exp(−λlr/2)L2l+1
k−1 (λlr),

(4)

where L2l+1
k−1 (λlr) are the associated Laguerre polynomials, l is

the orbital angular momentum, and index k ranges from 1 to Nl ,
the maximum number of Laguerre functions. The exponential
falloff parameter λl is typically chosen to be optimal for the
ground state. Specific values of λl used for each target are
given below. With this choice of basis we can model the
whole spectrum of the target molecule. As Nl is increased
the negative-energy pseudostates converge to the true discrete
eigenstates, while the positive-energy pseudostates yield an
increasingly dense discretization of the target continuum. In
this work we use a multiconfiguration approach, meaning
we allow several inner electron orbitals in our two-electron
configurations. Specifically, we include the 1s, 2s, 2p, 3s, 3p,
and 3d orbitals for the description of the inner electron. The
number of one-electron states of the outer electron is as large
as required to ensure converged results. For more details refer
to Ref. [20].

B. H2O target

For the H2O target we reduce the multicenter problem to a
central one using a neonization method proposed by Montanari
and Miraglia [18], whereby the water molecule is described as
a dressed pseudospherical atom. With molecular orientation
dependence removed from the problem the probability for
transition of the target from the ground state to some final sate
f becomes

pf (b) = |Af (t = +∞,b)|2. (5)

The aforementioned neonization technique has recently
been used in the time-dependent CCC formalism by Abdu-
rakhmanov et al. [21]. Embracing the ideas of Ref. [18], we
approximate the multicenter nuclei Coulomb potential of H2O
with the spherical potential

VH2O = − 8

r
− 2(1 − η)�(RH − r)

RH

− 2(1 − ηe1−r/RH )�(r − RH)

r
, (6)

where � is the Heaviside step function, RH is the distance
between the oxygen atom and either of the two hydrogen
atoms, and η is introduced to account for the deviation of
the target potential from spherical symmetry and is varied to
match the experimentally measured value for the ground-state
ionization energy of H2O. Now that a multicenter problem has
been reduced to a central, one we can apply the techniques
used to determine the structure of the Ne atom. Therefore
the H2O molecule is represented by the same model that we
have previously used for Ne [17]: six p-shell electrons above
a frozen Hartree-Fock core with only one-electron excitations
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from the outer p shell allowed. Additionally, the core wave
functions for the Ne atom are replaced by the appropriate H2O
core wave functions, which are taken from the Slater basis
representation presented in [18].

C. Stopping power

The stopping power is the energy loss per unit path length
and is defined as

−dE

dx
= NS(E0), (7)

where S(E0) is referred to as the stopping cross section and
is related to the stopping power by the number of target
molecules per cubic meter N . Here E0 is the incident energy
of the projectile. When using the semiclassical approximation
for calculations involving heavy projectiles, the total stopping
cross section is the sum of two contributions, the nuclear and
the electronic stopping cross sections.

The electronic contribution is the energy losses associated
with all events leading to excitation, ionization, and dissoci-
ation of the target. As described in our previous work [17],
the electronic stopping cross section in the CCC formalism is
defined as

Se(E0) ≈
NT∑

f =1

(εf − εi)σf +
N+

T∑
k=1

(εk − ε+
i )σ+

k , (8)

where σf is the scattering cross section for transition of the
target electron from the ground state of energy εi to some
final state f of energy εf and NT (N+

T ) is the total number of
H2 (H2

+) pseudostates included in the calculation. In addition
to single nondissociative ionization and excitation, the present
calculations of the stopping cross section for H2 include energy
losses due to double ionization and dissociative ionization
of the H2 target. Dissociative ionization takes place through
single ionization followed by dissociation of the residual H2

+.
These processes are represented by the second term in Eq. (8),
where ε+

i is the ground- state energy of H2
+, and σ+

k is the
cross section for the transition of the inner electron to a state
k of energy εk .

For calculations of double ionization (DbI) and dissociative
ionization (DiI) we employ an independent-event model,
where these processes are considered in a two-step approxima-
tion. The first step is single ionization of H2, and the second is
ionization or excitation of H2

+. Therefore the cross section is
defined by the product of the total single-ionization probability
of H2 pH2

ion and the probability of H2
+ transitioning from the

ground state to some final state k, i.e.,

σ+
k = 2π

∫ ∞

0
pH2

ion(b)p
H+

2
k (b)bdb. (9)

Antiproton collisions with H2
+ are modeled in much the

same way as for H2, as described in Sec. II A. However, in
this case H2

+ pseudostates and the appropriate interaction
potential are used. We also use the same internuclear distance
as for H2 calculations, as required by the independent-event
model. The cross sections corresponding to the positive-
energy states of H2

+ represent double ionization, while those
corresponding to the negative energies contribute towards

dissociative ionization due to the repulsive nature of the H2
+

excited states.
The nuclear stopping cross section Sn is the contribution

from momentum transfer to the target during elastic and
inelastic scattering. This contribution is included in our
antiproton-H2 calculations to compare with experiment, which
measures all energy-loss contributions at once. To calculate
the nuclear stopping cross section we first construct the
angular differential cross section from the impact parameter
amplitudes via the Bessel transformation,

dσf (d)

d�
= (μv)2

∣∣∣∣
∫ ∞

0
Af (b,d)Jmf

(
2μvb sin

1

2
θ

)
bdb

∣∣∣∣
2

,

(10)
where μ is the reduced mass of the projectile-target system,
v is the laboratory-frame incident velocity, J is the Bessel
function of the first kind, mf is the magnetic quantum number,
and θ is the scattering angle. The resulting differential cross
section is orientation dependent. We use averaging over three
perpendicular orientations to calculate the differential cross
section dσf /d� independent of the target orientation. As
discussed later, averaging over three orientations is sufficiently
accurate at energies below 30 keV. The nuclear stopping cross
section is then given by

Sn(E0) =
∑
f

∫
q2

f

2mt

(
dσf

d�

)
d�, (11)

where mt is the mass of the target and qf is the magnitude
of momentum transfer to the target, which depends on the
scattering angle. Finally, we emphasize that our amplitude
Af entering Eq. (10) contains the information about the
heavy-particle interaction. Although this is not essential for
the electronic part of the stopping power, it is not possible to
get the correct differential cross section without including the
projectile interaction with the target nuclei.

Collisions between antiprotons and molecular hydrogen
also result in changes in vibrational energy levels of the target.
These processes lead to an additional loss of the projectile’s
energy. Their contribution to the stopping cross section can be
accounted for if we write the total scattering wave function in
a form where its nuclear and electronic parts are separated as

�(t,r,R,d)χf,ν(d), (12)

where χf,ν(d) is the molecular vibrational wave function
that depends on the internuclear distance of the target in
the electronic state f . As discussed in [20], this kind of
separation is possible under the assumption that the electrons
can almost immediately adjust their positions to a changed
nuclear configuration. The wave functions and corresponding
energies for the vibrational motion of the molecular target,
χf,ν(d) and εf,ν , satisfy the following Schrödinger equation:

(Hnucl + εf )χf,ν(d) = εf,νχf,ν(d), (13)

where Hnucl is the target Hamiltonian representing nuclear
motion. The stopping cross section associated with the
vibrational transitions from the electronic ground state i into all
the vibrational levels of the electronic state f can be calculated
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FIG. 1. (Color online) Radial distribution functions |χi,ν(d)|2d2

of the H2 molecular vibrations with ν = 0, 1, and 2 (in a.u.). The
potential energy curve and the vibrational energy levels of H2 are
shown in units of eV. Note that the potential energy curve is shifted
up by 31.7007 eV, which is the ground-state energy of H2 at the
equilibrium internuclear separation of 1.4487 a.u.

as

Svib,f (E0) = 1

4π

Nvib,f∑
ν=0

(εf,ν − εi,0)|〈χf,ν(d)|Af (t,b,d)

× exp(−iεf t)|χi,0(d)〉|2, (14)

where Nvib,f is the total number of molecular vibrational
eigenstates in the electronic state f . Among all vibrational
transitions, those within the electronic ground state give the
most dominant contribution to the stopping cross section. Thus
in the present work we consider vibrational transitions only
within the electronic ground state. To avoid doing averaging
over molecular orientations, numerically, we write Eq. (14) in
the following approximate form:

Svib(E0) ≈
Nvib,i∑
ν=0

(εi,ν − εi,0)〈χi,ν(d)|
√

σ av
el (d)|χi,0(d)〉, (15)

where σ av
el (d) is the elastic cross section analytically averaged

over molecular orientations. Using
√

σ av
el (d) instead of the

scattering amplitude is shown to be a good approximation
in calculations for electron scattering from H2

+ and D2
+

[22]. The molecular vibrational eigenfunctions χi,ν(d) and
eigenenergies εi,ν can be calculated via diagonalization of
the molecular Hamiltonian with the electronic ground-state
potential curve Vpot. In Fig. 1 radial distribution functions
|χi,ν(d)|2d2 for the lowest vibrational levels (ν = 0,1, and 2)
are given.

III. RESULTS

A. p̄ in H2

For calculations of the electronic stopping cross sections
for antiprotons in H2 we find that the maximum orbital
angular momentum of the target states lmax required to reach
convergence is 5, which is the same as for H2

+. For both H2 and

FIG. 2. (Color online) Total stopping cross section for antiproton
incident on molecular hydrogen. Included are the experimental data
of Agnello et al. [8], with the shaded region representing the
experimental uncertainty. The CCC results are shown by the solid
line. The electronic stopping cross sections of Lühr and Saenz [13]
and Schiwietz et al. [14,15] are also shown, along with the results
from the Bethe formula. Results previously presented per atom have
been multiplied by 2.

H2
+ sufficient convergence is obtained for Nl = 20 − l with λl

chosen to be 2. A total of 843 molecular target states is included
in our antiproton-H2 calculations. With this model we obtain
a two-electron ground-state ionization energy of 1.16497 a.u.,
which is close to the accurate value of 1.1745 a.u. [23].
Calculations were performed for the internuclear separation of
1.4487 a.u. The same internuclear separation was used in the
H2

+ calculations as required by the independent-event model.
In Fig. 2 we present results for the antiproton-H2 stopping

cross section together with the theoretical calculations of Lühr
and Saenz [13] and Schiwietz et al. [14,15], as well as the
experimental results of Agnello et al. [8]. We use an analytic
orientation-averaging technique to account for all possible
orientations of the molecule. We also take into account double
ionization and dissociative ionization via the independent-
event model. The nuclear and vibrational-excitation contri-
butions are also added, which make a noticeable contribution
below about 10 keV, as discussed in more detail later. The CCC
results are in good agreement with those of Lühr and Saenz
[13] above 200 keV. However, below 30 keV our calculations
are in better agreement with the experimental measurements.
Note that the results of Lühr and Saenz [13] do not include the
nuclear contribution. Adding the latter would further worsen
their disagreement with the experiment below 10 keV. The
calculations of Schiwietz et al. [14,15] also do not include the
nuclear contribution. Additionally, both Lühr and Saenz [13]
and Schiwietz et al. [14,15] use an atomic approximation to
molecular hydrogen.

It is important to point out that, traditionally, the p̄-H2

stopping cross section has been presented per atom instead
of per molecule. In Fig. 2 we present our final result as per
molecule and therefore multiply other per-atom results by 2
before plotting.
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FIG. 3. (Color online) Individual contributions to the antiproton-
H2 total stopping cross section. The solid curve labeled Se:H2 is the
stopping cross section for the primary electron analytically averaged
over all possible molecular orientations with lmax = 5. The dots are
the same, but with lmax = 4. Similarly, Se:H2 (3 or.av.) is for an
average over just three perpendicular orientations. Se:DbI and Se:DiI
are the stopping cross sections associated with double ionization
and dissociative ionization (obtained using the analytic orientation-
averaging technique). Sn is the nuclear stopping cross section, and
Svib is the vibrational-excitation contribution.

Individual contributions to the total stopping cross section
are presented in Fig. 3. First, this figure shows the level of
convergence when the maximum orbital angular momentum
of the target states lmax reaches 5. Second, it shows that energy
losses associated with double-ionization and dissociative
ionization processes make a small but important contribution,
as does the nuclear stopping cross section. Energy loss to
vibrational excitation is shown to make a small contribution at
low energies. All these components are multiplied by a factor
of 5 to make them visible in comparison with the dominant
electronic contribution. The nuclear and vibrational-excitation
stopping cross sections make a negligible contribution above
10 keV. For the nuclear stopping cross section we increase the
number of the final states of the target until a convergent result
is obtained. Interestingly, as the number of states is increased,
the contribution to the total nuclear stopping cross section for
elastic scattering is reduced and distributed into other channels.
Nevertheless, the elastic contribution remains dominant.

Figure 3 also demonstrates the improvement an analytic
orientation-averaging technique for the target molecule pro-
vides over averaging using three orientations. When compared
to averaging over three perpendicular orientations, analytic
averaging over all possible target orientations significantly
increases the stopping cross section near and above the
stopping maximum and slightly reduces it below about 10 keV.
The stopping cross sections for each of the three orientations
used in Fig. 3 are presented in Fig. 4. These three perpendicular
orientations of the target molecule are shown in the legend of
Fig. 4.

In Fig. 5 we compare the electronic part of the antiproton-
H2 stopping cross section obtained in the present CCC
method with those obtained in various approximate theoretical

FIG. 4. (Color online) Electronic stopping cross section for one-
electron excitations from the three main orientations of the H2

molecule for antiprotons.

treatments of the molecular target. We show results we have
obtained using a H-like (single active electron) structure model
for H2. In this model we choose the atomic number Zeff

of the hydrogen atom to reproduce the correct one-electron
ground-state energy of H2. These results are then multiplied
by 2 to account for both electrons of the molecule. These
results are in good agreement with our full calculations above
150 keV. In Fig. 5 we also show the results of Lühr and
Saenz [13]. Their calculations were also performed using a
H-like H2 structure model; however, they introduced a model
potential instead of simply varying Zeff . After multiplication
by 2 there is good agreement with our calculations above
200 keV. The disagreement at low energies between our full
CCC calculations and those using a H-like structure model is
attributed to the lack of electron-electron correlation effects in
the latter, which demonstrates the importance of using a proper
molecular structure model. Additionally, in Fig. 5 we show

FIG. 5. (Color online) Comparison of the electronic stopping
cross sections obtained using the full molecular approach and various
H-like approximations.
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FIG. 6. (Color online) Electronic stopping cross sections for the
antiproton in H2O.

our previous calculations for atomic hydrogen [17] multiplied
by 1.8. This factor is determined by fitting to our H2 results at
high energies and demonstrates a slight deviation from Bragg’s
additivity rule [12] due to bonding effects. With this factor
there is agreement with our full molecular calculations above
150 keV.

B. p̄ in H2O

We have also performed electronic stopping cross-section
calculations for antiprotons in H2O using a frozen-core
neonization treatment proposed in [18] with Nl = 20 − l and
λl chosen to be 2. The maximum orbital angular momentum
of target states used in calculations was 4. This resulted in the
total number of coupled differential equations being 1112.

The present results for H2O are shown in Fig. 6. The
demand for calculations of antiprotons stopping in biologically
important molecules such as water is rapidly increasing due to
current research such as the Antiproton Cell Experiment (ACE)
[5,6] at CERN. The ACE aims to fully assess the suitability
and effectiveness of antiprotons for cancer therapy. While
our calculations for H2O using a neonization approximation
cannot be considered highly accurate, they should still provide
a guideline for future experiments on antiproton stopping in
this target. We note that the presented curve is the stopping
cross section associated with the energy losses due to single-
electron transitions only from the outer p-shell. It represents
the dominant contribution to the stopping cross section. The
present Born approximation results are also shown.

IV. DISCUSSION

We have developed a comprehensive approach to cal-
culating the stopping cross section of antiprotons in H2.
Nevertheless, as can be seen from Fig. 2, there is still some
disagreement between the experiment and calculations. In
order to better understand the reason for the disagreement
we analyze the situation from the theoretical point of view.
We start by mentioning that our theory uses the independent-
event model to include the double-ionization and dissociative

ionization channels. This model tends to overestimate the
double-ionization and dissociative ionization cross sections.
However, since the contribution of these processes to the
total stopping cross section is small, they should not have
a significant effect on the presented final results.

Second, we do not include direct homolytic dissociation
of the target. To the best of our knowledge, there are no
calculations of this process induced by antiprotons that could
be used to estimate its contribution to the energy loss.
However, according to Khayrallah [24], electron-impact direct
dissociation of H2 takes place through doubly excited states
of the target. This, in turn, means that the process is a
two-electron one, and its probability is significantly smaller
than the probability of the single-electron processes. If we
assume that antiproton-induced direct dissociation of H2 also
goes via doubly excited states, then one can expect that
its contribution to the total stopping cross section will be
small, possibly similar to the contribution of the dissociative
ionization (see Fig. 3). As far as direct heterolytic dissociation
is concerned, the probability of this happening is even smaller.

It is also important to emphasize that the main reason
behind the small stopping-power cross section obtained in the
present calculations at low energies is the strong suppression
of the ionization cross section. This target structure-induced
suppression of ionization has a well-understood theoretical
basis [4,19].

As a cross test of the present results we note that when
the internuclear distance of the computer code for H2 is set
to zero, our previous He calculations [17], which are in better
agreement with experiment at low energies than for H2, are
perfectly reproduced. All of the above gives us a certain degree
of confidence in the reliability of the presented results.

Finally, we would like to make a comment about the
experimental method, which we believe may also contribute
to the disagreement between the experiment and calculations.
The experiment of Agnello et al. [8] measures the mean
annihilation time 〈ta〉 and path length R for antiprotons
traveling through a H2 gas chamber. Both measured quan-
tities are expressed as integrals over functions of the total
stopping cross section S. These two relationships are solved
simultaneously by making use of a parameterized function
for S presented by Andersen and Ziegler [25] for atomic
targets. At high energies the function is based on Bethe’s
formula and is given by Sh = [(243 − 0.375Zt )Zt/E0] ln(1 +
γ /E0 + 4meE0/mp̄Ē), where Zt is the atomic number of
the target taken to be 1, me and mp̄ are the electron and
antiproton masses, respectively, and Ē is the mean excitation
energy of the target. At low energies it is given by Sl =
αE

β

0 , which is based on the Thomas-Fermi statistical model.
In the intermediate-energy range the interpolation formula
1/S = 1/Sl + 1/Sh is used, which was originally proposed
by Varelas and Biersack [26]. The variables α, β, and γ

are varied to fit the experimentally measured data for 〈ta〉
and R. Agnello et al. [8] found these variables to be 1.25,
0.30, and 4 × 105, respectively. The use of such a method for
determining the stopping cross section is likely to introduce
additional uncertainties on top of the shaded region in Fig. 2,
which is the uncertainty in the experimental measurements.
According to Andersen and Ziegler [25], the fitting function
described above has an estimated accuracy of 10% at 10 keV
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and 5% at 500 keV. However, in the intermediate-energy
range the accuracy of the interpolation method is said to be
approximately 20%. The restrictions of using a fitting function
may be one possible explanation for the disagreement between
our calculations and the experimental data.

V. CONCLUSION

In conclusion we have applied the CCC method to the
calculation of stopping cross sections for antiprotons in the H2

and H2O molecules. For H2 we fully account for the electron-
electron correlation and average over all possible orientations
of the target using an analytic orientation averaging technique.
Double-ionization and dissociative ionization contributions
are also included via an independent-event model. Energy
losses through vibrational excitation as well as the nuclear
stopping cross section have been included. We also presented
the stopping cross section for antiprotons in H2O. For the
latter we used a neonlike model of six p-shell electrons above
a frozen Hartree-Fock core with only one-electron excitations
from the outer p shell allowed.

As a next step we plan to apply the CCC method to
calculations of stopping cross sections for protons in atomic
hydrogen. Due to the possibility of rearrangement, whereby
the proton can grab an electron and form H, the aforementioned
problem is significantly more difficult than its antiproton
counterpart because it requires a two-center expansion of
the scattering wave function. Not only is the proton problem
more complicated due to the need for a two-center expansion,
one must also take into account all possible charged states
of the projectile. This will ultimately require additional
calculations of H/H− scattering from H. With our current
research in this direction our ultimate goal is to provide
accurate calculations for radiation dose simulations in hadron
therapy.
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