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Scattering of wave packets on atoms in the Born approximation
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It has recently been demonstrated experimentally that 200–300 keV electrons with the unusual spatial profiles
can be produced and even focused to a subnanometer scale—namely, electrons carrying nonzero orbital angular
momentum and also the so-called Airy beams. Since the wave functions of such electrons do not represent plane
waves, the standard Born formula for scattering of them off a potential field is no longer applicable and, hence,
needs modification. In the present paper, we address the generic problem of elastic scattering of a wave packet
of a fast nonrelativistic particle off a potential field. We obtain simple and convenient formulas for a number of
events and an effective cross section in such a scattering, which represent generalization of the Born formula
for a case when finite sizes and spatial inhomogeneity of the initial packet should be taken into account. As a
benchmark, we consider two simple models corresponding to scattering of a Gaussian wave packet on a Gaussian
potential and on a hydrogen atom, and perform a detailed analysis of the effects brought about by the limited
sizes of the incident beam and by the finite impact parameter between the potential center and the packet’s axis.
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I. INTRODUCTION

Let us consider scattering of a particle beam by a potential
field. A real beam has finite sizes and a nonuniform density, but
usually in the standard theoretical description of the scattering
process the beam is replaced with a plane wave. Such an
approach is valid for a number of problems in which distances,
essential for calculation of the corresponding cross sections,
are considerably smaller than the typical sizes of the beam’s
inhomogeneity. There are, however, important exclusions.

Thus at e+e− and ep colliders, several processes were
experimentally investigated in which macroscopically large
impact parameters gave an essential contribution to the cross
section [1]. These impact parameters may be much larger than
the transverse sizes of the colliding bunches, and in this case
the standard calculations have to be essentially modified. It is
the so-called beam size or MD effect, discovered at the MD
detector (the VEPP-4 collider in Novosibirsk; see review in
[1]), which leads to the essential reduction of the beam particle
losses at modern colliders [2]. Another important example
here is the so-called prewave zone effect in electromagnetic
radiation by electrons [3], which is of high importance for the
beam diagnostic techniques in modern accelerators [4]. Note
that these phenomena are directly related to the ultrarelativistic
particles.

Recently, several groups have reported on the experimental
creation of electrons possessing unusual features—namely, of
the so-called “vortex” or “twisted” electrons with a definite
value �m of the orbital angular momentum (OAM) projection
on the beam propagation axis [5,6], including such beams
with the orbital quantum number m up to m = 200 [7],
and also of the so-called Airy electrons [8]. Both of the
electron beams produced have nontrivial spatial profiles and,
hence, cannot be described with the plane waves; they also
resemble corresponding laser beams, which are well known
and routinely used in the modern quantum optics—for twisted
photons, see a review, e.g., in Refs. [9,10]; for Airy photons
see, e.g., Ref. [8] and references therein.

The vortex beams can be manipulated and focused just as
the conventional electron bunches, and recently remarkable
focusing to a focal spot of less than 0.12 nm in diameter
was achieved [11]. It means that wave packets in a form of
such electrons could emerge as a new tool in atomic physics;
however, while the use of the wave packets instead of plane
waves may be usually avoided in the standard approach (see,
e.g., Chap. 4.5 in [12]), this seems to be no longer the case for
scattering problems with the twisted electrons and photons, as
well as with the Airy ones. Indeed, the use of the pure Bessel
(non-normalizable) states of twisted electrons was shown to be
inconsistent with the conservation law of the OAM in a 2 → 2
scattering, and only the formalism of the well-normalized wave
packets removes this difficulty [13]. Thus these new quantum
states of particles represent another important example of
the situation where the standard calculation procedure of
scattering has to be essentially modified. For the 200–300 keV
electrons realized so far, it is the Born formula that needs
some generalization for the case when the incoming particle
is described with a wave packet rather than with a plane wave.

In the present paper, we address the generic problem of
how to describe elastic scattering of the wave packet of fast
nonrelativistic particles off a potential field of an atom and
of the atomic structures. One of the first atomic processes
with the twisted electrons—a radiative capture of twisted
electrons by the bare ions with the emission of a photon—has
recently been studied theoretically in the paper [14]. Other
recent theoretical investigations [15–17] treat some important
features of such processes but do not address the generic issue
of how to calculate the number of scattering events depending
on the limited sizes of the incident beam. To approach this
goal, we derive a simple and convenient expression for the
number of events, which generalizes the well-known Born
approximation for the case when the incident beam is a wave
packet of a general form. It is especially important that the
observed number of events depends on the impact parameter
b between the potential center and the packet axis—an effect
that is absent in the standard approach. We also consider an
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example when the wave packet is scattered off the randomly
distributed potential centers, which is the simplest case from
the experimental point of view. For such a setup, we obtain
a simple and transparent expression for the cross section
averaged over impact parameters.

Then, as a benchmark, we consider two simple models: (1)
scattering of a Gaussian wave packet on a Gaussian potential
and (2) scattering of the Gaussian wave packet on a hydrogen
atom.

A detailed analysis of the angular distributions of final
particles is given, and it is shown how the standard Born results
could be recovered in the limit of a very wide packet. Special
attention is paid to the dependence of these distributions on
the impact parameter of the potential center with respect to the
packet’s axis. Similar analysis for the case when the incident
particles represent vortex or Airy electrons will be presented
elsewhere.

The structure of the paper is as follows. In the next section
we recall the standard Born approximation including the well-
known formulas for scattering on the Gaussian potential and on
the hydrogen atom. In Sec. III we derive the basic formulas for
scattering of a wave packet on a potential field and in Sec. IV
we specify the general approach for the case of the Gaussian
wave packet and illustrate this case with a detailed examination
of the two aforementioned models. Some conclusions are given
in Sec. V.

For definiteness, we consider below the central fields U (r)
having in mind that the presented method can be applied for
the noncentral fields U (r) as well. To simplify the formulas,
we use the units with the Planck constant � = 1.

II. STANDARD BORN APPROXIMATION

A. Number of events in the standard Born approximation

Let us consider scattering of the nonrelativistic particles
(electrons, for definiteness) off a potential field U (r) whose
center is located at the coordinate origin. Let the typical radius
of this field’s action be of the order of a. If the initial and
scattered electrons have momenta pi and pf , then the S-matrix
element 〈f |S|i〉 for the transition between plane waves |i〉 =
|pi〉 and |f 〉 = |pf 〉 is expressed via the scattering amplitude
f (εi,θ,ϕ) as follows:

〈f |S|i〉 = (2π )2i δ(εi − εf )
f (εi,θ,ϕ)

me

,

(1)

εi = p2
i

2me

, εf = p2
f

2me

,

where θ and ϕ are the polar and azimuthal scattering angles
and me is the electron mass. The standard differential cross
section of the process equals

dσst

d�
= |f (εi,θ,ϕ)|2 , (2)

where d� is the solid angle element. The scattering amplitude
in the first Born approximation is related to the Fourier
transform of the potential field (see, for example, §126 in
the text-book [18]):

f (q) = −me

2π

∫
U (r)e−iq·rd3r, q = pf − pi . (3)

In the standard approach there is an implicit assumption that
the particle bunch is wide and long and almost uniform on
the distances of the order of a, i. e., the bunch density in the
region of active forces is n(r,t) ≈ n(0,t), and velocities of all
electrons are almost equal to each other and directed along the
axis z; therefore,

pi = mevi = (0,0,pi).

In such a case the number of particles dν scattered over the time
dt is determined by a product of the standard differential cross
section dσst and the current of particles near the coordinate
origin for a given time vin(0,t)dt , while the total number of
the scattered particles for the whole time reads [19]

dνst

d�
= L

dσst

d�
= L|f (q)|2, L =

∫
vin(0,t)dt. (4)

Let the initial state be the plane wave in a large volume
V = πR2lz, where R is the radius and lz is the longitudinal
length of the bunch. The bunch density during the large
time 
t = lz/vi is almost constant and equals n(r,t) = Ne/V;
therefore,

L = Ne

V lz = Ne

πR2 . (5)

Usually, the change of the transverse beam sizes during the
scattering can be neglected and the bunch density depends on
the time as n(r,t) = n(r⊥,z − vit). If we define the transverse
density

ntr(r⊥) =
∫

n(r,t)dz, (6)

then quantity L coincides with the transverse density at the
coordinate origin,

L = ntr(r⊥ = 0). (7)

Let us recall two important examples (see, for example,
problems to Sec, 126 in the textbook in [18]).

B. Gaussian potential

The Gaussian potential has the form

U (r) = V e−r2/(2a)2
. (8)

If electrons are fast (pia � 1) and the condition V �
pi/(mea) is satisfied, then the Born amplitude equals

f (q) = f0e
−(qa)2

, f0 = −4
√

πmeV a3. (9)

The total cross section is determined by the small angle region
θ � 1/(pia) and reads

σst = πf 2
0

2a2p2
i

. (10)

C. Hydrogen atom in the ground state

The scattering of fast electrons on the hydrogen atom in the
ground state is directly related to the scattering on the potential
field of the form (see [18], problem 2 to Sec. 36)

U (r) = −e2

r

(
1 + r

a

)
e−2r/a, (11)
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where e is the proton charge and a = 1/(mee
2) is the Bohr

radius. The Born approximation for fast electrons (pia � 1)
is valid if mee

2 � pi , so the scattering amplitude is equal to

f (q) = a

2

(
1

1 + (qa/2)2 + 1

(1 + (qa/2)2)2

)
, (12)

and the total cross section is

σst = 7π

3p2
i

. (13)

III. SCATTERING OF A WAVE PACKET OFF
A POTENTIAL FIELD

A. Basic formulas

In this section we follow the approach developed in Sec. 4.1
of the paper in [1]. The initial state of incoming electrons is
given by the wave packet of the generic form∫

|k〉�(k)
d3k

(2π )3/2 , (14)

where the packet’s wave function in the momentum space �(k)
is normalized by the condition∫

|�(k)|2d3k = 1. (15)

As a consequence, the probability amplitude for transition
from this initial state to the final plane-wave state |pf 〉 is given
by the convolution

A =
∫

〈pf |S|k〉�(k)
d3k

(2π )3/2

=
√

2πi

∫
δ(ε − εf )f (pf − k)�(k)

d3k

me

, (16)

ε = k2

2me

,

while the number of scattered particles equals

dν = NeAA∗ d3pf

(2π )3 , (17)

where Ne is the number of electrons in the initial packet and

A∗ = −
√

2πi

∫
δ(ε′ − εf )f ∗(pf − k′)�∗(k′)

d3k′

me

,

(18)

ε′ = (k′)2

2me

.

Taking into account that d3pf = p2
f dpf d�, one can

perform integration over the longitudinal momenta kz and k′
z

using the δ functions and obtain

dν

d�
= Ne

∫
f (pf − k)�(k)f ∗(pf − k′)

×�∗(k′)
p2

f

k̃zk̃
′
z

dpf

d2k⊥
2π

d2k′
⊥

2π
, (19)

where

k = (
k⊥,k̃z =

√
p2

f − k2
⊥
)
,

(20)
k′ = (

k′
⊥,k̃′

z =
√

p2
f − (k′

⊥)2
)
.

As the next step we simplify this expression using several
natural assumptions. We assume that the wave packets consid-
ered have an axial symmetry; therefore, their averaged trans-
verse momentum is zero, 〈k⊥〉 = 0, their averaged momentum
is

〈k〉 = pi = mevi = (0,0,pi), (21)

but the averaged absolute value of the transverse momentum
is nonzero,

〈k⊥〉 = �0 = pi tan θk, (22)

Here we introduce the angle θk , which is an important
parameter for the twisted state and usually is called the conical
or opening angle (see, for example, Refs. [14,16]). The packet
axis can be shifted in the transverse xy plane by a distance
(an impact parameter) b. Below we often choose the x axis
along this shift—in this case b = (b,0,0), the azimuthal angle
ϕ coincides with the angle between vectors (pf )⊥ and b, and
the azimuthal angle ϕk coincides with the one between vectors
k⊥ and b.

We assume that the packet’s wave function in the momen-
tum space can be presented as a product of wave functions
corresponding to the transverse and longitudinal motions (and
this factorization conserves in time):

�(k) = �tr(k⊥)�long(kz). (23)

Then let these wave functions have the dispersions 
kx =

ky ∼ 1/σ⊥, 
kz ∼ 1/σz, where σ⊥ and σz are the transverse
and longitudinal averaged sizes of the electron packet. We
assume further that these dispersions are small compared to
the longitudinal momentum:


kx = 
ky ∼ 1/σ⊥ � pi, 
kz ∼ 1/σz � pi. (24)

From the experimental point of view, it is interesting to
consider a case when the packet’s length σz is larger than the
radius of the field action a, but still small enough to provide
such a situation that during the collision time tcol ∼ σz/vz =
meσz/pi the wave packet does not spread essentially in the
transverse plane. It means that the collision time has to be
considerably smaller than the diffraction time tdif ∼ σ⊥/v⊥ =
meσ⊥/�0. Therefore, below we assume that

a � σz � σ⊥
pi

�0
. (25)

For further integration over pf or k̃z =
√

p2
f − k2

⊥ we take
into account the following properties of functions under the
integral. The amplitude f (pf − k) is concentrated near the
value k̃z = (pf )z = pf cos θ with the dispersion ∼1/a, while
the function �long(k̃z) is concentrated near the point k̃z = pi

with the dispersion ∼1/σz, which is considerably smaller than
1/a. Finally, we take into account that the quantities k̃z and
k̃′
z depend on k⊥ and k′

⊥ but the corresponding variations are
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small, for example,

|δk̃z| = ∣∣δ√p2
f − k2

⊥
∣∣ ∼ �0δk⊥

pi

(26)

� �0

σ⊥pi

� 1

σz

∼ 
kz (27)

due to the inequality (25). Therefore, we can take the
amplitudes f (pf − k)f ∗(pf − k′) out of the integral over pf

in the form f (pf − pi − k⊥)f ∗(pf − pi − k′
⊥) with pi given

in Eq. (21).
The rest integral over pf can be evaluated as follows:∫

�long(k̃z)�
∗
long(k̃′

z)
p2

f

k̃zk̃
′
z

dpf

=
∫

|�long(k̃z)|2 pf

k̃z

dk̃z = 1

cos θk

. (28)

As a result, we obtain the basic expression

dν

d�
= Ne

cos θk

|F (Q)|2,
(29)

F (Q) =
∫

f (Q − k⊥)�tr(k⊥)
d2k⊥
2π

,

where Q is

Q = pf − pi = (Q⊥,Qz),

Q⊥ = (pf )⊥ = pf (sin θ cos ϕ, sin θ sin ϕ,0), (30)

Qz = pf cos θ − pi, pf =
√

p2
i + �2

0 .

Let us stress that the formula (29) is valid only under
the condition (25)—in other words, this approximation is
inapplicable for too small values of σ⊥. Besides, we would
like to note that in order to obtain this formula we have used a
nonmonochromatic initial packet. Moreover, in the final state
we integrate over the plane waves with the different energies
which are detected in the solid angle d�. Our final result (29)
includes the Born scattering amplitude f (pf − pi − k⊥) in
which the initial plane wave has the momentum 〈k〉 + k⊥ =
pi + k⊥, while the final plane wave has the momentum pf

with |pf | =
√

p2
i + 〈k⊥〉2 =

√
p2

i + �2
0 .

Below another representation for the integral F (Q) will be
useful. It can be obtained if we substitute the evident form of
the scattering amplitude from (3) into Eq. (29):

F (Q) = −me

2π

∫
U (r)tr(r⊥)e−iQrd3r, (31)

where

tr(r⊥) =
∫

�tr(k⊥)eik⊥r⊥ d2k⊥
2π

. (32)

Let us recall that in the standard approach the angular distri-
bution of scattered particles is determined by the scattering
amplitude f (q) proportional to the Fourier transform of the
potential field U (r) [see Eq. (3)]. The quantity F (Q) plays
the same role for the scattering of the wave packet, which is
the Fourier transform of the product of functions U (r) tr(r⊥).
From here one can draw several qualitative conclusions related
to the angular distributions of the scattered electrons (see
Sec. IV A below).

B. Averaging over impact parameters

Let the potential centers be randomly distributed inside a
large disk of the radius R � a,σ⊥. In this case the averaged
cross section dσ̄ is obtained after integrating the number of
events over all the impact parameters b and dividing the result
obtained by the total number of particles in the packet:

dσ̄

d�
= 1

Ne

∫
dν

d�
d2b, (33)

where dν/d� is given by Eq. (29).
If the packet axis is shifted in the transverse plane by a

distance b from the potential center, the corresponding wave
function in the momentum representation can be written as

�tr(k⊥) = a(k⊥)e−ik⊥b, (34)

where the function a(k⊥) corresponds to a nonshifted packet.
Therefore, the averaged cross section is proportional to the
integral

Iav =
∫

F (Q)F ∗(Q)d2b, (35)

where

F (Q) =
∫

f (Q − k⊥)a(k⊥)e−ik⊥b d2k⊥
2π

,

(36)

F ∗(Q) =
∫

f ∗(Q − k′
⊥)a∗(k′

⊥)eik′
⊥b d2k′

⊥
2π

.

After the trivial integration over b and k′
⊥, we obtain

Iav =
∫

|f (Q − k⊥)|2|�tr(k⊥)|2d2k⊥, (37)

and, therefore,

dσ̄

d�
= 1

cos θk

∫
|f (Q − k⊥)|2dW (k⊥),

(38)
dW (k⊥) = |�tr(k⊥)|2d2k⊥.

This expression can be interpreted as averaging of the standard
Born cross section dσst/d� = |f (Q − k⊥)|2 with the shifted
momentum transfer q → Q − k⊥ over probability dW (k⊥) to
have such a shift in the initial wave packet.

IV. SCATTERING OF A GAUSSIAN WAVE PACKET

In this section we discuss some general properties of the
Gaussian wave packets and derive the basic formulas for the
models described in Sec. II. The equations obtained will be
used for calculating the features of these models.

A. General properties

Let the initial beam be the simplest azimuthally symmetric
Gaussian wave packet whose transverse wave function in the
momentum representation is

�tr(k⊥) = e−(k⊥σ⊥)2−ik⊥b√
π/(2σ 2

⊥)
. (39)
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Therefore, the dispersion is 
kx = 
ky = 1/(2σ⊥) and the
transverse momentum is found as

〈k⊥〉 = 0, 〈k⊥〉 = �0 =
√

π

2
√

2σ⊥
≈ 0.63

σ⊥
. (40)

Assuming that the distribution in Eq. (39) is sharp and
taking into account the inequality (24), we can put below for
simplicity

θk = 0

for the Gauusian wave packet. The coordinate wave function
reads

tr(r⊥,t) =
∫

�tr(k⊥)ei[k⊥r⊥−k2
⊥t/(2me)] d

2k⊥
2π

(41)

and the transverse density equals

ntr(r⊥,t) = Ne|tr(r⊥,t)|2 = Ne

2πσ 2
⊥(t)

e−(r⊥−b)2/[2σ 2
⊥(t)]. (42)

For such a packet, 〈r⊥〉 = b and the dispersions are


x = 
y = σ⊥(t) =
√

σ 2
⊥ +

(
t

2σ⊥me

)2

. (43)

We use the approximation (25), which implies that during the
collision time the transverse dispersion σ⊥(t) does not differ
much from σ⊥. In this case, the function

tr(r⊥,t) ≈ tr(r⊥) =
∫

�tr(k⊥)eik⊥r⊥ d2k⊥
2π

(44)

and the quantity L from (7) (at b = 0) becomes equal to

L = ntr(0) = Ne

∣∣∣∣
∫

�tr(k⊥)
d2k⊥
2π

∣∣∣∣
2

= Ne

2πσ 2
⊥

(45)

[compare this expression with (5)].
If the Gaussian packet is wide, σ⊥ � a, the behavior of

the function U (r)tr(r⊥) in the essential region of integration
in Eq. (31) is almost the same as the one of the potential
field U (r). In this case the function F (Q) has almost the
same behavior as the standard Born amplitude f (q). With
the decrease of σ⊥, behavior of these two functions becomes
more and more different. For example, decrease of the function
U (r) tr(r⊥) with the growth of r becomes sharper and,
therefore, in the function F (Q) the role of the larger values of
Q, compared to the standard Born amplitude f (q), increases.
As a result, the angular distributions become wider compared
to the standard case.

Let us show how the standard result follows from Eq. (29).
The standard case corresponds to a wide packet which has the
distribution over k⊥ concentrated in the narrow region near
〈k⊥〉 = �0 ≈ 0. Therefore, in the amplitude f (Q − k⊥) we
can put k⊥ = 0 and take this amplitude out of the integral over
k⊥ in Eq. (29). After that this equation becomes of the form

dν

d�
= |f (q)|2Ne

∣∣∣∣
∫

�tr(k⊥)
d2k⊥
2π

∣∣∣∣
2

, (46)

which coincides with the standard result (4) for the number of
the scattered particles if we take into account the relation (45).

Analogously, the averaged cross section for a wide wave
packet coincides with the standard cross section:

dσ̄

d�
= |f (q)|2

∫
dW (k⊥) = |f (q)|2

= dσst

d�
at σ⊥ � a. (47)

B. Model 1—scattering of the Gaussian wave packet on the
Gaussian potential

For the potential field of the Gaussian form (8), the integral
F (Q) in Eq. (29) is calculated analytically

F (Q) = B
e(Q⊥a)2/(1+σ 2

⊥/a2)

1 + a2/σ 2
⊥

f (Q)√
2πσ⊥

e−iβ , Q⊥ = pf sin θ,

(48)

where

B = e−b2/[4(σ 2
⊥+a2)], β = Q⊥b

1 + σ 2
⊥/a2 . (49)

The final results for the number of events and for the averaged
cross section for a wide beam have simple analytical forms:

dν

d�
= B2 e2(Q⊥a)2/(1+σ 2

⊥/a2)

(1 + a2/σ 2
⊥)2

dνst

d�
,

dνst

d�
= L

dσst

d�
, L = Ne

2πσ 2
⊥

, (50)

dσ̄

d�
= e2(Q⊥a)2/(1+σ 2

⊥/a2)

(1 + a2/σ 2
⊥)

dσst

d�
.

It is easy to see from this expression that for a wide beam (at
σ⊥ � a,b) we get the standard results.

C. Models 2—scattering of the Gaussian wave packet on the
hydrogen atom in the ground state

The potential field of the hydrogen atom in the ground state
is given by Eq. (11). In this case the integral F (Q) in Eq. (29)
can be calculated using the substitution

f (Q − k⊥) = f0

(
1

z
+ 1

z2

)
= f0

∫ ∞

0
(1 + x)e−xzdx,

(51)

z = 1 + 1

4
(Q − k⊥)2a2

and further simple integration over k⊥. As a result, the
differential number of events is expressed via a one-fold
integral over the variable x:

dν

d�
= Lf 2

0

∣∣∣∣
∫ ∞

0
e−xg0−ig1b cos ϕ−g2b

2 1 + x

1 + x/s
dx

∣∣∣∣
2

,

(52)

L = Ne

2πσ 2
⊥

, s = 4σ 2
⊥

a2 ,

g0 = 1 + (Q⊥a)2

4(1 + x/s)
+ (Qza)2

4
,

(53)
g1 = x

x + s
Q⊥, g2 = 1

(x + s)a2 .
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It is easy to check that Eq. (52) does not change under the
replacement ϕ → π + ϕ. It means that the number of events
is symmetric with respect to the angle ϕ = π .

In a similar way, the averaged cross section (38) can be
calculated using the substitution

|f (Q − k⊥)|2 = f 2
0

(
1

z2 + 2

z3 + 1

z4

)

= f 2
0

∫ ∞

0

(
x + x2 + 1

6
x3

)
e−xzdx (54)

and further simple integration over k⊥, which results in the
following expression:

dσ̄

d�
= f 2

0

∫ ∞

0
e−xg x + x2 + (x3/6)

1 + x/(2s)
dx,

(55)

g = 1 + (Q⊥a)2

4[1 + x/(2s)]
+ (Qza)2

4
.

In the limiting case of the wide packet (at σ⊥ � a,b) we
obtain

g0 = g = 1 + (qa/2)2, g1 = g2 = 0,
(56)

dν

d�
= Lf 2

0

(
1

g
+ 1

g2

)2

,
dσ̄

d�
= f 2

0

(
1

g
+ 1

g2

)2

,

i.e., the standard results.

FIG. 1. (Color online) (On top) Scattering of the Gaussian packet
(39) on the Gaussian potential. Relative number of events vs σ⊥/a

at b = 0. (Below) The same, but for the scattering on the hydrogen
atom.

FIG. 2. (Color online) (On top) Scattering of the Gaussian packet
(39) on the Gaussian potential. Relative differential averaged cross
section (57) for σ⊥/a = 0.3, 1, and ∞ (from top to bottom). (Below)
The same, but for scattering on the hydrogen atom.

D. Comparison of models

In this section we compare scattering of the Gaussian packet
on the Gaussian potential and on the hydrogen atom in the
ground state. All figures in this subsection are calculated for
pia = pf a = 10; for scattering on the hydrogen atom this
corresponds to the energy εi = 1.36 keV.

1. Central collision: b = 0

Let us consider first the case of the central collision, when
the impact parameter b = 0. One may ask what happens to the
number of events ν with the decrease of the transverse size of

FIG. 3. (Color online) Scattering of the Gaussian packet (39) on
the Gaussian potential. The function B2 from Eq. (49) vs b/a at
σ⊥/a = ∞, 2, 1, and 0.3 .
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FIG. 4. (Color online) (On top) Scattering of the Gaussian packet
(39) with σ⊥ = a on the hydrogen atom in the ground state. Relative
differential number of events vs azimuthal angle ϕ at b = 2.5a and
θ = 0.15, 0.1, and 0.05. (Below) The same, but for b = 5a.

the bunch σ⊥. It is clearly seen from Fig. 1 that the ratio of ν

to the standard number of events νst decreases.
On the contrary, the angular distributions, dν(θ )/d� or

dσ̄ (θ )/d�, over the polar angle θ become wider with the
decrease of σ⊥ (just as we expected—see Sec. IV A). This
feature is illustrated with Fig. 2, which presents the relative
angular distributions

dσ̄ (θ )/d�

dσ̄ (0)/d�
(57)

for σ⊥/a = ∞, 1, and 0.3. The physical picture is that with
the decrease of σ⊥, the density of the particle current increases
in the vicinity of the potential center and more particles are
scattered at larger angles, but probability of such scattering
becomes smaller; the analytical expression (50) supports such
an interpretation.

2. Noncentral collision: b �= 0

The number of events drops quickly with the increase of the
impact parameter b. It is clearly seen for the model 1 where
all the dependence on b is determined by the function B2(b)
[see Eqs. (49) and (50)]. This function is presented in Fig. 3
for σ⊥/a = ∞, 2, 1, and 0.3. It is seen that this dependence is
absent for the standard cross section (at σ⊥ � a,b). But with
the decreasing σ⊥, the observed cross section drops more and
more quickly with the growth of b.

From the general point of view, we expect that an azimuthal
asymmetry should appear in the angular distributions at b �= 0.
It is quite interesting to note that for the simplest model 1 this
general expectation does not take place. Indeed, even though
the quantity F (Q) (48) has the factor e−iβ , which does depend
on the azimuthal angle between the vectors Q⊥ and b, the
number of events, being proportional to |F (Q)|2, does not
depend on this angle.

In contrast to the model 1, the azimuthal asymmetry
reappears in the model 2. For this one at σ⊥ = a we present in
Fig. 4 the quantity

dν(θ,ϕ)/d�

dν(θ,0)/d�
(58)

for different values of the polar angle θ = 0.05, 0.1, and 0.15.
It is seen that the discussed ratio of the cross sections increases
considerably at the angles of ϕ = π/2 and ϕ = 3π/2 (that is
perpendicular to the direction of b) with the growth of the
impact parameter.

V. SUMMARY

We derived simple and convenient expressions (29) and
(31) for the number of scattering events, which generalizes
the well-known Born approximation for the case when the
initial beam is a well-normalized wave packet, but not a plane
wave. Then we applied the formulas obtained to a couple of
benchmark models corresponding to scattering of the Gaussian
wave packet on the Gaussian potential as well as on the
hydrogen atom, and show how the standard Born results can
be recovered in the limit of a very wide incident packet.

The detailed analysis has been performed of how the total
number of events and its angular distributions depend on
the limited sizes of the incident beam and on the impact
parameters between the potential center and the packet’s axis.
In particular, we have found that the angular distributions
of the effective cross section broaden with the decrease of
the packet’s width—this behavior is somewhat similar to the
prewave zone effect in transition radiation; see Ref. [3]. The
nonzero impact parameter of the wave packet was shown to
lead to azimuthal asymmetry in the angular distributions, but,
somewhat unexpectedly, this natural effect is absent in the
model of the Gaussian potential.

As a next step, we can apply the obtained formulas to
scattering by atoms of such novel quantum states as twisted
electrons and the Airy beams. Such an analysis is currently
underway and it will be reported in a separate article.
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