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On the basis of the quasipotential approach to the bound-state problem in quantum electrodynamics we
calculate hyperfine structure intervals AETS(2P; ;) and AEHFS(2P;),) for P states in muonic deuterium. The
tensor method of projection operators for the calculation of the hyperfine structure of P states with definite
quantum numbers of total atomic momentum F and total muon momentum j in muonic deuterium is formulated.

We take into account vacuum polarization, relativistic, quadrupole, and structure corrections of orders a*, o,

5

and «®. The obtained numerical values of hyperfine splittings are useful for the analysis of experimental data of

the CREMA collaboration regarding muonic deuterium.
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I. INTRODUCTION

The investigation of energy spectrum of light muonic atoms
(muonic hydrogen, muonic deuterium, ions of muonic helium)
has reached a new level at present. This is due to experimental
results obtained by the CREMA Collaboration in [1-3]. On
the one side these results open a possibility to obtain new
values of a number of fundamental physical constants such
as nuclear charge radii. While experimental data on atomic
transitions have become very precise, our knowledge of the
charge radii, which are part of theoretical predictions, is
not as accurate as we would like. On the other hand, they
call us to look again at the formulation of the theory of
bound states in quantum electrodynamics (QED) and possibly
revise some of its previous aspects. The second position was
proved important after a series of experiments in [1,3] which
revealed essential disagreement between two values of the
proton charge radius obtained in experiments with electronic
and muonic atoms [1,3,4]. An analysis of the situation and
determining the causes of discrepancies are investigated in
several directions, which are widely discussed in [2,5-13]. It
is possible that the publication of new experimental data on
the structure of the energy levels of muonic deuterium which
is planned in near future will help clarify the problem. A
comparison of the theory and experiment for the transition fre-
quencies v(2*+! P;—22F"*1§ ) in muonic deuterium demands
careful consideration of different contributions to the energy
P levels. The calculations of fine and hyperfine structure of
the energy spectrum of light muonic atoms were made in a
series of papers [14—16]. The results of these studies are a
reliable benchmark for a comparison with experimental data
and provide a starting point for further research. Whereas the
calculation of separate contributions to the hyperfine structure
of § states of the muonic deuterium, even with a very specific
kind, was the subject of intense study, the hyperfine structure of
P states was much less investigated. Therefore, in this study
we aim to partly fill this gap. In this work we perform an
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analysis of different corrections to hyperfine splittings of P
states which allow us to obtain more accurate results important
for a comparison with experimental data. Another aim of our
study is to develop a method of projection operators in the
investigation of the energy structure of P states. The method
of projection operators on the bound states with definite spins
was used previously in [17,18] for the construction of particle
interaction operator for the hyperfine structure of S states.

II. GENERAL FORMALISM

Let us begin our consideration with basic contributions to
hyperfine structure of P states of order a*. Our approach
to the calculation of hyperfine splittings is based on the
quasipotential method in quantum electrodynamics in which
the two-particle bound state is described by the Schrodinger
equation [19-21]. The quasipotential V entering this equation
is constructed in QED perturbation theory by means of
off-shell two-particle scattering amplitude 7 projected onto
the positive frequency states at zero relative energies of the
particles:

V=vO4y®4y®4 |

T=TY4+7P4+7% 4+ ., W

V(l) — T(l), V(2) — T(Z) _ T(I)GfT(l), o )

where G/ is a free two-particle Green’s function entering
into iteration terms of the quasipotential. The leading-order
contribution to the quasipotential (the Breit Hamiltonian)
is determined by the amplitude of one-photon interaction
which we denote below T1,,. The hyperfine part of the Breit
Hamiltonian AV;IFS is written explicitly in Appendix A in
coordinate representation.

In this work we develop another approach to the calculation
of hyperfine structure of muonic deuterium based on the tensor
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representation of P-wave projection operators describing
muonic deuterium states. First we show in an example
of calculating the leading-order contributions how a tensor
formalism helps investigate the hyperfine structure of the
spectrum. It is useful to work in momentum representation
where we can write the wave function of the muonic deuterium
2 P state in the tensor form:

Yop(p) = (enp)Ra1(p), 3)

where ¢ is the polarization vector of orbital motion, n, =
(0,p/p), R21(p) is the radial wave function in momentum
space. Then the energy shifts are presented in integral

J

Prptdip
2m

(p2 + q2)v

le(Pv‘l) = 47TZOl(8*”q)|:ﬁ(611)(

x sz,pmz){gm Fi(k*) —

where p;» = P :I: p are four-momenta of initial muon

(m1+m )
and deuteron, g; » = (m1 +mz) Q =+ g are four-momenta of final
muon and deuteron. They are expressed in terms of total
two-particle momenta P, Q and relative momenta p,q. D, (k)
is the photon propagator which is taken to be in the Coulomb
gauge. Explicit expression of the deuteron wave function
£4.0(p) has the form

£a0(p2) = £4.0(0) — D20 + oot [Sd.a(O)Pz]' ©)
€2(p) + ma ma
It should be noted that the amplitude (5) has been studied in
detail in [22] excepting quadrupole correction. In the center-
of-mass rest frame P = Q = Mv, v = (1,0). The form factors
F; 1,2,3(162) are related to the charge, magnetic, and quadrupole
deuteron form factors as ( = k2 /4m§) [23,24]

Fc = Fi+ 3n[Fi + (1 +n)F, — F3],
Fy=F, Fo=F+{0+nF—

We consider (5) as a starting point for a composition of orbital
L momentum, the deuteron spin s, (note that the spin of the
nucleus is usually denoted by I), and muon spin s;. In the first
scheme of momentum composition we add first momenta L
and s; obtaining two muon states with angular momenta j =
1/2 and j = 3/2. In the Rarita-Schwinger formalism the wave
function of the state with half-integer spin 3/2 is described by

)

1 3
W/L,a(pva) = Z <§a)a 1K’50>8u(ka)ua(P7w), (8)

A,

where (%a); 11| %0) are the Clebsch-Gordon coefficients.
Another sequence of angular momentum addition is that in the
beginning we add the orbital and intrinsic angular momentum
of the deuteron and then the muon spin. When we combine
the L =1 and s, = 1 we get three states with the deuteron
momenta 2,1,0. The deuteron wave function has in this case
the form

D (s 12 120)e,(p20)EP A (9)

Ao

d’/w(p’ V) =

(p2 + q2)v kpks
2m2 2m2
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form:

AE™S = f(s nq)Rzl(q)(2 )3/2

/ (enpRu(p)=——5 AV (). @)

(2 )3/2

In the leading order the hyperfine potential AV is con-
structed by means of one-photon interaction amplitude 77, .
Writing the amplitude T, we refer to it a part of the
bound-state wave function related to orbital motion:

ke
+(1 +au)aus m )u(pl)i|(8np)Duv(k)

m 2 — F (kz) + (g,o)»gau gpuga)\) F3(k )}Ed o(p2), (3)

(

After combining ¢,, with the muon spin on the second
stage there arise three states with F =5/2,3/2,1/2 which
are described by the tensor-spinor field W ,, satisfying to the
Dirac equation

& —DW¥,, =0, v'y,, =0. (10)

The field W, can be easily decomposed into different parts
with definite atomic angular momentum F':

5-
FP=§ S (11)
p_ 3" S 1

F = 5 wy = E(VLMVSWV + VJ_VVSWH)s (12)
FP = 3 e L(m Ys¥v — v ys¥u),  (13)

2 v \/E " I
[ S ] (14)

= 2 N w = 2\/6 ylu’ylv )
p_ 17 s 1

= 2 \I’HV = %(g/w — VW), 15)

where W, is the usual 5/2 generalized, symmetric Rarita-
Schwinger tensor spinor [25,26]. The negative parity is obvi-
ous for physical reasons. Different states with total momentum
F =1/2 and F = 3/2 are decomposed into symmetric and
antisymmetric parts satisfying (10). The tensor-spinor wave
functions were used previously in [27] for the bound states
of quarks. For further calculations, we note that each field
WA with F =3/2,1/2 is a superposition of states with
muon angular momentum j = 1/2and j = 3/2. Introduced in
(11)—(15) tensor-spinor fields can be considered as projection
operators on the states with a definite value of the total angular
momentum. These projectors are very convenient for the
calculation of the matrix elements of the interaction potential
corresponding to certain quantum numbers. They allow us to
avoid direct cumbersome multiplication of different factors
in the amplitudes of the interaction of particles and use the
computer methods for calculating amplitudes and the energy
shifts [28].
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To demonstrate this property of W,, we continue our
calculations of the amplitude (5) corresponding to transitions
between states with definite values of F'. Introducing projectors

J

AnZa
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W, in (5) and averaging the amplitude over the projection of
the total angular momentum M we obtain the following basic
relation:

le(P q) + 1

2F M=—F
{ (Pz + 612)u

22 PR — o

1
X [gpm - %(’"2%1

where the lepton vertex function T, = Zuutdtu

2m

(P2 + q2)v kpko
—PZ 92 2m F (kz) + (gpkgaﬂ gpugak) F3(k2)}Dl“’(k)

1
— qp,)(2mav, — qp)] |:gaa1 — —(mavy,
2m

F N
3,1;)“” 5 %l%m} 10+ 1)~ yal, fm(@+ D) - yp]}

2m; 2m;

- pal)(2m2va - Pn):|, (16)
2

+ 1+ au)auéz%fl, a,, is the muon anomalous magnetic moment. The Lorentz

factors of the Dirac bispinors and transformed Lorentz factors of deuteron wave functions are written explicitly. Inserting in (16)
W, from (11)—(15), averaging and summing over initial- and final-state polarizations M, and calculating the trace by means of

the package Form [28], we find three matrix elements corresponding to F = %, F =

fields with half-integer spin looks as follows [17,25,26]:
F
I1,,(F =3/2) =

M=—F
F

N 041
fligo(F =52 = 3wt = ¢ )[2(1”1 Poy + PigPyy) =

v
M=—F 2

P vo Pt o

10

Mam @+ 1D
> wneM = 5

up !t vo

%, F = % The polarization sums for the

1 2 1
|:g;w - gJ/uJ/u - gv,uvv + g(vu)/v - UVVM)}’ (17)
1 1 1
no L vp 3 P;/.vaa

ntotvp

1
— —(P\P,P),+ P PP, + P,P P, + P, PGPW)], Py, =guw—vuVy, Py =Py, (18)

Let us construct by this method basic hyperfine splittings of order a*. We project the amplitude (5) sequentially on states with

j=1/2, F=1/2and j = 1/2, F = 3/2. Corresponding averaged amplitudes are the following:
——F=1)2 _ WZo 5 - [mi(0+ 1) — yq]
le(P Q)j 12 = g nginr{(v + 1)(7/,01 - Up,)()/a + vs) 2m,
(mi(d+ 1) — ypl
Fu ! ) (Vo + Uw)()/al - Um) Dpw(k)
n
(P2 + q2)v 2 (P2 + @) kpks 2 k;. 2
o————Fi(k ————=F(k o o) — F5(k
« {gp s %) = PR S 0 4 (80— 8puon) 3, o)
1 1
X | 8ppr — 75 M2V, — qp)2mavy — qp) || §ooy — 75 (M2Vs, — Poy)(2maVe — po) |, (19)
2m; 2m;

——F=32 TZ

Ty, 5 = ——ngnyTr{(® + DIy, (F = 3/2)(ys — vs)ys
[mi(d+1) — yql | [mi(d+ 1) — yp]
r w — Vo) ¢ D (k
x - p - ¥5(Yeor — Vo) { Dy (k)
(P2 +q2)y (P2 + 42)o kpks
x {gw%w% s 2 FK)+ (8o = onor) 3 F%(kz)}
1
X |:gpp1 — ——(mavy, — qp)(2mav, — qp)] [gml — 7 (mavs, — psy)(2mavs — pg)]. (20)
2m; 2m;

In the quasipotential method each of the amplitudes (19) and (20) determines the interaction operator of particles corresponding
to states with selected quantum numbers. In this case, we get not only the contributions of the hyperfine interaction, but also the
Coulomb potential and a potential of fine structure. But the difference (19) and (20) allows us to find the hyperfine splitting of
state j = 1/2 which is written as an expression of the output from the Form program:

—_— Z 2 2(pq)?
Ty () oy o(F = 3/2:1/2) = 7“{ a [_%Jr (P®) :|+(Kd+1)|: (P9)

(P’ + qz)(pq)}

maky pqk® pgk? pqk?
a ra (@’  (P* +4¢*)(pq)
2(1 1+ 2 ) - — 21
+ 2 +Kd)< + 2)[ 12 qu2+ k2 (21)
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where k; = 0.714 025 is the deuteron anomalous magnetic moment [29], connected with the deuteron magnetic moment w4

by therelation kg = (ugmo/m, —

1).In (21) we take electromagnetic form factors at k> = 0 and omit the quadrupole contribution

which is studied in detail in next section. The normalization factor 3/47 coming from the wave function of orbital motion is
taken into account. Two other hyperfine splittings of the 2 P3, state looks as follows:

m——rs oo Zaf mi [ 1pg 11(p@’ 3 (P’ +¢))(PpQ) Pe)’  1(p* +4)(Pq)
Ty (oo (B =321/ = T{mde[ 2k 10pgk? 10 pgk? ] e )[ & 2 pgk }
2 an[ pe  ®®* (P*+9)HPY
50 +Kd)(1 - 7>[ K pgk? pgk? }
3
(pq)[ (4 d)__led __(] +Kd)( _a_>]}’ 22)
pq m 4
Za| my [5pg 1(p@)?* 1(p*+¢>)Pq) 5@  5(p*+qH(Pq)
Tiy(P.) q)’ 3/2(F =238 = {mde [EF C2pgk* 6 pgk? } (ka )[ 3pgk®> | 6 pgk? ]
2 P9’ (p*+49)(Pq)
+§(1 +Kd)<1 4 )[k2 + pgk? pqk? :|
(rq) 1 mikg a,
_E["(l ) =gt 20 (1= )}} 23)

where the terms proportional to (pq/pg) vanish as a result
of the angular integration. They are important for the correct
calculation of the vacuum polarization effects. There are three
types of integrals with the radial wave functions which are
calculated analytically:

_pPa

dq dp
Ji=[R
1 / 21(4)(2 )2 / 21([7)(2 %72 (p — q)2
:< pq >:i 2:< (P’ >:i
P-q?/ 16° pa(p—q?/ 48
2 2
+ 5
I = <M> ==, 24)
pq(p—q 24
Note that the terms on the right side of the Egs. (21)—(23)
proportional to (1 + k) disappear after momentum integration
and we obtain the following leading-order contributions of
diagonal matrix elements to hyperfine splittings of 2Py, and
2 P;, states:

AEMS (F =3/2:1/2)

_ at(1 4 k)’ mikq I ay
12m1m2 2m2(1 + Kd) 2
= 2070.5040 peV, (25)
AETS (F =3/2:1/2)
_ kw2 mikg Ay
24mimo 5 2my(14+kg) 10
= 420.9426 ueV, (26)
AES ,(F = 5/2:3/2)
5a4(1 + )’ + miky A
72mym, 5 2my(1 + ky) 10
= 701.5712 ueV. 27

(

Numerical values of hyperfine splittings in (25)—(27) and
other corrections which we calculate are presented with
the accuracy 0.0001 peV. Theoretical errors in (25)—(27)
which are determined by uncertainties of fundamental phys-
ical constants reach a value 2 x 107 ueV. So, we do not
write their values exactly in the text and Tables I-III ex-
cepting the quadrupole corrections of order a* which are
large.

Two amplitudes (19) and (20) are constructed combining
first the orbital momentum and muon spin. Then the spin
of the nucleus is added. We can act slightly differently
expressing the states with j = 1/2 and j = 3/2 directly in
terms of introduced symmetrical and antisymmetrical states.
This possibility is illustrated hereinafter. In this method we can
evaluate also off-diagonal matrix elements. Their calculation
is demonstrated in the next section for quadrupole correction.
To facilitate a comparison of the method of calculation
and obtained contributions to the previous approaches we
make Appendix A, which demonstrates the calculation of
corrections of order a* in the coordinate representation.
All basic contributions to hyperfine structure and numerous
higher-order corrections are presented in Table I.

III. QUADRUPOLE INTERACTION CORRECTIONS

Quadrupole interaction originates from the not completely
spherical shape of the deuteron. If the potential of the muon has
also a nonspherical component at the position of the deuteron
(only with muon angular momentum j > 1/2) then there exists
a quadrupole energy shift [30-32]. Ordinary calculation of
this contribution to hyperfine structure in muonic deuterium
is based on the representation of quadrupole interaction in
coordinate space as a scalar product of two irreducible tensor
operators of rank 2. After that the matrix elements of tensor
operators are expressed in terms of reduced matrix elements
using the Wigner-Eckart theorem.
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TABLE I. Diagonal matrix elements of hyperfine structure of 2 P-states in muonic deuterium

22P3/2 (neV) 24P3/2 (eV) 261’3/2 (neV)

Contribution 22Py )5 (ueV) 24Py (neV)
Leading-order o* —1380.3360 690.1680
correction

Quadrupole correction 0 0

of order a*

Vacuum polarization —1.0706 0.5353
correction of order o®

Quadrupole and vacuum 0 0
polarization correction

of order o®

Relativistic —0.1677 0.0838
correction of order «®

Vacuum polarization —0.0011 0.0005
correction of order «®

Structure correction —0.0011 0.0021
of order o®

Summary contribution — 1381.5765 690.7897

8162.2889 8583.2315 9284.8027
433.9033 —347.1227 86.7807
+0.0455 +0.0364 +0.0091
—0.2802 —0.1121 0.1681

0.3564 —0.2851 0.0713
—0.0125 —0.0050 0.0075
—0.0014 —0.0006 0.0008
—0.0006 0.0010 —0.0016

8596.2539 8235.7070 9371.8295
+0.0455 +0.0364 +0.0091

In this work we develop another approach to the calculation
of quadrupole interaction based on tensor representation of P-
wave projection operators describing muonic deuterium states.
Inthe case of F = % and F = % we should take the sum of two

J

- A T
T,(p,.q = vy

ngnijw(k)Tr{(ﬁ + DI,5(y, — vp)

contributions regarding the symmetric and antisymmetric
wave projection function (12)—(15). For completeness, we
present two averaged amplitudes corresponding to \I/lfv(F =

3)and WA (F = 3):

(1 = 0) + yal
2m1

n

5 [ml(lgﬁ)ﬁ-}'ll](yw_vw)_i_(p_) 5.0 > 0) — (@ = &) — (p — 5)}
n
(P2 + @) (P2 + 42Dy koko k
x {gmzzT:”Fl k2) — zszzzp—néka% + (8p18on — gp,tg[,x)z—,;z&(kz)}
_ onaQq] pg @OE+L)  (pe?  1(pg)
__ _ _ ey (28)
3 |(p—9)? (p—q)? P—-9°> 3 pg
- N 1—19
T, = %nf]n‘;DMk)Tr{(ﬁ Dy, — o) Zn’:l) trdp,
s
L 2;””’]% — v+ (p— 8w — o)+ (@— o)+ (p— 8)}
1
(P2 + g2 (P2 + o) ko k
x {gm%ﬂ(kz) - % - : Fy(k) + (8 8o — gwganz—nzst(kz)}
_waQs] pg @DE+L)  (pg?  1(pg)
_ _ _ Lea) | (29)
15 | (p—q)? P—q)? P—q?* 3 pg

where we keep only the contribution of the quadrupole form factor F(0) = Q4. The index replacements designated in brackets
of (28) and (29) refer to the written part of the amplitude. Remaining integration with the radial wave functions is carried out

analytically:

Pq

Pa) (2 + %)

: _ B (Zaey

= [ g _da_,
_/(27r)3/2 12(P)/(2n)3/2 12(q) D—a?

(30)

(Pq)’
167

(P —q? P —-9q?
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The sum of (28) and (29) multiplied by the factor (30) gives

3
the contribution to hyperfine splitting %(— 28 F3/2). Let
us present final results for other transitions:

aQu(pnZa)?
48

The quadrupole moment of the deuteron is taken to be Q; =
0.285 783(30) fm? [33]. The result (31) coincides exactly with
previous calculations made by different approaches [16]. A
it follows from numerical values of (31) (see Table I) the
quadrupole interaction changes the position of levels 24P;,

HES 4 1
AE,” = Sri2 — §3F3/2 + 331«"5/2 . (3D

J

— Foip
Ty P D112 =

T 5w A
2200 0 Dy (T (0 + Dy — 0,)(¥s + v)

PHYSICAL REVIEW A 92, 052512 (2015)

and 22P3/2. We indicate in Tables I-III the error margins
for contributions connected with quadrupole corrections of
order o* which are numerically large. Other error margins
are numerically negligible. Let us investigate in addition how
the total angular momentum of the muon is changed in such
transitions. For this purpose, build again the amplitude of
single-photon exchange combining consistently muon spin
with the orbital angular momentum and the deuteron spin.
To be specific, we consider two diagonal matrix elements
which are determined by averaged amplitudes with j = 1/2,
F=1/2and j =1/2, F =3/2:

(1 +9) — }’Q]F [mi(1+9) — yp]

I Yo +0)(Vo — va)}

9 2m, 2m1
x{gm%ﬂ(kz) %’;i Fy(k?) + (8180u — 8ongoi) 5 Fs(k2>}=0, (32)
T @D = o nf,npDuu(km{(ﬁ D (s — uysd “;Zf —vdlp I “;Zf — VRl - vw)}
X{gm%ﬂ(kz) %ZPZFUCZ)‘F(&A&W Sonsor)y F3<k2)}=0, (33)

where lower indexes of the amplitude designate the muon
total angular momentum. With one side, the obtained expres-
sions (32) and (33) explicitly show that quadrupole interaction
does not contribute to diagonal matrix elements with j = 1/2.
On the other side they demonstrate our choice of the tensor
projectors on the state with j = 1/2:

wi=120 = 1/2) = vV, (34

Y

1rs(u — vys(vs —

where the spinor W describes the state with total atomic
momentum F = 1 . Using the Dirac algebra transformations

we can expand (34) on the basis \IJS J(F = 2)and \IIA (F = 2):

iSRG =1/2) = L\If,fv(F =1/2)+ \Fqﬂ* (F =1)2).

V3
(35)
The same expansion can be performed for the state with j =
3/2 and two states with j =5, FF =3 and Jj= % F = %

They looks as follows:

2 1
v 1%—3/2)—& W(F—l/z>—ﬁ WF = 172)

(36)
5 1

WS = 1/2>=\f6 Wi (F=3/2)— \/; wi(F =3/2),

(37)

1
Wi =3/2) = —\/EWELV(F =3/2)

5
+\/;\Il/fv(F—3/2). (38)

(

Using (35)-(38) we can investigate off-diagonal matrix
elements corresponding to different values of muon angular
momentum j. In fact, contributions with symmetrlc and an-
tisymmetric tensor-spinor fields W3 (F = 1,3)and WA(F =
2,2) are evaluated above in matrix elements (28) and (29).
Thus it is necessary to use only the correct coefficients of
expansions (35)—(38). As a result we obtain

AEGS( =1/2;)" =3/2)

aQi(Zpa)’ 1
= T(\/§3F(1/2) - ﬁ%@/z))- (39)

Numerically, all quadrupole corrections are large and pre-
sented in Tables I and II. Drawing attention to the significant
value of the quadrupole corrections, we proceed to the

TABLE II. Off-diagonal matrix elements in the hyperfine struc-
ture of P-wave muonic deuterium.

Contribution to HFS 2 2P1/2_3/2 (,LLCV) 24P1/2’3/2 (p,eV)

Leading-order o* —126.0372 —199.2824
correction

Quadrupole correction  613.6320 + 0.0644 —194.0475 £ 0.0204
of order o*

Vacuum polarization —0.1437 —0.2271
correction of order o’

Quadrupole and vacuum 0.0891 —0.0282
polarization correction

of order o’

Relativistic correction —0.0043 —0.0067
of order o

Vacuum polarization 0.0001 0.0001

correction of order o®

Summary contribution ~ 487.5360 £ 0.0644 —393.5918 £ 0.0204
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TABLE III. Hyperfine structure of P states in muonic deuterium.

State Energy (meV) [16] Energy (meV)
2P — 1.4056 —1.40534 £0.00001
24Py 0.6703 0.67031 £0.000001
2%p;), 8.6194 8.62002 4 0.000 05
24Py 8.2560 8.256 18 +0.000 04
2P, 9.3729 9.371 83 £0.00001

consideration of other important effects within the formulated
framework.

IV. VACUUM POLARIZATION AND STRUCTURE
CORRECTIONS

The above basic formulas for the amplitudes of the
muon-deuteron interaction allow us to calculate the various
corrections. Next in importance are the corrections to the
vacuum polarization (VP) of order «°. In the formulated
framework these effects can be easily studied. In the first-
order perturbation theory the one-loop vacuum polarization
contribution to hyperfine structure (HFS) is determined by
the amplitude in Fig. 1. For its calculation in momentum
representation which we use, the following replacement

J
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(a) (b) () (d)

FIG. 1. Vacuum polarization effects in one-photon interaction.
The wavy line represents hyperfine part of the interaction.

in the photon propagator should be done in (21):

1 e (7 p®)dE
kK2 3w )i k4 4m2E%

p(€) = VE2 — 126> + 1)/&*.

(40)

As a result we find that the vacuum polarization contribution
to hyperfine splittings can be expressed in terms of three-
momentum integrals which are a generalization of the three
integrals discussed earlier in (24):

dq dp pPq
L :/RZI(Q)W/ 21(1’)(2 32 (p — q)? + 4m?2&?

_< (P’ >_a(3a+8)+10 1—<
T \pgp— @ +4m2E2[ T 6a+2¢ T T

. Pq _aBa+8)+6 _4m.§
B <(p —q)? +4m552> T 2@+2t T Taa
(41)
Pa(p* + ¢%) > _ 2(4a+5)
pq(p— @2 +4m2€2 [ 3(a+2)*

Third integration over the spectral parameter £ also can be carried out analytically, but they are quite cumbersome. So, we present
here the necessary VP correction to hyperfine splitting of the 2P, /, state only in integral form:

HFS _ MSa(ZOI)4/ mikg Ba +2)
AEyW Q2P ) = 50— 1 p(&)dE oy a2

37‘[1’)’111112
= 1.0718 peV.

++e)(1+%)

2(3a® + 4a +2) 2
i ]
(42)

The same calculation can be performed for the 2 P3, state. The corresponding results are the following:

AEVR 2Psp)(F =3/2;,1/2) =
6JTH1|H12

+ k(1 - %“)
3 7 4
B [ e 5t
Tminy Jy

+ A+ (1= )

AESS QP ) (F =5/2;3/2) =

(15a% + 8a + 4) 2a?

2(15a*> + 8a + 4) 10a?

,u3a(Zot)4/ [led Ba +2)
e d
1 p§)dé

2m, 6(a + 2)3

— (4 ky)———— i| =0.0595 pneV,  (43)

3(a + 2)* (a+2)7*

mikg 53a + 2)
2m, 18(a +2)3

I+ k)57 ] =0.0992 peV.  (44)

9a + 2)* 3(a +2)*

Another important VP effect is related to the quadrupole interaction discussed in previous section. Using for its calculation
basic expression (21), (22), (23), and (41) we obtain for diagonal and off-diagonal matrix elements

(5a* + 8a + 4)

3 4 00
pwa(Za) Q

(a+2)

4 1
p&)dé |:5F(1/2) - §8F(3/2) + §3F(5/2)]

4 1
= |:5p(1/2) - —5[:(3/2) + gap(5/2)1| x 0.2441 [,LCV, (45)

5
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3 4 e} 2
. . wa(Za)* Qg (5a” + 24a + 24) 1
AE =3/2;j =1/2) = dg| /28 -
ove(j =3/2;] /2) T 1 3a 1) p&) §|: Fap = 7 F(3/2)j|
1
= |:\/§8F(1/2) — ﬁapg/z)} x 0.0630 ,bLGV. (46)

A comparison of our results (42)—(46) with earlier estimates in [16] shows that there is a significant difference of the order
of tenths of ueV. For this reason we decided to perform additional validation of our results using a different method of the
calculation. As was shown in [21] the vacuum polarization effects presented in Fig. 1 in first-order perturbation theory can be
calculated in coordinate representation. The amplitude shown in Fig. 1(a) gives the following hyperfine interaction potential in
coordinate space:

Za(l+«ky) a [ _ miky
AVHFS — el / d 2mEr 1
ty.vp(r) 2mymyr3 37 J, pE)dEe + ma(1 4+ Kkq)

x (L - 52)(1 +2m.&r) — (1 + a,) (4m2E*r?[(s1 - 52) — (51 - n)(s2 - m)]
+ (1 4 2m£r)[(s) - 52) — 3(s1 - n)(s7 - n)])}. 47)

Averaging (47) over the Coulomb wave functions, we obtain an analytical expression for the vacuum polarization correction of
order o in the one-photon interaction:

4.3 00 00
AE}Np(r) = —QZanllmt;d)%/l p(é)d&/() xdxe—)‘““mﬁ/W]{(l + —mﬂlfxd))
x Tl<1 + Mx) -1+ au)[wﬁ—k <1 + 2me§x>Tz] } (48)
w w2 w
where we introduce the designations for operators 7; in (47):
Ty =(L-s2), Tra=1I[(s1-52)—3(s1-n)s2-n)], T3=1[(s1-52)—(s1-n)(s2-n)]. 49)

(

The coordinate integration in (48) is carried out analytically function [34,35] [see the amplitude in Fig. 2(a)]:
and numerically over the spectral parameter £. Numerical
results for separate states include both diagonal and off-

, u*(Za) (3
diagonal matrix elements: Gap(r,r) =

T3 E""/)e‘”“”g@,zs,

g(z,7) = 2470 +3627 7. +3673 72 + 2470 +36z.20

i

(a

AER ) (p(F =1/2) = —0.7145 peV,
AETY ) yp(F =3/2) = 0.3573 peV,
AETS ) yp(F =1/2) = —0.0992 peV,
AETS ) yp(F =3/2) = —0.0397 peV, (50)
AELS ) yp(F =5/2) = 0.0595 peV.

AEGE oy oy ye(F =1/2) = =0.1111 peV,

AE(S i3y vp(F =3/2) = —0.1757 peV.

calculation of hyperfine structure in muonic deuterium P
states lead to the same results. Two-loop vacuum polarization
corrections shown in Fig. 1 are calculated in a similar way.
They are included in Appendix C. Their numerical value is ©) () (©)
essentially smaller (see Table I).

For completeness, we analyze vacuum polarization correc-

7 e o
They evidently show that two of our approaches to the Q
|

FIG. 2. Vacuum polarization effects in the second-order pertur-

tions of order o’ in second-order perturbation theory (SOPT),
which are determined by the reduced Coulomb Green’s

bation theory. Dashed and wavy lines represent correspondingly the
Coulomb and hyperfine interactions.
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+367273 4497372 — 3747 where C =0.5772... is the Euler constant, z = Wr,z. =

e .3 34 33 min(z,z'),z- = max(z,z’). Using (Al) and (51), we ob-
127°Q 4 2« +20)70 — 3zezs + 1222z tain the following integral expression for VP correction

x [—2C + Ei(z.) — Inz_. — Inz. ], (&29) [21]:
J
YA 4 ky) « *° & 0 g’ — miK — _
A EHFS — ot ( d _/ d f d / dx e~ ¥A+2mE/W)| T 1%d T — (1 1. (52
VRSOPT = T Sa p(§)d§ A x , x2 xe 1+m2(1+xd) 1= +a)Ty|. (52

Similarly, the correction of vacuum polarization and quadrupole interaction in second-order PT has the form:

5,3 —x'
AEHFS = Qa7 enas [ ax [ e ) g s 52 = 35 m)(sa )]
VP, Q,SOPT 25927 J, o A , 12 8, 282 2 2

(8r.1/2 — 28p32 + 18£.52)0.1120 (eV), j=j =3,

= s (53)
{ (V28r,1/2 = J287,32)0.1120 (ueV), j =3.j' = 3.

(

The coordinate integration over x,x’ is performed again this contribution) to hyperfine splittings. For this aim, we
analytically and numerically over £&. Summary numerical will introduce into them an additional factor (—r37k?/6)
values of contributions in the first and second orders of PT to with the deuteron root-mean-square radius connected with
the P-state energies are presented in Tables I and II separately the expansion of form factors and omit factors containing
for diagonal and off-diagonal matrix elements. the deuteron magnetic moment. After evident simplifications

Based on the amplitudes (21)—(23) it is possible to find  we obtain the following contributions to hyperfine splitting
the nuclear structure correction (the index str designates potentials for states 2Py, and 2P35:

J

————iiFS Zarg[m (P’ (e’ a (pg)’
Ty 5 (F = 3/2:1/2) = =24 {—l[pq - o114 %) pg+ B, (54)
12 [m; pq Pq 2 pq
——HFS Zarg [ m Pe)’] (@’ 2/ a (Pg)’
Ty D) o (F =3/2:1/2) = Z0d L L) —4 S(1-%) 7 , 55
- HFS Zar3 [ 5m; [ (pq)® 20 (pg)* 2 a, (Pg)*
Ty Q) s o (F = 5/2;3/2) = 2 - S -t (1-2) 7 : 56
ly.str(P: @) ;3 5( 12:3/2) = —7 {6m2[ P +3 s 3 1 )|pat . (56)
Further integration and consideration of the general normalization factor directly lead to the following splittings:
5.,6,:2
AEMS (j=1/2,F =3/2;1/2) = L2 (M ) 60032 pev, (57)
& 16m1m2 my 2
HFS welrg (m
AE &(J=3/2,F =3/2;1/2) = — —a, | =0.0016 ueV, (58)
v 32m1m2 my
HFS . 5/v05016"§ mi
AE}, (J =3/2,F =5/23/2) = ———( — —a, | = —0.0026 peV. (59)
& 96m1m2 my

(

As expected, these corrections are very small and do fect, quadrupole interaction, nuclear structure, and relativistic
not affect the comparison of theoretical results and planned effects. Some corrections are obtained in analytical form,
experimental data. Other corrections of order ® are discussed but the biggest part of the contributions to the energy
in Appendixes B and C. spectrum is presented first in integral form, and then calculated

numerically. All results are presented in Tables I-III giving the
values of diagonal and off-diagonal matrix elements and the
V. SUMMARY AND DISCUSSION positions of the P-energy levels.

We would like to point out the three main results obtained
in this work.

(1) An approach based on the use of a special type
of projection operators on the states with definite quantum
numbers of atomic angular momentum F and total muon
angular momentum j is developed. It allows us to simplify
essentially the construction of the particle interaction operator

In this work we investigate the hyperfine structure of energy
levels related to the P-wave states of muonic deuterium on
the basis of the three-dimensional quasipotential approach
in quantum electrodynamics. To increase the accuracy of the
calculation we take into account the leading-order contribution
and several basic corrections of order o and «®. These
corrections are connected with the vacuum polarization ef-
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through the use of computer methods for calculating Feynman
amplitudes. In particular, this method can be useful when
working with different loop corrections.

(2) We have increased the accuracy of the calculation
of P-wave hyperfine splittings primarily due to the correct
account of the corrections of the fifth order over «. To this
end, the contributions have been built into the operator of the
interaction of particles that are connected to the vacuum po-
larization and quadrupole interactions. We check the obtained
results in two ways: in the formulated framework of tensor
projection operators in momentum representation and the more
traditional method for the calculation of corrections in the
energy spectrum in the coordinate representation. Moreover,
in our calculation we take into account the contributions not
only of the first- but also the second-order perturbation theory.

(3) Higher-order O(a®) corrections are calculated. These
corrections, although small numerically and so do not affect the
comparison with future experimental data, clarify the structure
of the perturbation series for the hyperfine splittings.

Let us present more detailed comparison of the results
with previous calculations in [16,22]. Being different in the
method of obtaining corrections of leading order O(a*) our
results coincide with [16,22]. We mean both the spin-orbit,
spin-spin contributions of order O(a*) [16,22] and quadrupole
corrections of the same order [16]. But we obtain the fifth order
in « corrections which differ significantly from the results
of [16]. In [16] the vacuum polarization corrections to the
hyperfine part of the Breit Hamiltonian are determined by the
following modification of the potential with / > 0:

1dV Zo o [ Com,Er
——=— 1+ = p(E)dE(L + 2m Er)e” """ |.
r dr r3 37 J,
(60)
|
22P1/2 24P1/2
22P1/2 —1381.5765 0
2 4P1/2 0 690.7897
M= 2Py, | 487.5360 0
24P3/2 0 —393.5918
26P3/2 0 0

Its diagonalization leads directly to the position of the en-
ergy levels 2 P (see Table III) and hyperfine splitting intervals
which can be measured in the experiment. Accounting for the
accuracy of the calculation, we have added one extra decimal
place in our results in Table III.
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This leads to the appearance of a special factor of the form (1 +
&p) with numerical value g,p = 0.000 391 for the quadrupole
correction and

2az

o [® 1
eap = E/I p(é)dé(aMQz * <1+as>3) v

for the Uehling correction to the Breit Hamiltonian. Numer-
ically, the coefficient in (61) is equal to the same value,
&p = 0.000391. In our calculation we demonstrate that the
vacuum polarization corrections to P states are determined
by different potentials [compare (60) with our formula (47)]
and have a different form for states with various quantum
numbers F and j. In contrast to [16] we have performed
exact construction of corresponding potentials for different
P states and obtained through them numerical results that
cannot be reduced to a factor (61). Our results are checked
by two independent methods. As an example, we give a
comparison of our vacuum polarization plus quadrupole
interaction contributions to hyperfine splittings of the level
2P3), with the results of [16]. In [16] these contributions
are equal to AE}LF;Z(F =3/2;1/2) = —3,LL30[4Qd821,/80 =
—0.3058 peV, AEMS (F =5/2;3/2) = pa Qqe,,/48 =
0.1699 ueV and differ essentially from our corresponding
values (—0.4394) ueV and 0.2441 peV. The same situation
occurs for other VP corrections. The only significant error
of our calculations is associated with the error of the
quadrupole moment of the deuteron, so it is presented in
Tables I-111.

Summing all diagonal and off-diagonal matrix elements we

obtain the following energy matrix:
22P3/2 24P3/2 26P3/2
487.5360 0 0
0 —393.5918 0
8596.2539 0 0 neVv. (62)
0 8235.7070 0
0 0 9371.8295

(

APPENDIX A: BASIC CONTRIBUTIONS TO HYPERFINE
STRUCTURE IN COORDINATE REPRESENTATION

Basic contribution to hyperfine structure is determined by
the hyperfine part of the Breit Hamiltonian [36]:

wrs, 2ol +kq) miky
AVB (r)= 2m1m2r3 |: m2(1+Kd):|(LS2)
Zo(l 1
- 22Tf2§rf 9 (5,15 = 3(sim)(sam)],

(AD)

where m |, m, are the muon and deuteron masses, k4, a, are
the deuteron and muon anomalous magnetic moments, s; and
s, are the spin operators of muon and deuteron, n = r/r. The
operator (A1) does not commute with the muon total angular
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momentum J = L + s;. As aresult there is the mixing between
energy levels 2Py, and 2P3 ;.

For the calculation of diagonal matrix elements
2Py | AVEFS |2P)p) and (2P3)0 | AVETS |2P5)5) we use
the Coulomb wave function of the 2P state in coordinate
representation:

1 —Wr
Wop(r) = —=W"re™"2y,,,(0,9),

2./6

The angle averaging in (A1) can be carried out by means of
the following replacements [36]:

W=puZa. (A2)

(s1-J) (L-J)
7

S1—>J L—)J

J2 J

(A3)

which give the eigenvalues of the corresponding operators:

G- D=3G+D-10+D+3] Ad
L-DH=1iG+D+1a+D-23]
<(Sl] — 3}’lil’lj> = —é(48,] — 3LiLj — 3LJLZ) (AS)

The diagonal matrix elements have the general form
EHFS _ a1 (1 + kq) |:T mikq
po=——"

_MKE = v a )T
a4t At 2]

48m1m2

(AO6)

where the operators 7; are defined in (49). Substituting here T}
and T, for definite quantum numbers F' and j, we obtain the
leading-order contributions to the hyperfine structure of 2P, »
and 2 P;, states:

4,3 1
2E{_I/];S _ w4 wa) | Mike G
18m1m2 2m2(1 + Kd) 2
= —1380.3360 peV, (A7)
4 HES a3+ ky) ) miky a,
12 = + =
36mm, 2mo(1 + k4) 2
= 690.1680 eV, (A8)
2pHES _ _oz4u3(1 +x) [ Smika ay
32 = 72myms 2my(1 +ky) 2
= 8162.2889 ueV, (A9)
apurs _ @04k (12 mikg ay]
3/2 36mum, |5 2ma(l4kg) 10
= 8583.2315 ueV, (A10)
oprrs _ _ @1 +k)[12 mika _ au]
3/2 24mym, |5 2ma(l4kg) 10

= 9284.8027 ueV, (A11)

where we take into account the fine-structure interval A Egs =
8.863 86 meV calculated in [16,37]. All expressions (A7)—
(A11) contain the correction to the anomalous magnetic
moment of the muon.

PHYSICAL REVIEW A 92, 052512 (2015)
Off-diagonal matrix elements (2P;, | AVHFS | 2Py /2>F =172

and (2P, | AVHFS |2P3/2)F=3/ ? are essential to achieve a
high accuracy of the calculation. They differ by the value of
atomic angular momentum. The angular averaging by means
of (A5) leads to T; = 2T,. For the calculation (Ls,), we
use the general formula for the matrix elements of the scalar
product of two irreducible tensor operators:

(j's2 F | (T'T?) | jsoF)
= (=D W (isa s FO( I T j)s2 I T Il 52),
(A12)

where W(jsyj'sy; F1) is the Racah coefficient. Apply-
ing (A12) to (Ls;) we find

(J'2F | (L - $2) | jsoF)

— (_1)—j—F—sz+L+3/2+j’ /(2]'/ T 1)(2j +1)

x+/(2s5 4+ 1)(s2 + D)s2QL + 1)(L + 1)L

. .1
f /o L at
s j 1l 11

Two off-diagonal matrix elements of the operator 7} have the

(A13)

form
11 301 V21 3 3 3
—1,=|(L-s)|=1,=)= ——= (= 1,=|(L - s5)| =,1,=
<2, ,2‘( 52) > ,2> 3 ,<2, ,2'( 52) x ,2>
5
:_*/?_, (Al4)

where the 6 symbols are taken from [30].
Using (A14), we obtain the leading-order contributions to
off-diagonal matrix elements of the Breit Hamiltonian (A1):

= ) e

48mm, 6 my(l + kq) i

= —126.0372 peV, (A15)

= g ) e o]
= 48m my 6 ma(1 + kq)

= —199.2824 peV. (A16)

There exist higher-order corrections to (A15) and (A16) which
are related to additional interactions and examined above.

APPENDIX B: RELATIVISTIC CORRECTIONS TO
HYPERFINE STRUCTURE

Relativistic corrections of order a® can be calculated
by means of the Dirac equation [38,39]. We present here
only a sketch of the output of the final formula for the
numerical estimate. In the Dirac theory the hyperfine part of
the relativistic Hamiltonian has the form

[r x o]
r3

AHHFS = €egNMUNS2 (Bl)
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where wy is the nuclear magneton, gy is the deuteron
gyromagnetic factor. To find the expectation value of (B1)
over atomic wave functions we should use the Wigner-Eckart
theorem expressing the initial matrix element through the
reduced matrix elements:

AENS = egnun (=1 "FW(jisyj'sa; F1)(s2 || 52 || 52)

rel
X <j/

Calculating the first reduced matrix element we can sim-
plify (B2) as follows:

[r x o]
3

r

j>. (B2)

AEMES = egnun (=12 "F /(255 + D(s2 + D)sa
% J2j + D'+ D' W(jsaj'sa; F1)

. [r x o]
(el (5)

In the case of the diagonal matrix element we have

. [r x o]
(el ()

ju>u“. (B3)

jﬂ> = —[ A Rix,

Ry = 2/0 gk(r) fi(r)dr, — (B4)

4k
4k —1°
The radial matrix elements are calculated analytically with the

use of exact Dirac radial wave functions. After their expansion
over @ we find [39]

—i A =

(4 )3 47
RQPy ) = 1‘; (1 n ﬁ(zmz)m%,
(Zoz)3 7 2 2 ()
RQ2P;p) = ~ i (1 + ﬂ(Zoz) )ml.

As a result, general expressions for relativistic corrections to
diagonal matrix elements take the form

a®(1 + k) m_%4_71

48mimy, w9 2
x[F(F+1)—JJ+1)—1I(+1)], (B6)

ERSQP ) =

rel

J

3
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oS+ k)’ mi 71

48mim, 3452
x[F(F+1)—J(J+1)—I1I(+1)]. (B7)

ENS@ps),) =

rel

Numerical results for separate P states are presented in Table I.
Relativistic corrections to off-diagonal matrix elements are
evaluated in a similar way. The radial and angular integrals in
this case take the form

Rk = / (g1/2(r) f3,2(r) + g3,2(r) f12(r)]dr,
0 EB8)
_ e+ —p? V2

—iA =Y
20+1 3

where the indexes near radial wave functions designate the
values of muon total angular momentum ;. Radial integrations
lead to analytical formulas and corresponding numerical
results:

HFS.off-diag _ _016(1 + ka)u m_?3\/§ B

= = —0.0043 peV,
rel, F=1/2 48m1m2 I/L3 32 ue
(B9)
6 3.3
rsoftdiag  @°(1 + k)’ m33v/5
Er=3p =~ A8mm, E o - —0.0067 ueV.
(B10)

Although their size is extremely small compared with other
corrections we have included them in Table II by inserting
numerical values with an accuracy 0.0001 weV for defi-
niteness. It shows the relative numerical value of obtained
corrections.

APPENDIX C: TWO-LOOP VACUUM POLARIZATION
CORRECTIONS TO HYPERFINE STRUCTURE

Two-loop vacuum polarization corrections presented in
Figs. 1(b)-1(d) have the order a®. We divide them into two
parts: loop after loop contribution (VP-VP) and two-loop
contribution to polarization operator (two-loop VP). For their
calculation we use corresponding potentials in coordinate
representation constructed in the same way as in [21]:

Za(l 2 > 1
Avl};l/l,:\S/P-VP(r):M<i)/l p(g)dgfl pmdn—

2mymor3

miKkq

%—2_772

) [(1 * m)@ - SDIEX(L 4 2meEr)e ™ — (1 + 2mnr)e "]

-1+ aM)(4m§r2[$4e_2m“E’ -

+[E2(1 4 2m Er)e ™" — > (1 + 2menr)e " [(sy - 52) — 3(s1 - n)(s2 -n)])},

n4e—2mpnr][(sl -82) — (51 -n)(s, - n)]

(ChH

Zo(l+ky)2 ([« 2t fdv _ Jioe miKy 2m,r
AVHFS — =1 = 2mer/~1—v 1 1 L -
two-loop VP(r) 2m1m2r3 3 (7‘[) 0 1— 2 e + mz(l + Kd) + ,—1 — 2 ( Sz)

2.2

dmsr
! +au)|:—ev2[(sl -8§2) — (51 -n)(s2-n)] + (1 +

1 —

2m,r

ﬁ)[(sl -82) — 3(s1 - n)(s2 - ")]j| } (C2)
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Averaging (C1) and (C2) over the Coulomb wave functions we
obtain their numerical values in the hyperfine structure which
are presented in Tables I and II. The muon vacuum polarization
correction is evaluated by means of a replacement m, — m
in (48). Its numerical value also is included in Tables I and II.

For the calculation of contributions in the second-order PT
we should use in the basic expression

AESSS: o = 2(WIAVG CGAVRR Y)Y, (C3)

the potential AV;%EFS corresponding to pure hyperfine

interaction or to hyperfine interaction corrected by the vacuum
polarization effect. Aa a second perturbation we use the
Coulomb potential of one-loop or two-loop order. All resulting
matrix elements are calculated analytically in a standard way
in the integration over the coordinates of the particles and
numerically by spectral parameters. Other details of their
calculation can be founded in our previous papers [17,18,21].

PHYSICAL REVIEW A 92, 052512 (2015)

The two-loop vacuum polarization contribution to hyperfine
structure of order «® is determined also by the third-order PT.
In this case we should use the following expression:

AEIT-ISST,VP = (Y | AVVCPGA‘/I-IFSGA‘/\fclﬁ [ ¥n)
+2(P, | AVGG VGG AVIES |y )
— (U | AVIES |y ) (4, | AVGGGAVE | ¥)
—2(Y | AV | ) (Y| AVGG G AVIFS [y, ).
(C4)

Using further exact perturbation potential (A1), modification
of the Coulomb potential AVC, and the Coulomb Green’s
function G (51), we obtain numerical values of corresponding
corrections which are written in Table I as a separate line.
Numerically the vacuum polarization contributions of order
«® are extremely small and will not have a significant impact

on the comparison with future experimental data.
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