
PHYSICAL REVIEW A 92, 052512 (2015)

Hyperfine structure of P states in muonic deuterium
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On the basis of the quasipotential approach to the bound-state problem in quantum electrodynamics we
calculate hyperfine structure intervals �EHFS(2P1/2) and �EHFS(2P3/2) for P states in muonic deuterium. The
tensor method of projection operators for the calculation of the hyperfine structure of P states with definite
quantum numbers of total atomic momentum F and total muon momentum j in muonic deuterium is formulated.
We take into account vacuum polarization, relativistic, quadrupole, and structure corrections of orders α4, α5,
and α6. The obtained numerical values of hyperfine splittings are useful for the analysis of experimental data of
the CREMA collaboration regarding muonic deuterium.
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I. INTRODUCTION

The investigation of energy spectrum of light muonic atoms
(muonic hydrogen, muonic deuterium, ions of muonic helium)
has reached a new level at present. This is due to experimental
results obtained by the CREMA Collaboration in [1–3]. On
the one side these results open a possibility to obtain new
values of a number of fundamental physical constants such
as nuclear charge radii. While experimental data on atomic
transitions have become very precise, our knowledge of the
charge radii, which are part of theoretical predictions, is
not as accurate as we would like. On the other hand, they
call us to look again at the formulation of the theory of
bound states in quantum electrodynamics (QED) and possibly
revise some of its previous aspects. The second position was
proved important after a series of experiments in [1,3] which
revealed essential disagreement between two values of the
proton charge radius obtained in experiments with electronic
and muonic atoms [1,3,4]. An analysis of the situation and
determining the causes of discrepancies are investigated in
several directions, which are widely discussed in [2,5–13]. It
is possible that the publication of new experimental data on
the structure of the energy levels of muonic deuterium which
is planned in near future will help clarify the problem. A
comparison of the theory and experiment for the transition fre-
quencies ν(22F+1Pj –22F ′+1Sj ′ ) in muonic deuterium demands
careful consideration of different contributions to the energy
P levels. The calculations of fine and hyperfine structure of
the energy spectrum of light muonic atoms were made in a
series of papers [14–16]. The results of these studies are a
reliable benchmark for a comparison with experimental data
and provide a starting point for further research. Whereas the
calculation of separate contributions to the hyperfine structure
of S states of the muonic deuterium, even with a very specific
kind, was the subject of intense study, the hyperfine structure of
P states was much less investigated. Therefore, in this study
we aim to partly fill this gap. In this work we perform an

analysis of different corrections to hyperfine splittings of P

states which allow us to obtain more accurate results important
for a comparison with experimental data. Another aim of our
study is to develop a method of projection operators in the
investigation of the energy structure of P states. The method
of projection operators on the bound states with definite spins
was used previously in [17,18] for the construction of particle
interaction operator for the hyperfine structure of S states.

II. GENERAL FORMALISM

Let us begin our consideration with basic contributions to
hyperfine structure of P states of order α4. Our approach
to the calculation of hyperfine splittings is based on the
quasipotential method in quantum electrodynamics in which
the two-particle bound state is described by the Schrödinger
equation [19–21]. The quasipotential V entering this equation
is constructed in QED perturbation theory by means of
off-shell two-particle scattering amplitude T projected onto
the positive frequency states at zero relative energies of the
particles:

V = V (1) + V (2) + V (3) + . . . ,
(1)

T = T (1) + T (2) + T (3) + . . . ,

V (1) = T (1), V (2) = T (2) − T (1)Gf T (1), . . . , (2)

where Gf is a free two-particle Green’s function entering
into iteration terms of the quasipotential. The leading-order
contribution to the quasipotential (the Breit Hamiltonian)
is determined by the amplitude of one-photon interaction
which we denote below T1γ . The hyperfine part of the Breit
Hamiltonian �V HFS

B is written explicitly in Appendix A in
coordinate representation.

In this work we develop another approach to the calculation
of hyperfine structure of muonic deuterium based on the tensor
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representation of P -wave projection operators describing
muonic deuterium states. First we show in an example
of calculating the leading-order contributions how a tensor
formalism helps investigate the hyperfine structure of the
spectrum. It is useful to work in momentum representation
where we can write the wave function of the muonic deuterium
2P state in the tensor form:

ψ2P (p) = (εnp)R21(p), (3)

where εδ is the polarization vector of orbital motion, np =
(0,p/p), R21(p) is the radial wave function in momentum
space. Then the energy shifts are presented in integral

form:

�EHFS =
∫

(ε∗nq)R21(q)
dq

(2π )3/2

×
∫

(εnp)R21(p)
dp

(2π )3/2
�V HFS(p,q). (4)

In the leading order the hyperfine potential �V HFS is con-
structed by means of one-photon interaction amplitude T1γ .
Writing the amplitude T1γ we refer to it a part of the
bound-state wave function related to orbital motion:

T1γ (p,q) = 4πZα(ε∗nq)

[
ū(q1)

(
p1,μ + q1,μ

2m1
+ (1 + aμ)σμε

kε

2m1

)
u(p1)

]
(εnp)Dμν(k)

× ε∗
d,ρ(q2)

{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}
εd,σ (p2), (5)

where p1,2 = m1,2

(m1+m2)P ± p are four-momenta of initial muon
and deuteron, q1,2 = m1,2

(m1+m2)Q ± q are four-momenta of final
muon and deuteron. They are expressed in terms of total
two-particle momenta P,Q and relative momenta p,q. Dμν(k)
is the photon propagator which is taken to be in the Coulomb
gauge. Explicit expression of the deuteron wave function
εd,σ (p) has the form

εd,σ (p2) = εd,σ (0) − p2,σ + g0σm2

ε2(p) + m2

[εd,σ (0)p2]

m2
. (6)

It should be noted that the amplitude (5) has been studied in
detail in [22] excepting quadrupole correction. In the center-
of-mass rest frame P = Q = Mv, v = (1,0). The form factors
F1,2,3(k2) are related to the charge, magnetic, and quadrupole
deuteron form factors as (η = k2/4m2

2) [23,24]

FC = F1 + 2
3η[F1 + (1 + η)F2 − F3],

(7)
FM = F3, FQ = F1 + (1 + η)F2 − F3.

We consider (5) as a starting point for a composition of orbital
L momentum, the deuteron spin s2 (note that the spin of the
nucleus is usually denoted by I), and muon spin s1. In the first
scheme of momentum composition we add first momenta L
and s1 obtaining two muon states with angular momenta j =
1/2 and j = 3/2. In the Rarita-Schwinger formalism the wave
function of the state with half-integer spin 3/2 is described by

ψμ,α(p,σ ) =
∑
λ,ω

〈
1

2
ω; 1λ

∣∣∣∣3

2
σ

〉
εμ(p,λ)uα(p,ω), (8)

where 〈 1
2ω; 1λ | 3

2σ 〉 are the Clebsch-Gordon coefficients.
Another sequence of angular momentum addition is that in the
beginning we add the orbital and intrinsic angular momentum
of the deuteron and then the muon spin. When we combine
the L = 1 and s2 = 1 we get three states with the deuteron
momenta 2,1,0. The deuteron wave function has in this case
the form

φμν(p,γ ) =
∑
λ1,λ2

〈1λ1; 1λ2 | 2γ 〉εμ(p,λ1)εν(p,λ1). (9)

After combining φμν with the muon spin on the second
stage there arise three states with F = 5/2,3/2,1/2 which
are described by the tensor-spinor field �μν satisfying to the
Dirac equation

(v̂ − 1)�μν = 0, vμψμν = 0. (10)

The field �μν can be easily decomposed into different parts
with definite atomic angular momentum F :

FP = 5

2

−
: �μν ; (11)

FP = 3

2

−
: �S

μν = 1√
10

(γ⊥μγ5ψν + γ⊥νγ5ψμ), (12)

FP = 3

2

−
: �A

μν = 1√
2

(γ⊥μγ5ψν − γ⊥νγ5ψμ), (13)

FP = 1

2

−
: �A

μν = 1

2
√

6
[γ⊥μ,γ⊥ν], (14)

FP = 1

2

−
: �S

μν = 1√
3

(gμν − vμvν), (15)

where �μν is the usual 5/2 generalized, symmetric Rarita-
Schwinger tensor spinor [25,26]. The negative parity is obvi-
ous for physical reasons. Different states with total momentum
F = 1/2 and F = 3/2 are decomposed into symmetric and
antisymmetric parts satisfying (10). The tensor-spinor wave
functions were used previously in [27] for the bound states
of quarks. For further calculations, we note that each field
�S,A

μν with F = 3/2,1/2 is a superposition of states with
muon angular momentum j = 1/2 and j = 3/2. Introduced in
(11)–(15) tensor-spinor fields can be considered as projection
operators on the states with a definite value of the total angular
momentum. These projectors are very convenient for the
calculation of the matrix elements of the interaction potential
corresponding to certain quantum numbers. They allow us to
avoid direct cumbersome multiplication of different factors
in the amplitudes of the interaction of particles and use the
computer methods for calculating amplitudes and the energy
shifts [28].
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To demonstrate this property of �μν we continue our
calculations of the amplitude (5) corresponding to transitions
between states with definite values of F . Introducing projectors

�μν in (5) and averaging the amplitude over the projection of
the total angular momentum M we obtain the following basic
relation:

T1γ (p,q) = 4πZα

2F + 1
nδ

qn
ω
pTr

{[
F∑

M=−F

�M
ωσ1

�̄M
δρ1

]
[m1(v̂ + 1) − γ q]

2m1
�μ

[m1(v̂ + 1) − γ p]

2m1

}

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}
Dμν(k)

×
[
gρρ1 − 1

2m2
2

(m2vρ1 − qρ1 )(2m2vρ − qρ)

][
gσσ1 − 1

2m2
2

(m2vσ1 − pσ1 )(2m2vσ − pσ )

]
, (16)

where the lepton vertex function �μ = p1,μ+q1,μ

2m1
+ (1 + aμ)σμε

kε

2m1
, aμ is the muon anomalous magnetic moment. The Lorentz

factors of the Dirac bispinors and transformed Lorentz factors of deuteron wave functions are written explicitly. Inserting in (16)
�μν from (11)–(15), averaging and summing over initial- and final-state polarizations M, and calculating the trace by means of
the package Form [28], we find three matrix elements corresponding to F = 5

2 , F = 3
2 , F = 1

2 . The polarization sums for the
fields with half-integer spin looks as follows [17,25,26]:

�̂μν(F = 3/2) =
F∑

M=−F

�M
μ �̄M

ν = (v̂ + 1)

2

[
gμν − 1

3
γμγν − 2

3
vμvν + 1

3
(vμγν − vνγμ)

]
, (17)

�̂μν;ρσ (F = 5/2) =
F∑

M=−F

�M
μν �̄M

ρσ = (v̂ + 1)

2

[
1

2

(
P 1

μρP
1
νσ + P 1

μσP 1
νρ

) − 1

3
P 1

μνP
1
ρσ

− 1

10

(
P 1

μP 1
ρ P 1

νσ + P 1
ν P 1

ρ P 1
μσ + P 1

μP 1
σ P 1

νρ + P 1
ν P 1

σ P 1
μρ

)]
, P 1

μν = gμν − vμvν, P 1
μ = P 1

μνγμ. (18)

Let us construct by this method basic hyperfine splittings of order α4. We project the amplitude (5) sequentially on states with
j = 1/2, F = 1/2 and j = 1/2, F = 3/2. Corresponding averaged amplitudes are the following:

T1γ (p,q)
F=1/2
j=1/2 = πZα

9
nδ

qn
ω
pTr

{
(v̂ + 1)(γρ1 − vρ1 )(γδ + vδ)

[m1(v̂ + 1) − γ q]

2m1

× �μ

[m1(v̂ + 1) − γ p]

2m1
(γω + vω)(γσ1 − vσ1 )

}
Dμν(k)

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}

×
[
gρρ1 − 1

2m2
2

(m2vρ1 − qρ1 )(2m2vρ − qρ)

][
gσσ1 − 1

2m2
2

(m2vσ1 − pσ1 )(2m2vσ − pσ )

]
, (19)

T1γ (p,q)
F=3/2
j=1/2 = πZα

6
nδ

qn
ω
pTr

{
(v̂ + 1)�̂σ1ρ1 (F = 3/2)(γδ − vδ)γ5

× [m1(v̂ + 1) − γ q]

2m1
�μ

[m1(v̂ + 1) − γ p]

2m1
γ5(γω − vω)

}
Dμν(k)

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}

×
[
gρρ1 − 1

2m2
2

(m2vρ1 − qρ1 )(2m2vρ − qρ)

][
gσσ1 − 1

2m2
2

(m2vσ1 − pσ1 )(2m2vσ − pσ )

]
. (20)

In the quasipotential method each of the amplitudes (19) and (20) determines the interaction operator of particles corresponding
to states with selected quantum numbers. In this case, we get not only the contributions of the hyperfine interaction, but also the
Coulomb potential and a potential of fine structure. But the difference (19) and (20) allows us to find the hyperfine splitting of
state j = 1/2 which is written as an expression of the output from the Form program:

T1γ (p,q)
HFS
j=1/2(F = 3/2; 1/2) = Zα

2

{
m1

m2κd

[
−pq

k2
+ (pq)2

pqk2

]
+ (κd + 1)

[
2(pq)2

pqk2
− (p2 + q2)(pq)

pqk2

]

+ 2(1 + κd )

(
1 + aμ

2

)[
−pq

k2
− (pq)2

pqk2
+ (p2 + q2)(pq)

pqk2

]}
, (21)
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where κd = 0.714 025μN is the deuteron anomalous magnetic moment [29], connected with the deuteron magnetic moment μd

by the relation κd = (μdm2/mp − 1). In (21) we take electromagnetic form factors at k2 = 0 and omit the quadrupole contribution
which is studied in detail in next section. The normalization factor 3/4π coming from the wave function of orbital motion is
taken into account. Two other hyperfine splittings of the 2P3/2 state looks as follows:

T1γ (p,q)
HFS
j=3/2(F = 3/2; 1/2) = Zα

2

{
m1

m2κd

[
−1

2

pq

k2
+ 11

10

(pq)2

pqk2
− 3

10

(p2 + q2)(pq)

pqk2

]
+ (κd + 1)

[
(pq)2

pqk2
− 1

2

(p2 + q2)(pq)

pqk2

]

+ 2

5
(1 + κd )

(
1 − aμ

4

)[
−pq

k2
− (pq)2

pqk2
+ (p2 + q2)(pq)

pqk2

]

− (pq)

pq

[
3

2
(1 + κd ) − 3

10

m1κd

m2
− 6

5
(1 + κd )

(
1 − aμ

4

)]}
, (22)

T1γ (p,q)
HFS
j=3/2(F = 5/2; 3/2) = Zα

2

{
m1

m2κd

[
5

6

pq

k2
− 1

2

(pq)2

pqk2
− 1

6

(p2 + q2)(pq)

pqk2

]
+ (κd + 1)

[
−5

3

(pq)2

pqk2
+ 5

6

(p2 + q2)(pq)

pqk2

]

+ 2

3
(1 + κd )

(
1 − aμ

4

)[
pq

k2
+ (pq)2

pqk2
− (p2 + q2)(pq)

pqk2

]

− (pq)

pq

[
−5

2
(1 + κd ) − 1

6

m1κd

m2
+ 2(1 + κd )

(
1 − aμ

4

)]}
, (23)

where the terms proportional to (pq/pq) vanish as a result
of the angular integration. They are important for the correct
calculation of the vacuum polarization effects. There are three
types of integrals with the radial wave functions which are
calculated analytically:

J1 =
∫

R21(q)
dq

(2π )3/2

∫
R21(p)

dp
(2π )3/2

pq

(p − q)2

=
〈

pq

(p − q)2

〉
= 3

16
, J2 =

〈
(pq)2

pq(p − q)2

〉
= 5

48
,

J3 =
〈

(pq)(p2 + q2)

pq(p − q)2

〉
= 5

24
. (24)

Note that the terms on the right side of the Eqs. (21)–(23)
proportional to (1 + κd ) disappear after momentum integration
and we obtain the following leading-order contributions of
diagonal matrix elements to hyperfine splittings of 2P1/2 and
2P3/2 states:

�EHFS
j=1/2(F = 3/2; 1/2)

= α4(1 + κd )μ3

12m1m2

[
1 + m1κd

2m2(1 + κd )
+ aμ

2

]
= 2070.5040 μeV, (25)

�EHFS
j=3/2(F = 3/2; 1/2)

= α4(1 + κd )μ3

24m1m2

[
2

5
+ m1κd

2m2(1 + κd )
− aμ

10

]
= 420.9426 μeV, (26)

�EHFS
j=3/2(F = 5/2; 3/2)

= 5α4(1 + κd )μ3

72m1m2

[
2

5
+ m1κd

2m2(1 + κd )
− aμ

10

]
= 701.5712 μeV. (27)

Numerical values of hyperfine splittings in (25)–(27) and
other corrections which we calculate are presented with
the accuracy 0.0001 μeV. Theoretical errors in (25)–(27)
which are determined by uncertainties of fundamental phys-
ical constants reach a value 2 × 10−5μeV. So, we do not
write their values exactly in the text and Tables I–III ex-
cepting the quadrupole corrections of order α4 which are
large.

Two amplitudes (19) and (20) are constructed combining
first the orbital momentum and muon spin. Then the spin
of the nucleus is added. We can act slightly differently
expressing the states with j = 1/2 and j = 3/2 directly in
terms of introduced symmetrical and antisymmetrical states.
This possibility is illustrated hereinafter. In this method we can
evaluate also off-diagonal matrix elements. Their calculation
is demonstrated in the next section for quadrupole correction.
To facilitate a comparison of the method of calculation
and obtained contributions to the previous approaches we
make Appendix A, which demonstrates the calculation of
corrections of order α4 in the coordinate representation.
All basic contributions to hyperfine structure and numerous
higher-order corrections are presented in Table I.

III. QUADRUPOLE INTERACTION CORRECTIONS

Quadrupole interaction originates from the not completely
spherical shape of the deuteron. If the potential of the muon has
also a nonspherical component at the position of the deuteron
(only with muon angular momentum j > 1/2) then there exists
a quadrupole energy shift [30–32]. Ordinary calculation of
this contribution to hyperfine structure in muonic deuterium
is based on the representation of quadrupole interaction in
coordinate space as a scalar product of two irreducible tensor
operators of rank 2. After that the matrix elements of tensor
operators are expressed in terms of reduced matrix elements
using the Wigner-Eckart theorem.
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TABLE I. Diagonal matrix elements of hyperfine structure of 2P -states in muonic deuterium

Contribution 2 2P1/2 (μeV) 2 4P1/2 (μeV) 2 2P3/2 (μeV) 2 4P3/2 (μeV) 2 6P3/2 (μeV)

Leading-order α4 − 1380.3360 690.1680 8162.2889 8583.2315 9284.8027
correction
Quadrupole correction 0 0 433.9033 − 347.1227 86.7807
of order α4 ±0.0455 ±0.0364 ±0.0091
Vacuum polarization − 1.0706 0.5353 − 0.2802 − 0.1121 0.1681
correction of order α5

Quadrupole and vacuum 0 0 0.3564 − 0.2851 0.0713
polarization correction
of order α5

Relativistic − 0.1677 0.0838 − 0.0125 − 0.0050 0.0075
correction of order α6

Vacuum polarization − 0.0011 0.0005 − 0.0014 − 0.0006 0.0008
correction of order α6

Structure correction − 0.0011 0.0021 − 0.0006 0.0010 − 0.0016
of order α6

Summary contribution − 1381.5765 690.7897 8596.2539 8235.7070 9371.8295
±0.0455 ±0.0364 ±0.0091

In this work we develop another approach to the calculation
of quadrupole interaction based on tensor representation of P -
wave projection operators describing muonic deuterium states.
In the case of F = 1

2 and F = 3
2 we should take the sum of two

contributions regarding the symmetric and antisymmetric
wave projection function (12)–(15). For completeness, we
present two averaged amplitudes corresponding to �S

μν(F =
3
2 ) and �A

μν(F = 3
2 ):

T1γ (p,q)
A = πα

4
nδ

qn
ω
pDμν(k)Tr

{
(v̂ + 1)�̂σδ(γρ − vρ)

[m1(1 − v̂) + γ q]

2m1
�μ

× [m1(1 − v̂) + γ p]

2m1
(γω − vω) + (ρ → δ,ω → σ ) − (ω → σ ) − (ρ → δ)

}

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}

= −παQd

3

[
pq

(p − q)2
−

(pq)
(

p

q
+ q

p

)
(p − q)2

+ (pq)2

(p − q)2
− 1

3

(pq)

pq

]
, (28)

T1γ (p,q)
S = πα

20
nδ

qn
ω
pDμν(k)Tr

{
(v̂ + 1)�̂σδ(γρ − vρ)

[m1(1 − v̂) + γ q]

2m1
�μ

× [m1(1 − v̂) + γ p]

2m1
(γω − vω) + (ρ → δ,ω → σ ) + (ω → σ ) + (ρ → δ)

}

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}

= παQd

15

[
pq

(p − q)2
−

(pq)
(

p

q
+ q

p

)
(p − q)2

+ (pq)2

(p − q)2
− 1

3

(pq)

pq

]
, (29)

where we keep only the contribution of the quadrupole form factor FQ(0) = Qd . The index replacements designated in brackets
of (28) and (29) refer to the written part of the amplitude. Remaining integration with the radial wave functions is carried out
analytically:

J =
∫

dp
(2π )3/2

R12(p)
∫

dq
(2π )3/2

R12(q)

[
pq

(p − q)2
−

(pq)
(

p

q
+ q

p

)
(p − q)2

+ (pq)2

(p − q)2

]
= μ3(Zα)3

16π
. (30)
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The sum of (28) and (29) multiplied by the factor (30) gives
the contribution to hyperfine splitting αQ(μZα)3

48 (− 4
5δF3/2). Let

us present final results for other transitions:

�EHFS
Q = αQd (μZα)3

48

[
δF1/2 − 4

5
δF3/2 + 1

5
δF5/2

]
. (31)

The quadrupole moment of the deuteron is taken to be Qd =
0.285 783(30) fm2 [33]. The result (31) coincides exactly with
previous calculations made by different approaches [16]. As
it follows from numerical values of (31) (see Table I) the
quadrupole interaction changes the position of levels 2 4P3/2

and 2 2P3/2. We indicate in Tables I–III the error margins
for contributions connected with quadrupole corrections of
order α4 which are numerically large. Other error margins
are numerically negligible. Let us investigate in addition how
the total angular momentum of the muon is changed in such
transitions. For this purpose, build again the amplitude of
single-photon exchange combining consistently muon spin
with the orbital angular momentum and the deuteron spin.
To be specific, we consider two diagonal matrix elements
which are determined by averaged amplitudes with j = 1/2,
F = 1/2 and j = 1/2, F = 3/2:

T1γ (p,q)
F=1/2
(1/2)(1/2) = πα

9
nδ

qn
ω
pDμν(k)Tr

{
(v̂ + 1)(γρ − vρ)(γδ + vδ)

[m1(1 + v̂) − γ q]

2m1
�μ

[m1(1 + v̂) − γ p]

2m1
(γω + vω)(γσ − vσ )

}

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}
= 0, (32)

T1γ (p,q)
F=3/2
(1/2)(1/2) = πα

6
nδ

qn
ω
pDμν(k)Tr

{
(v̂ + 1)�̂σρ(γδ − vδ)γ5

[m1(1 + v̂) − γ q]

2m1
�μ

[m1(1 + v̂) − γ p]

2m1
γ5(γω − vω)

}

×
{
gρσ

(p2 + q2)ν
2m2

F1(k2) − (p2 + q2)ν
2m2

kρkσ

2m2
2

F2(k2) + (gρλgσμ − gρμgσλ)
kλ

2m2
F3(k2)

}
= 0, (33)

where lower indexes of the amplitude designate the muon
total angular momentum. With one side, the obtained expres-
sions (32) and (33) explicitly show that quadrupole interaction
does not contribute to diagonal matrix elements with j = 1/2.
On the other side they demonstrate our choice of the tensor
projectors on the state with j = 1/2:

�F=1/2
μν (j = 1/2) = 1

3γ5(γμ − vμ)γ5(γν − vν)�, (34)

where the spinor � describes the state with total atomic
momentum F = 1

2 . Using the Dirac algebra transformations
we can expand (34) on the basis �S

μν(F = 1
2 ) and �A

μν(F = 1
2 ):

�F=1/2
μν (j = 1/2) = 1√

3
�S

μν(F = 1/2) +
√

2

3
�A

μν(F = 1/2).

(35)

The same expansion can be performed for the state with j =
3/2 and two states with j = 1

2 , F = 3
2 and j = 3

2 , F = 3
2 .

They looks as follows:

�F=1/2
μν (j = 3/2) =

√
2

3
�S

μν(F = 1/2) −
√

1

3
�A

μν(F = 1/2),

(36)

�F=3/2
μν (j = 1/2) =

√
5

6
�S

μν(F = 3/2) −
√

1

6
�A

μν(F = 3/2),

(37)

�F=3/2
μν (j = 3/2) = −

√
1

6
�S

μν(F = 3/2)

+
√

5

6
�A

μν(F = 3/2). (38)

Using (35)–(38) we can investigate off-diagonal matrix
elements corresponding to different values of muon angular
momentum j . In fact, contributions with symmetric and an-
tisymmetric tensor-spinor fields �S

μν(F = 1
2 , 3

2 ) and �A
μν(F =

1
2 , 3

2 ) are evaluated above in matrix elements (28) and (29).
Thus it is necessary to use only the correct coefficients of
expansions (35)–(38). As a result we obtain

�EHFS
Q (j = 1/2; j ′ = 3/2)

= αQd (Zμα)3

48

(√
2δF (1/2) − 1√

5
δF (3/2)

)
. (39)

Numerically, all quadrupole corrections are large and pre-
sented in Tables I and II. Drawing attention to the significant
value of the quadrupole corrections, we proceed to the

TABLE II. Off-diagonal matrix elements in the hyperfine struc-
ture of P -wave muonic deuterium.

Contribution to HFS 2 2P1/2,3/2 (μeV) 2 4P1/2,3/2 (μeV)

Leading-order α4 −126.0372 −199.2824
correction
Quadrupole correction 613.6320 ± 0.0644 −194.0475 ± 0.0204
of order α4

Vacuum polarization −0.1437 −0.2271
correction of order α5

Quadrupole and vacuum 0.0891 −0.0282
polarization correction
of order α5

Relativistic correction −0.0043 −0.0067
of order α6

Vacuum polarization 0.0001 0.0001
correction of order α6

Summary contribution 487.5360 ± 0.0644 −393.5918 ± 0.0204
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TABLE III. Hyperfine structure of P states in muonic deuterium.

State Energy (meV) [16] Energy (meV)

2 2P1/2 − 1.4056 − 1.405 34 ± 0.000 01
2 4P1/2 0.6703 0.670 31 ± 0.000 001
2 2P3/2 8.6194 8.620 02 ± 0.000 05
2 4P3/2 8.2560 8.256 18 ± 0.000 04
2 6P3/2 9.3729 9.371 83 ± 0.000 01

consideration of other important effects within the formulated
framework.

IV. VACUUM POLARIZATION AND STRUCTURE
CORRECTIONS

The above basic formulas for the amplitudes of the
muon-deuteron interaction allow us to calculate the various
corrections. Next in importance are the corrections to the
vacuum polarization (VP) of order α5. In the formulated
framework these effects can be easily studied. In the first-
order perturbation theory the one-loop vacuum polarization
contribution to hyperfine structure (HFS) is determined by
the amplitude in Fig. 1. For its calculation in momentum
representation which we use, the following replacement

(a) (b) (c) (d)

FIG. 1. Vacuum polarization effects in one-photon interaction.
The wavy line represents hyperfine part of the interaction.

in the photon propagator should be done in (21):

1

k2
→ α

3π

∫ ∞

1

ρ(ξ )dξ

k2 + 4m2
eξ

2
, ρ(ξ ) =

√
ξ 2 − 1(2ξ 2 + 1)/ξ 4.

(40)

As a result we find that the vacuum polarization contribution
to hyperfine splittings can be expressed in terms of three-
momentum integrals which are a generalization of the three
integrals discussed earlier in (24):

I1 =
∫

R21(q)
dq

(2π )3/2

∫
R21(p)

dp
(2π )3/2

pq

(p − q)2 + 4m2
eξ

2
=

〈
pq

(p − q)2 + 4m2
eξ

2

〉
= a(3a + 8) + 6

2(a + 2)4
, a = 4meξ

μα
,

(41)

I2 =
〈

(pq)2

pq(p − q)2 + 4m2
eξ

2

〉
= a(3a + 8) + 10

6(a + 2)4
, I3 =

〈
(pq)(p2 + q2)

pq(p − q)2 + 4m2
eξ

2

〉
= 2(4a + 5)

3(a + 2)4
.

Third integration over the spectral parameter ξ also can be carried out analytically, but they are quite cumbersome. So, we present
here the necessary VP correction to hyperfine splitting of the 2P1/2 state only in integral form:

�EHFS
VP (2P1/2) = μ3α(Zα)4

3πm1m2

∫ ∞

1
ρ(ξ )dξ

[
m1κd

2m2

(3a + 2)

3(a + 2)3
+ (1 + κd )

(
1 + aμ

2

)2(3a2 + 4a + 2)

3(a + 2)4
− (1 + κd )

a2

2(a + 2)4

]
= 1.0718 μeV. (42)

The same calculation can be performed for the 2P3/2 state. The corresponding results are the following:

�EHFS
VP (2P3/2)(F = 3/2; 1/2) = μ3α(Zα)4

6πm1m2

∫ ∞

1
ρ(ξ )dξ

[
m1κd

2m2

(3a + 2)

6(a + 2)3

+ (1 + κd )
(

1 − aμ

4

) (15a2 + 8a + 4)

3(a + 2)4
− (1 + κd )

2a2

(a + 2)4

]
= 0.0595 μeV, (43)

�EHFS
VP (2P3/2)(F = 5/2; 3/2) = μ3α(Zα)4

6πm1m2

∫ ∞

1
ρ(ξ )dξ

[
m1κd

2m2

5(3a + 2)

18(a + 2)3

+ (1 + κd )
(

1 − aμ

4

)2(15a2 + 8a + 4)

9(a + 2)4
− (1 + κd )

10a2

3(a + 2)4

]
= 0.0992 μeV. (44)

Another important VP effect is related to the quadrupole interaction discussed in previous section. Using for its calculation
basic expression (21), (22), (23), and (41) we obtain for diagonal and off-diagonal matrix elements

�EQ,VP = μ3α(Zα)4Qd

36π

∫ ∞

1

(5a2 + 8a + 4)

(a + 2)4
ρ(ξ )dξ

[
δF (1/2) − 4

5
δF (3/2) + 1

5
δF (5/2)

]

=
[
δF (1/2) − 4

5
δF (3/2) + 1

5
δF (5/2)

]
× 0.2441 μeV, (45)
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�EQ,VP(j = 3/2; j ′ = 1/2) = μ3α(Zα)4Qd

72π

∫ ∞

1

(5a2 + 24a + 24)

3(a + 2)4
ρ(ξ )dξ

[√
2δF (1/2) − 1√

5
δF (3/2)

]

=
[√

2δF (1/2) − 1√
5
δF (3/2)

]
× 0.0630 μeV. (46)

A comparison of our results (42)–(46) with earlier estimates in [16] shows that there is a significant difference of the order
of tenths of μeV. For this reason we decided to perform additional validation of our results using a different method of the
calculation. As was shown in [21] the vacuum polarization effects presented in Fig. 1 in first-order perturbation theory can be
calculated in coordinate representation. The amplitude shown in Fig. 1(a) gives the following hyperfine interaction potential in
coordinate space:

�V HFS
1γ,VP(r) = Zα(1 + κd )

2m1m2r3

α

3π

∫ ∞

1
ρ(ξ )dξe−2meξr

{(
1 + m1κd

m2(1 + κd )

)

× (L · s2)(1 + 2meξr) − (1 + aμ)
(
4m2

eξ
2r2[(s1 · s2) − (s1 · n)(s2 · n)]

+ (1 + 2meξr)[(s1 · s2) − 3(s1 · n)(s2 · n)]
)}

. (47)

Averaging (47) over the Coulomb wave functions, we obtain an analytical expression for the vacuum polarization correction of
order α5 in the one-photon interaction:

�EHFS
1γ,VP(r) = α4μ3(1 + κd )

24m1m2r3

α

6π

∫ ∞

1
ρ(ξ )dξ

∫ ∞

0
xdxe−x[1+2meξ/W ]

{(
1 + m1κd

m2(1 + κd )

)

× T1

(
1 + 2mnj ; eξ

W
x

)
− (1 + aμ)

[
4m2

eξ
2x2

W 2
T3 +

(
1 + 2meξ

W
x

)
T2

]}
, (48)

where we introduce the designations for operators Ti in (47):

T1 = (L · s2), T2 = [(s1 · s2) − 3(s1 · n)(s2 · n)], T3 = [(s1 · s2) − (s1 · n)(s2 · n)]. (49)

The coordinate integration in (48) is carried out analytically
and numerically over the spectral parameter ξ . Numerical
results for separate states include both diagonal and off-
diagonal matrix elements:

�EHFS
j=1/2,VP(F = 1/2) = −0.7145 μeV,

�EHFS
j=1/2,VP(F = 3/2) = 0.3573 μeV,

�EHFS
j=3/2,VP(F = 1/2) = −0.0992 μeV,

�EHFS
j=3/2,VP(F = 3/2) = −0.0397 μeV, (50)

�EHFS
j=3/2,VP(F = 5/2) = 0.0595 μeV.

�EHFS
(j=1/2→j=3/2),VP(F = 1/2) = −0.1111 μeV,

�EHFS
(j=1/2→j=3/2),VP(F = 3/2) = −0.1757 μeV.

They evidently show that two of our approaches to the
calculation of hyperfine structure in muonic deuterium P

states lead to the same results. Two-loop vacuum polarization
corrections shown in Fig. 1 are calculated in a similar way.
They are included in Appendix C. Their numerical value is
essentially smaller (see Table I).

For completeness, we analyze vacuum polarization correc-
tions of order α5 in second-order perturbation theory (SOPT),
which are determined by the reduced Coulomb Green’s

function [34,35] [see the amplitude in Fig. 2(a)]:

G2P (r,r ′) = −μ2(Zα)

36z2z′2

(
3

4π
nn′

)
e−(z+z′)/2g(z,z′),

g(z,z′) = 24z3
< + 36z3

<z> + 36z3
<z2

> + 24z3
> + 36z<z3

>

G̃ G̃

G̃G̃ G̃

(a) (b)

(c) (d) (e)

FIG. 2. Vacuum polarization effects in the second-order pertur-
bation theory. Dashed and wavy lines represent correspondingly the
Coulomb and hyperfine interactions.
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+ 36z2
<z3

> + 49z3
<z3

> − 3z4
<z3

>

− 12ez< (2 + z< + z2
<)z3

> − 3z3
<z4

> + 12z3
<z3

>

× [−2C + Ei(z<) − lnz< − lnz>], (51)

where C = 0.5772 . . . is the Euler constant, z = Wr,z< =
min(z,z′),z> = max(z,z′). Using (A1) and (51), we ob-
tain the following integral expression for VP correction
[21]:

�EHFS
VP,SOPT = α4μ3(1 + κd )

24m1m2

α

54π

∫ ∞

1
ρ(ξ )dξ

∫ ∞

0
dx

∫ ∞

0

e−x ′

x ′2 dx ′e−x(1+2meξ/W )

[
T1 + m1κd

m2(1 + κd )
T1 − (1 + aμ)T2

]
. (52)

Similarly, the correction of vacuum polarization and quadrupole interaction in second-order PT has the form:

�EHFS
VP,Q,SOPT = α5μ3Qd

2592π

∫ ∞

1
ρ(ξ )dξ

∫ ∞

0
dx

∫ ∞

0

e−x ′

x ′2 dx ′e−x(1+2meξ/W )g(x,x ′)[(s2 · s2) − 3(s2 · n)(s2 · n)]

=
{(

δF,1/2 − 4
5δF,3/2 + 1

5δF,5/2
)
0.1120 (μeV), j = j ′ = 3

2 ,(√
2δF,1/2 − 1√

5
δF,3/2

)
0.1120 (μeV), j = 3

2 ,j ′ = 1
2 .

(53)

The coordinate integration over x,x ′ is performed again
analytically and numerically over ξ . Summary numerical
values of contributions in the first and second orders of PT to
the P -state energies are presented in Tables I and II separately
for diagonal and off-diagonal matrix elements.

Based on the amplitudes (21)–(23) it is possible to find
the nuclear structure correction (the index str designates

this contribution) to hyperfine splittings. For this aim, we
will introduce into them an additional factor (−r2

d k2/6)
with the deuteron root-mean-square radius connected with
the expansion of form factors and omit factors containing
the deuteron magnetic moment. After evident simplifications
we obtain the following contributions to hyperfine splitting
potentials for states 2P1/2 and 2P3/2:

T1γ,str(p,q)
HFS
j=1/2(F = 3/2; 1/2) = Zαr2

d

12

{
m1

m2

[
pq − (pq)2

pq

]
− 2

(pq)2

pq
+ 2

(
1 + aμ

2

)[
pq + (pq)2

pq

]}
, (54)

T1γ,str(p,q)
HFS
j=3/2(F = 3/2; 1/2) = Zαr2

d

12

{
m1

2m2

[
pq − (pq)2

pq

]
− 4

(pq)2

pq
+ 2

5

(
1 − aμ

4

)[
pq + 7

(pq)2

pq

]}
, (55)

T1γ,str(p,q)
HFS
j=3/2(F = 5/2; 3/2) = Zαr2

d

12

{
5m1

6m2

[
(pq)2

pq
− pq

]
+ 20

3

(pq)2

pq
− 2

3

(
1 − aμ

4

)[
pq + 7

(pq)2

pq

]}
. (56)

Further integration and consideration of the general normalization factor directly lead to the following splittings:

�EHFS
1γ,str(j = 1/2,F = 3/2; 1/2) = μ5α6r2

d

16m1m2

(
m1

m2
+ aμ

2

)
= 0.0032 μeV, (57)

�EHFS
1γ,str(j = 3/2,F = 3/2; 1/2) = μ5α6r2

d

32m1m2

(
m1

m2
− aμ

)
= 0.0016 μeV, (58)

�EHFS
1γ,str(j = 3/2,F = 5/2; 3/2) = −5μ5α6r2

d

96m1m2

(
m1

m2
− aμ

)
= −0.0026 μeV. (59)

As expected, these corrections are very small and do
not affect the comparison of theoretical results and planned
experimental data. Other corrections of order α6 are discussed
in Appendixes B and C.

V. SUMMARY AND DISCUSSION

In this work we investigate the hyperfine structure of energy
levels related to the P -wave states of muonic deuterium on
the basis of the three-dimensional quasipotential approach
in quantum electrodynamics. To increase the accuracy of the
calculation we take into account the leading-order contribution
and several basic corrections of order α5 and α6. These
corrections are connected with the vacuum polarization ef-

fect, quadrupole interaction, nuclear structure, and relativistic
effects. Some corrections are obtained in analytical form,
but the biggest part of the contributions to the energy
spectrum is presented first in integral form, and then calculated
numerically. All results are presented in Tables I–III giving the
values of diagonal and off-diagonal matrix elements and the
positions of the P -energy levels.

We would like to point out the three main results obtained
in this work.

(1) An approach based on the use of a special type
of projection operators on the states with definite quantum
numbers of atomic angular momentum F and total muon
angular momentum j is developed. It allows us to simplify
essentially the construction of the particle interaction operator
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through the use of computer methods for calculating Feynman
amplitudes. In particular, this method can be useful when
working with different loop corrections.

(2) We have increased the accuracy of the calculation
of P -wave hyperfine splittings primarily due to the correct
account of the corrections of the fifth order over α. To this
end, the contributions have been built into the operator of the
interaction of particles that are connected to the vacuum po-
larization and quadrupole interactions. We check the obtained
results in two ways: in the formulated framework of tensor
projection operators in momentum representation and the more
traditional method for the calculation of corrections in the
energy spectrum in the coordinate representation. Moreover,
in our calculation we take into account the contributions not
only of the first- but also the second-order perturbation theory.

(3) Higher-order O(α6) corrections are calculated. These
corrections, although small numerically and so do not affect the
comparison with future experimental data, clarify the structure
of the perturbation series for the hyperfine splittings.

Let us present more detailed comparison of the results
with previous calculations in [16,22]. Being different in the
method of obtaining corrections of leading order O(α4) our
results coincide with [16,22]. We mean both the spin-orbit,
spin-spin contributions of order O(α4) [16,22] and quadrupole
corrections of the same order [16]. But we obtain the fifth order
in α corrections which differ significantly from the results
of [16]. In [16] the vacuum polarization corrections to the
hyperfine part of the Breit Hamiltonian are determined by the
following modification of the potential with l > 0:

1

r

dV

dr
= Zα

r3

[
1 + α

3π

∫ ∞

1
ρ(ξ )dξ (1 + 2meξr)e−2meξr

]
.

(60)

This leads to the appearance of a special factor of the form (1 +
ε2P ) with numerical value ε2P = 0.000 391 for the quadrupole
correction and

ε2P = α

3π

∫ ∞

1
ρ(ξ )dξ

(
1

(1 + aξ )2
+ 2az

(1 + aξ )3

)
(61)

for the Uehling correction to the Breit Hamiltonian. Numer-
ically, the coefficient in (61) is equal to the same value,
ε2P = 0.000 391. In our calculation we demonstrate that the
vacuum polarization corrections to P states are determined
by different potentials [compare (60) with our formula (47)]
and have a different form for states with various quantum
numbers F and j . In contrast to [16] we have performed
exact construction of corresponding potentials for different
P states and obtained through them numerical results that
cannot be reduced to a factor (61). Our results are checked
by two independent methods. As an example, we give a
comparison of our vacuum polarization plus quadrupole
interaction contributions to hyperfine splittings of the level
2P3/2 with the results of [16]. In [16] these contributions
are equal to �ẼHFS

j=3/2(F = 3/2; 1/2) = −3μ3α4Qdε2p/80 =
−0.3058 μeV, �ẼHFS

j=3/2(F = 5/2; 3/2) = μ3α4Qdε2p/48 =
0.1699 μeV and differ essentially from our corresponding
values (−0.4394) μeV and 0.2441 μeV. The same situation
occurs for other VP corrections. The only significant error
of our calculations is associated with the error of the
quadrupole moment of the deuteron, so it is presented in
Tables I–III.

Summing all diagonal and off-diagonal matrix elements we
obtain the following energy matrix:

M =

⎛
⎜⎜⎜⎝

2 2P1/2 2 4P1/2 2 2P3/2 2 4P3/2 2 6P3/2

2 2P1/2 −1381.5765 0 487.5360 0 0
2 4P1/2 0 690.7897 0 −393.5918 0
2 2P3/2 487.5360 0 8596.2539 0 0
2 4P3/2 0 −393.5918 0 8235.7070 0
2 6P3/2 0 0 0 0 9371.8295

⎞
⎟⎟⎟⎠μeV. (62)

Its diagonalization leads directly to the position of the en-
ergy levels 2P (see Table III) and hyperfine splitting intervals
which can be measured in the experiment. Accounting for the
accuracy of the calculation, we have added one extra decimal
place in our results in Table III.
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APPENDIX A: BASIC CONTRIBUTIONS TO HYPERFINE
STRUCTURE IN COORDINATE REPRESENTATION

Basic contribution to hyperfine structure is determined by
the hyperfine part of the Breit Hamiltonian [36]:

�V HFS
B (r) = Zα(1 + κd )

2m1m2r3
[

[
1 + m1κd

m2(1 + κd )

]
(Ls2)

− Zα(1 + κd )(1 + aμ)

2m1m2r3
[(s1s2) − 3(s1n)(s2n)],

(A1)

where m1, m2 are the muon and deuteron masses, κd , aμ are
the deuteron and muon anomalous magnetic moments, s1 and
s2 are the spin operators of muon and deuteron, n = r/r. The
operator (A1) does not commute with the muon total angular
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momentum J = L + s1. As a result there is the mixing between
energy levels 2P1/2 and 2P3/2.

For the calculation of diagonal matrix elements
〈2P1/2 | �V HFS

B | 2P1/2〉 and 〈2P3/2 | �V HFS
B | 2P3/2〉 we use

the Coulomb wave function of the 2P state in coordinate
representation:

�2P (r) = 1

2
√

6
W 5/2re−Wr/2Y1m(θ,φ), W = μZα. (A2)

The angle averaging in (A1) can be carried out by means of
the following replacements [36]:

s1 → J
(s1 · J)

J 2
, L → J

(L · J)

J 2
, (A3)

which give the eigenvalues of the corresponding operators:

(s1 · J) = 1
2

[
j (j + 1) − l(l + 1) + 3

4

]
,

(A4)
(L · J) = 1

2

[
j (j + 1) + l(l + 1) − 3

4

]
,

〈δij − 3ninj 〉 = − 1
5 (4δij − 3LiLj − 3LjLi). (A5)

The diagonal matrix elements have the general form

EHFS
B = α4μ3(1 + κd )

48m1m2

[
T1 + m1κd

m2(1 + κd )
T1 − (1 + aμ)T2

]
,

(A6)

where the operators Ti are defined in (49). Substituting here T1

and T2 for definite quantum numbers F and j , we obtain the
leading-order contributions to the hyperfine structure of 2P1/2

and 2P3/2 states:

2EHFS
1/2 = −α4μ3(1 + κd )

18m1m2

[
1 + m1κd

2m2(1 + κd )
+ aμ

2

]
= −1380.3360 μeV, (A7)

4EHFS
1/2 = α4μ3(1 + κd )

36m1m2

[
1 + m1κd

2m2(1 + κd )
+ aμ

2

]
= 690.1680 μeV, (A8)

2EHFS
3/2 = −α4μ3(1 + κd )

72m1m2

[
2 + 5m1κd

2m2(1 + κd )
− aμ

2

]
= 8162.2889 μeV, (A9)

4EHFS
3/2 = −α4μ3(1 + κd )

36m1m2

[
2

5
+ m1κd

2m2(1 + κd )
− aμ

10

]
= 8583.2315 μeV, (A10)

6EHFS
3/2 = −α4μ3(1 + κd )

24m1m2

[
2

5
+ m1κd

2m2(1 + κd )
− aμ

10

]
= 9284.8027 μeV, (A11)

where we take into account the fine-structure interval �EFS =
8.863 86 meV calculated in [16,37]. All expressions (A7)–
(A11) contain the correction to the anomalous magnetic
moment of the muon.

Off-diagonal matrix elements 〈2P1/2 | �V HFS | 2P3/2〉F=1/2

and 〈2P1/2 | �V HFS | 2P3/2〉F=3/2
are essential to achieve a

high accuracy of the calculation. They differ by the value of
atomic angular momentum. The angular averaging by means
of (A5) leads to T 1 = 2T 2. For the calculation (Ls2), we
use the general formula for the matrix elements of the scalar
product of two irreducible tensor operators:

〈j ′s2F | (T 1T 2) | js2F 〉
= (−1)s2+J ′−F W (js2j

′s2; F1)
〈
j ′ ‖ T 1 ‖ j

〉〈
s2 ‖ T 2 ‖ s2

〉
,

(A12)

where W (js2j
′s2; F1) is the Racah coefficient. Apply-

ing (A12) to (Ls2) we find

〈j ′s2F | (L · s2) | js2F 〉
= (−1)−j−F−s2+L+3/2+j ′√

(2j ′ + 1)(2j + 1)

×
√

(2s2 + 1)(s2 + 1)s2(2L + 1)(L + 1)L

×
{

j s2 F

s2 j ′ 1

}{
l j ′ 1

2
j l 1

}
. (A13)

Two off-diagonal matrix elements of the operator T1 have the
form〈

1

2
,1,

1

2

∣∣∣∣(L · s2)

∣∣∣∣3

2
,1,

1

2

〉
= −

√
2

3
,

〈
1

2
,1,

3

2

∣∣∣∣(L · s2)

∣∣∣∣3

2
,1,

3

2

〉

= −
√

5

3
, (A14)

where the 6j symbols are taken from [30].
Using (A14), we obtain the leading-order contributions to

off-diagonal matrix elements of the Breit Hamiltonian (A1):

E
HFS,off-diag
F=1/2 = α4μ3(1 + κd )

48m1m2

(
−

√
2

6

)[
1 + 2m1κd

m2(1 + κd )
− aμ

]
= −126.0372 μeV, (A15)

E
HFS,off-diag
F=3/2 = α4μ3(1 + κd )

48m1m2

(
−

√
5

6

)[
1 + 2m1κd

m2(1 + κd )
− aμ

]
= −199.2824 μeV. (A16)

There exist higher-order corrections to (A15) and (A16) which
are related to additional interactions and examined above.

APPENDIX B: RELATIVISTIC CORRECTIONS TO
HYPERFINE STRUCTURE

Relativistic corrections of order α6 can be calculated
by means of the Dirac equation [38,39]. We present here
only a sketch of the output of the final formula for the
numerical estimate. In the Dirac theory the hyperfine part of
the relativistic Hamiltonian has the form

�H HFS = egNμN s2
[r × α]

r3
, (B1)
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where μN is the nuclear magneton, gN is the deuteron
gyromagnetic factor. To find the expectation value of (B1)
over atomic wave functions we should use the Wigner-Eckart
theorem expressing the initial matrix element through the
reduced matrix elements:

�EHFS
rel = egNμN (−1)s2+j ′−F W (js2j

′s2; F1)〈s2 ‖ s2 ‖ s2〉

×
〈
j ′

∥∥∥∥ [r × α]

r3

∥∥∥∥j

〉
. (B2)

Calculating the first reduced matrix element we can sim-
plify (B2) as follows:

�EHFS
rel = egNμN (−1)s2+j ′−F

√
(2s2 + 1)(s2 + 1)s2

×
√

(2j ′ + 1)(j ′ + 1)j ′W (js2j
′s2; F1)

×
〈
j ′μ

∣∣∣∣
(

[r × α]

r3

)
z

∣∣∣∣jμ

〉
μ−1. (B3)

In the case of the diagonal matrix element we have〈
jμ

∣∣∣∣
(

[r × α]

r3

)
z

∣∣∣∣jμ

〉
= −iAkkRkk,

Rkk = 2
∫ ∞

0
gk(r)fk(r)dr, (B4)

−iAkk = 4k

4k2 − 1
.

The radial matrix elements are calculated analytically with the
use of exact Dirac radial wave functions. After their expansion
over α we find [39]

R(2P1/2) = (Zα)3

12

(
1 + 47

24
(Zα)2

)
m2

1,

(B5)

R(2P3/2) = − (Zα)3

24

(
1 + 7

24
(Zα)2

)
m2

1.

As a result, general expressions for relativistic corrections to
diagonal matrix elements take the form

EHFS
rel (2P1/2) = α6(1 + κd )μ3

48m1m2

m3
1

μ3

47

9

1

2

× [F (F + 1) − J (J + 1) − I (I + 1)], (B6)

EHFS
rel (2P3/2) = α6(1 + κd )μ3

48m1m2

m3
1

μ3

7

45

1

2

× [F (F + 1) − J (J + 1) − I (I + 1)]. (B7)

Numerical results for separate P states are presented in Table I.
Relativistic corrections to off-diagonal matrix elements are
evaluated in a similar way. The radial and angular integrals in
this case take the form

Rkk =
∫ ∞

0
[g1/2(r)f3/2(r) + g3/2(r)f1/2(r)]dr,

(B8)

−iAl = [(l + 1/2)2 − μ2]1/2

2l + 1
=

√
2

3
,

where the indexes near radial wave functions designate the
values of muon total angular momentum j . Radial integrations
lead to analytical formulas and corresponding numerical
results:

E
HFS,off-diag
rel,F=1/2 = −α6(1 + κd )μ3

48m1m2

m3
1

μ3

3
√

2

32
= −0.0043 μeV,

(B9)

E
HFS,off-diag
rel,F=3/2 = −α6(1 + κd )μ3

48m1m2

m3
1

μ3

3
√

5

32
= −0.0067 μeV.

(B10)

Although their size is extremely small compared with other
corrections we have included them in Table II by inserting
numerical values with an accuracy 0.0001 μeV for defi-
niteness. It shows the relative numerical value of obtained
corrections.

APPENDIX C: TWO-LOOP VACUUM POLARIZATION
CORRECTIONS TO HYPERFINE STRUCTURE

Two-loop vacuum polarization corrections presented in
Figs. 1(b)–1(d) have the order α6. We divide them into two
parts: loop after loop contribution (VP-VP) and two-loop
contribution to polarization operator (two-loop VP). For their
calculation we use corresponding potentials in coordinate
representation constructed in the same way as in [21]:

�V HFS
1γ,VP-VP(r) = Zα(1 + κd )

2m1m2r3

(
α

3π

)2∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

1

ξ 2 − η2

×
[(

1 + m1κd

m2(1 + κd )

)
(L · s2)[ξ 2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr ]

− (1 + aμ)
(
4m2

er
2[ξ 4e−2meξr − η4e−2meηr ][(s1 · s2) − (s1 · n)(s2 · n)]

+ [ξ 2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr ][(s1 · s2) − 3(s1 · n)(s2 · n)]
)]

, (C1)

�V HFS
two-loop VP(r) = Zα(1 + κd )

2m1m2r3

2

3

(
α

π

)2∫ 1

0

f (v)dv

1 − v2
e−2mer/

√
1−v2

{(
1 + m1κd

m2(1 + κd )

)[
1 + 2mer√

1 − v2

]
(L · s2)

− (1 + aμ)

[
4m2

er
2

1 − v2
[(s1 · s2) − (s1 · n)(s2 · n)] +

(
1 + 2mer√

1 − v2

)
[(s1 · s2) − 3(s1 · n)(s2 · n)]

]}
. (C2)
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Averaging (C1) and (C2) over the Coulomb wave functions we
obtain their numerical values in the hyperfine structure which
are presented in Tables I and II. The muon vacuum polarization
correction is evaluated by means of a replacement me → m1

in (48). Its numerical value also is included in Tables I and II.
For the calculation of contributions in the second-order PT

we should use in the basic expression

�EHFS
SOPT,VP = 2〈ψ |�V

(1),C
VP G̃�V

(2),HFS
B,VP |ψ〉, (C3)

the potential �V
(2),HFS
B,VP corresponding to pure hyperfine

interaction or to hyperfine interaction corrected by the vacuum
polarization effect. Aa a second perturbation we use the
Coulomb potential of one-loop or two-loop order. All resulting
matrix elements are calculated analytically in a standard way
in the integration over the coordinates of the particles and
numerically by spectral parameters. Other details of their
calculation can be founded in our previous papers [17,18,21].

The two-loop vacuum polarization contribution to hyperfine
structure of order α6 is determined also by the third-order PT.
In this case we should use the following expression:

�EHFS
TOPT,VP = 〈ψn | �V C

VPG̃�V HFSG̃�V C
VP | ψn〉

+ 2〈ψn | �V C
VPG̃V C

VPG̃�V HFS | ψn〉
− 〈ψn | �V HFS | ψn〉〈ψn | �V C

VPG̃G̃�V C
VP | ψn〉

− 2〈ψn | �V C
VP | ψn〉〈ψn|�V C

VPG̃G̃�V HFS|ψn〉.
(C4)

Using further exact perturbation potential (A1), modification
of the Coulomb potential �V C , and the Coulomb Green’s
function G̃ (51), we obtain numerical values of corresponding
corrections which are written in Table I as a separate line.
Numerically the vacuum polarization contributions of order
α6 are extremely small and will not have a significant impact
on the comparison with future experimental data.
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