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Lifetimes of the 6d 2
D3/2 and 6d 2

D5/2 states in Fr are determined from calculations of the radiative transition
amplitudes of the allowed electric dipole (E1) and the forbidden electric quadrupole (E2) and magnetic dipole
(M1) channels which were performed using the second-order many-body perturbation theory and the coupled-
cluster method at different levels of approximations in the relativistic framework. The values obtained for these
two quantities are 540(10) and 1704(32) ns, respectively. These relatively long lifetimes and the large electric
dipole parity-non-conserving amplitudes of 7s 2

S1/2 → 6d 2
D3/2,5/2 transitions strongly favor Fr as a leading

candidate for the measurement of parity nonconservation arising from the neutral-current weak interaction and
the nuclear anapole moment. In another important application, these 6D states in Fr can be used efficiently for
resonance ionization spectroscopic techniques to carry out precise measurements of the properties of the higher
excited states due to the long lifetimes of these states.
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I. INTRODUCTION

Francium is considered to be a promising candidate for
the measurements of the electric dipole moment (EDM)
arising from the violations of parity and time-reversal sym-
metries [1–4], parity-nonconservation (PNC) effects due to the
neutral-current weak interaction [2,5], and the nuclear anapole
moment [6–8] as it is the heaviest alkali-metal atom. All the
ongoing Fr PNC experiments involve S − S transitions [2,5,7].
However, relativistic many-body calculations show that the
PNC amplitudes in the 7s 2

S1/2 → 6d 2
D3/2,5/2 transitions in Fr

are about three times larger than that of the 7s 2
S1/2 → 8s 2

S1/2

transition [8–10]. The PNC studies of the S − D transitions
of singly ionized Ba, Ra, and Yb have been the subject
of theoretical investigations [8,11–13], and the principles
of their measurements have been discussed [14,15]. It has
also been highlighted that the PNC measurements for the
S-D5/2 transitions in these ions would provide unambiguous
signatures of the existence of the nuclear anapole moment
(NAM) [16,17], which is still an open question [18–21].
Apart from exhibiting large PNC effects, another important
aspect of these transitions is that the excited D states in
these ions are metastable stables, and they provide long
interrogation times which are very useful for carrying out
high-precision measurements of the small PNC effects [14].
In this paper, we present the results of our theoretical studies
of the lifetimes of the 6d 2

D3/2 and 6d 2
D5/2 states in Fr,

which were undertaken to assess the feasibility of the mea-
surement of PNC in this atom using the 7s 2

S1/2 → 6d 2
D3/2,5/2

transitions.
The resonance ionization spectroscopy (RIS) technique

is a very efficient multistep photon absorption process to
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access a higher excited state above the ionization threshold by
driving through pulsed lasers [22,23]. It helps in the complete
conversion of a quantum-selected excited-state population
to ionization, making it possible to perform sensitive and
absolute measurements of the selected population within
a very large collection of atoms. When a pulsed laser is
tuned to promote an electronically excited atomic state to an
intermediate bound state, a second photon from the pulsed laser
completes the resonance ionization process. This technique
has been employed in Fr recently to measure lifetimes and
hyperfine splittings of the excited 8s 2

S1/2 and 9s 2
S1/2 states

considering the 7P and 8P states as the intermediate bound
states [24,25]. However, it would be desirable in the RIS
process to consider intermediate bound states that have longer
lifetimes (approximately microseconds) than the P states. It
has been demonstrated that the 5D states of a Cs atom, which
belongs to the same group in the periodic table as Fr, have long
lifetimes and have been efficiently used in the RIS techniques
[26]. Thus, it would be reasonable to expect that the 6D states
of Fr, with their long lifetimes, would also be suitable for
RIS techniques to carry out measurements or improve the
accuracies of many spectroscopic properties such as isotope
shifts, hyperfine splittings, lifetimes, etc., of higher excited
states of Fr.

II. THEORY

An electron from the 6d 2
D3/2 state can decay to its

low-lying 7p 2
P1/2 and 7p 2

P3/2 states by the electric dipole
(E1), forbidden magnetic dipole (M2), and forbidden electric
octupole (E3) channels and to the ground state by the
forbidden magnetic dipole (M1) and electric quadrupole (E2)
transitions. We neglect contributions due to the M2 and
E3 channels as their transition probabilities are very weak.
Similarly, an electron from the 6d 2

D5/2 state can decay to its
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fine-structure partner 6d 2
D3/2 state via both the M1 and E2

channels, to the low-lying 7p 2
P3/2 state by the E1 channel,

and to the ground state by the E2 transition. In this case too, we
have omitted contributions due to the M2 and E3 channels.
The transition probabilities due to the above E1, E2, and
M1 channels for a transition, say, |�i〉 → |�f 〉, are given
by

AE1
if = 2.0261 × 10−6

λ3
if gi

SE1
if , (1)

AE2
if = 1.1195 × 10−22

λ5
if gi

SE2
if , (2)

AM1
if = 2.6971 × 10−11

λ3
if gi

SM1
if , (3)

where the quantity SO
if =| 〈�i ||O||�f 〉 |2 is known as the

line strength of the corresponding reduced matrix element
|〈�i ||O||�f 〉 | of the transition operator O. These quantities
are later given in atomic units. In the above expressions,
gi = 2Ji + 1 is the degeneracy factor of state |�i〉 with
angular momentum Ji , and the transition wavelength λif is
given in nanometers (nms); when substituted, the transition
probabilities AO

if are obtained in s−1. The lifetime τ of the
atomic state |�i〉 is determined by taking the reciprocal of the
total emission transition probabilities involving all the possible
spontaneous transition channels (in seconds), i.e.,

τi = 1∑
O,f AO

if

, (4)

where the summations over O and f correspond to all probable
decay channels and all the lower states, respectively. We
have attempted to obtain accurate results for the transition
probabilities, hence the lifetimes of the atomic states from
performing relativistic many-body calculations of the line
strengths and using wavelengths that are determined from the
experimental transition energies given in the National Institute
of Science and Technology (NIST) database [27].

III. METHODS FOR CALCULATIONS

To investigate the role of the electron correlation effects
in the evaluation of the radiative transition amplitudes, we
employ the second-order many-body perturbation theory
[MBPT(2)] and the coupled-cluster (CC) method in the
relativistic framework. Further, we take different levels of
approximation in the CC method to see the convergence of
the results. We give below a brief description of these methods
using Bloch’s prescription [28], in which the atomic wave
function of state |�n〉 is expressed as

|�n〉 = �n|�n〉, (5)

where �n and |�n〉 are known as the wave operator and
reference state, respectively. The ground and the consid-
ered excited 6D states of Fr have electronic configurations
[6p6]7s 2

S1/2 and [6p6]6d 2
D3/2,5/2, respectively. To reduce

the computational effort, we construct these states by creating
a common reference state |�c〉 with the [6p6] configuration
using the Dirac-Hartree-Fock (DHF) method. In this approach
the atomic Hamiltonian H in the Dirac-Coulomb interaction

approximation is divided into the DHF Hamiltonian H0 and
residual Coulomb interaction Vr . For the calculation of the
exact states with a valence orbital, we define new working
reference states as |�n〉 = a

†
n|�c〉. Here a

†
n appends an electron

from the respective valence orbital denoted by an index n. As
a consequence, �n can now be divided as

�n = 1 + χc + χn, (6)

where χc and χn are responsible for carrying out excitations
(generating configuration state functions) from |�c〉 and |�n〉,
respectively, due to Vr . In a perturbative series expansion, we
have

χc =
∑

k

χ (k)
c , χn =

∑
k

χ (k)
n . (7)

In these expressions, the superscripts refer to the number of
times Vr is considered in a particular calculation, and they
represent the order of perturbation; for example, second-order
MBPT, i.e., MBPT(2), has terms up to two Vr (k = 2).

Using the generalized Bloch equation, kth-order amplitudes
for the χc and χn operators are obtained by [28][

χ (k)
c ,H0

]
P = QVr

(
1 + χ (k−1)

c

)
P (8)

and

[
χ (k)

n ,H0
]
P = QVr

(
1 + χ (k−1)

c + χ (k−1)
n

)
P −

k−1∑
m=1

χ (k−m)
n

×PVr

(
1 + χ (m−1)

c + χ (m−1)
n

)
P, (9)

where the projection operators P = |�c〉〈�c| and Q = 1 − P

describe the model space and the orthogonal space of the
Hamiltonian H0, respectively. Note that here χ (0)

c = 0 and
χ (0)

n = 0. Using these amplitudes, the energy of the state |�n〉
is evaluated by using an effective Hamiltonian,

H eff
n = PH�nP. (10)

Using the CC ansatz, the above expressions can be put
together to construct a wave operator to infinite order as

|�n〉 = �n|�n = eT {1 + Sn}|�n〉, (11)

such that χc = eT − 1 and χn = eT Sn − 1. Here T and Sn

are the CC excitation operators that excite electrons from the
core and core along with the valence orbitals, respectively. In
this work, we have accounted for only the single and double
excitations, which are denoted using the subscripts 1 and 2,
respectively, in the CC operators as

T = T1 + T2, Sn = S1n + S2n. (12)

This is referred to as the CCSD method in the literature. When
only the linear terms are retained in Eq. (11) with single and
double approximation, it is referred to as the LCCSD method.
The amplitudes of the T and Sn operators are determined using
the expressions

HNχcP = QHNP (13)

and

HNχnP = QHN (1 + χc)P − χnH
eff
N , (14)

where we have defined the normal-order Hamiltonian HN =
H − PHP and the effective Hamiltonian to evaluate the
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TABLE I. Magnitudes of the reduced matrix elements 〈Ji ||O||Jf 〉 of the transition operators O (in a.u.) from different many-body methods.
Uncertainties from the finite-size basis set and noninclusion of the Breit interaction and due to QED effects are quoted using the MBPT(2)
method. Wavelengths λif from the NIST database [27] (in nm) are given for the respective transitions.

Uncertainties Others

Ji → Jf λif DHF MBPT(2) LCCSD CCSD(2) CCSD(4) CCSD(∞) CCSD(T) Basis Breit QED [9]

E1 matrix elements
6d3/2 → 7p1/2 2504.7 9.22 7.73 6.81 7.46 7.47 7.47 7.43 0.05 −0.01 0.001 7.174
6d3/2 → 7p3/2 4336.7 4.28 3.57 3.12 3.44 3.45 3.45 3.42 0.02 −0.01 ∼0.0 3.301
6d5/2 → 7p3/2 3991.0 12.80 10.83 9.68 10.54 10.55 10.55 10.51 0.07 −0.02 0.001 10.156

E2matrix elements
6d3/2 → 7s1/2 616.5 43.10 33.74 31.39 34.02 34.06 34.06 33.78 0.20 −0.03 −0.02 33.367
6d5/2 → 7s1/2 608.7 52.74 41.69 39.31 42.24 42.27 42.27 41.96 0.24 −0.04 −0.02 41.568
6d5/2 → 6d3/2 50057.6 47.70 32.14 27.18 32.01 32.03 32.03 31.49 0.55 −0.16 0.01

M1 matrix elements
6d3/2 → 7s1/2 616.5 ∼0.0 0.001 0.002 0.001 0.001 0.001 0.001 ∼0.0 ∼0.0 ∼0.0
6d5/2 → 6d3/2 50057.6 1.549 1.550 1.548 1.547 1.552 1.552 1.552 ∼0.0 0.001 ∼0.0

ionization potential (IP) of an electron from the valence orbital
n of the respective state is given by H eff

N = PHN (1 + χc +
χn)P . We have also included contributions from important
triple excitations perturbatively from χ (2)

c and χ (2)
n in the

construction of H eff
N , and this approach is referred to as the

CCSD(T) method.
After obtaining amplitudes using the above equations, the

transition matrix element of an operator O between states |�i〉
and |�f 〉 is evaluated using the expression

〈�f |O|�i〉√〈�f |�f 〉〈�i |�i〉
= 〈�f |�†

f O�i |�i〉√
〈�f |�†

f �f |�f 〉〈�i |�†
i �i |�i〉

.

(15)

This gives rise to a finite number of terms for the MBPT(2)
and LCCSD methods, but it involves two nonterminating
series in the numerator and denominator, which are eT †

OeT

and eT †
eT , respectively, in both the CCSD and CCSD(T)

methods. In order to evaluate all the significant contribu-
tions from these series, we have used Wick’s generalized
theorem [28] to divide these terms into the effective one-
body, two-body, and three-body terms. The effective one-
body terms are the dominant ones; they are computed first
considering the CC terms with the approximations eT †

OeT �
O + OT + T †O + 1

2OT 2 + 1
2T †2O + T †OT and eT †

eT �
T †T + 1

2T †T 2 + 1
2T †2T . Then, they are stored and contracted

with the T2 and T
†

2 operators, avoiding repetitions of the
diagrams in a self-consistent procedure to account for the
higher-order one-body terms from the nonterminating series.
They are again stored as an intermediate step for further
contraction with the Sn and S

†
n operators. Similarly, the

effective two-body and three-body terms are computed after
contracting with the above effective one-body terms with the
T2 and T

†
2 operators, but they are computed directly contracting

with the Sn and S
†
n operators. Obviously, these effective

two-body and three-body terms also have contributions from
the nonterminating series in this way. To see the convergence of
the results with the series expansion, we present contributions
containing k T and/or T † operators from these nonterminating

series, which we refer to as the CCSD(k) method considering
terms up to k → ∞ in a self-consistent procedure as described
above. Our final CCSD results correspond to the CCSD(∞)

method. The same procedure is also adopted for the CCSD(T)
method. The contribution from the normalizations of the wave
functions Cnorm is estimated explicitly using the expression

Cnorm =
[

〈�f |O|�i〉√〈�f |�f 〉〈�i |�i〉
− 〈�f |O|�i〉

]
. (16)

IV. RESULTS AND DISCUSSIONS

In Table I, we give the radiative transition matrix elements
for all the considered channels for the DHF, MBPT(2),
LCCSD, CCSD, and CCSD(T) methods to analyze the
propagation of the correlation effects through various levels of
approximation in the many-body theories and the experimental
values of the transition wavelengths from the NIST database
[27] that we use later. We also give contributions from the
CCSD method by truncating the nonlinear terms with k = 2,
k = 4 and from a self-consistent (k = ∞) calculation. For
k = 2, the property-evaluating expression given by Eq. (15)
has the same number of terms as the LCCSD method.
Therefore, differences in the results from the LCCSD and
CCSD(2) methods imply the correlation contributions arise
through the nonlinear terms in the wave-function-determining
equations of the CCSD method and are found to be quite large.
Often, these contributions are neglected in the calculations
prohibitively large computational resources are required to
evaluate them. We observe from the trends that the correlation
effects for the MBPT(2) method are large and that there
are strong cancellations in the LCCSD approximation and
the results almost converge for k = 4 when the nonlinear
terms are included in the CCSD method. The discrepancy
between the results of the CCSD(4) and CCSD(∞) methods is
beyond the second significant digit, implying that the results
have converged within the precision of interest. The valence
triple excitations seem to change the results slightly. We also
give uncertainties associated with these results by estimating
contributions due to the finite size of our basis set and neglected
contributions from the Breit interaction and corrections from

052511-3



B. K. SAHOO AND B. P. DAS PHYSICAL REVIEW A 92, 052511 (2015)

TABLE II. Contributions to the reduced matrix elements 〈Ji ||O||Jf 〉 from various terms of the CCSD method (in a.u.). Differences between
these values from the CCSD results quoted in Table I correspond to those nonlinear terms that are not mentioned explicitly here.

Ji → Jf O OT1 T
†

1 O OS1f S
†
1iO S

†
1iOS1f OS2f S

†
2iO S

†
1iOS2f S

†
2iOS1f Cnorm

E1 matrix elements
6d 2

D3/2 → 7p 2
P1/2 9.22 ∼ 0.0 0.019 − 0.437 − 0.877 0.246 − 0.208 − 0.248 − 0.020 − 0.020 − 0.324

6d 2
D3/2 → 7p 2

P3/2 4.28 ∼0.0 0.002 − 0.132 − 0.522 0.089 − 0.081 − 0.097 − 0.005 − 0.007 − 0.139
6d 2

D5/2 → 7p 2
P3/2 12.80 ∼0.0 0.006 − 0.381 − 1.372 0.238 − 0.233 − 0.292 − 0.008 − 0.020 − 0.342

E2 matrix elements
6d 2

D3/2 → 7s 2
S1/2 43.10 ∼0.0 0.013 − 6.306 − 2.683 1.547 − 0.139 − 0.111 − 0.027 − 0.186 − 1.618

6d 2
D5/2 → 7s 2

S1/2 52.74 ∼0.0 0.015 − 7.644 − 2.871 1.666 − 0.125 − 0.148 − 0.017 0.004 − 1.6
6d 2

D5/2 → 6d 2
d3/2 47.70 ∼0.0 ∼0.0 − 8.994 − 8.116 3.264 − 0.079 − 0.010 − 0.012 − 0.021 − 1.947

M1 matrix elements
6d 2

D3/2 → 7s 2
S1/2 ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.0004 0.0005 0.0001 ∼0.0 ∼0.0 ∼0.0

6d 2
D5/2 → 6d 2

d3/2 1.549 ∼0.0 ∼0.0 0.003 − 0.002 0.078 0.003 ∼0.0 ∼0.0 ∼0.0 − 0.093

the quantum electrodynamics (QED) effects. These estimates
are carried out using the MBPT(2) method, which gives the
largest correlation effects. The E1 and E2 matrix elements
reported in [9] using the correlation potential method to include
the core-valence correlations and Brueckner orbitals for the
valence electrons are also given in Table I. The CCSD results
for the E1 matrix elements are found to be larger than these
values owing to significant contributions from the nonlinear
terms in the wave function.

After analyzing the trends in the correlation effects at differ-
ent levels of approximation, we now focus on the contributions
from the different terms of the CCSD method. We present these
results in Table II along with the contributions from Cnorm. Con-
tributions from the corresponding radiative operator O are the
DHF results, OT1 and its complex-conjugate terms give core-
valence correlations, OS1f and S

†
1iO give the pair-correlation

effects involving the valence orbitals, OS2f and S
†
2iO give

the core-polarization correlation effects involving the valence
orbitals, etc. [29]. Contributions from the other nonlinear terms
such as those representing the core pair-correlation effects
coming from the T

†
2 OT2 term are not given explicitly in Table

II; however, their contributions can be obtained by taking
the differences of the contributions given in Table II and the
final CCSD results given in Table I. As can be seen from
Table II, core-valence correlations are small, and the largest
correlation effects come from the pair-correlation effects in
the E1 and E2 matrix-element calculations. Nevertheless, the

core-polarization effects are also very significant and are the
dominant ones in the calculations of the M1 matrix elements.
We also find contributions from Cnorm to be fairly large.

We now use the matrix elements from the CCSD(T) method
and the experimental wavelengths mentioned in Table I to
evaluate the transition probabilities due to different radiative
decay channels from the 6d 2

D3/2 and 6d 2
D5/2 states. These

values are given in Table III along with their branching
ratios for the individual transitions. As can be seen from
Table III, the branching ratios are dominated by the E1
transitions, and they are entirely responsible for determining
the lifetimes of the 6d 2

D3/2 and 6d 2
D5/2 states. Using

these transition probabilities, we estimate the lifetimes of
the 6d 2

D3/2 and 6d 2
D5/2 states as τ6d3/2 = 540(10) ns and

τ6d5/2 = 1704(32) ns, respectively. These values are very
large compared to the other low-lying excited 7p 2

P1/2,3/2,
8s 2

S1/2, 7p 2
P1/2,3/2, 7d 2

D3/2,5/2, and 9s 2
S1/2 states of Fr,

which are measured to date of writing as τ7p1/2 = 29.45(11) ns,
τ7p3/2 = 21.02(15) ns, τ8s1/2 = 53.30(44) ns, τ7d3/2 = 73.6(3)
ns, τ7d5/2 = 67.7(2.9) ns, τ8p1/2 = 149.3(3.5) ns, τ8p3/2 =
83.5(1.5) ns, and τ9s1/2 = 107.53(90) ns, respectively [24].
The large PNC amplitudes in the 7s 2

S1/2 → 6d 2
D3/2,5/2

transitions [8,9] compared to the 7s 2
S1/2 → 8s 2

S1/2 transition
in Fr [10] and the corresponding transitions in the Ra+ ion
[12,17] and the long lifetimes of the excited 6d 2

D3/2 and
6d 2

D5/2 states make Fr a potentially attractive candidate for a
PNC experiment.

TABLE III. Transition probabilities AO
if due to different transition decay channels O (in s−1) and their branching ratios from the 6d 2

D3/2

and 6d 2
D5/2 states of Fr. Uncertainties are given in the parentheses.

Ji → Jf O AO
if Branching ratio

6d 2
D3/2 → 7p 2

P1/2 E1 1779511(33688) 0.96
6d 2

D3/2 → 7p 2
P3/2 E1 72637(1280) 0.04

6d 2
D3/2 → 7s 2

S1/2 E2 35.96(60) ∼0.0
6d 2

D3/2 → 7s 2
S1/2 M1 ∼0.0 ∼0.0

6d 2
D5/2 → 7p 2

P3/2 E1 586776(11219) ∼ 1.0
6d 2

D5/2 → 7s 2
S1/2 E2 39.33(19) ∼0.0

6d 2
D5/2 → 6d 2

d3/2 E2 ∼0.0 ∼0.0
6d 2

D5/2 → 6d 2
d3/2 M1 ∼0.0 ∼0.0
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V. CONCLUSION

We have performed relativistic many-body calculations of
the lifetimes of the 6d 2

D3/2 and 6d 2
D5/2 states of Fr, and they

are found to be large. These results favor the measurements
of PNC in the 7s 2

S1/2 → 6d 2
D3/2 and 7s 2

S1/2 → 6d 2
D5/2

transitions of Fr, for which calculations predict large PNC
effects. Also, both the 6d 2

D3/2 and 6d 2
D5/2 states seem to be

very suitable as intermediate states in the RIS measurements
of spectroscopic properties of some of the higher excited
states of Fr because of their long lifetimes. To evaluate
of these lifetimes, we have calculated radiative transition
matrix elements using the relativistic CC method. We have

also investigated the role of the electron correlation effects
in the determination of these quantities systematically by
approximating many-body methods at different levels and have
given contributions explicitly from various CCSD terms.
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