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In this work, we calculate dynamic polarizabilities and hyperfine-structure A and B constants of a few low-lying
states for Sc2+. The sum-over-states technique is applied to calculate the polarizabilities of the 3d 2D3/2, 3d 2D5/2,
and 4s 2S1/2 states. The most important and correlation sensitive part of the sum is calculated using a highly
correlated relativistic coupled-cluster theory. The remaining part of the sum is calculated using a lower-order
many-body perturbation theory and the Dirac-Fock theory. Present dynamic polarizabilities are important to
investigate the Stark shifts in the 4s 2S1/2–3d 2D5/2 and 4s 2S1/2–3d 2D3/2 clock transitions of Sc2+. Magic
wavelengths for zero Stark shifts corresponding to these transitions are found in the vacuum-ultraviolet region.
The coupled-cluster theory is used to estimate the hyperfine A and B constants with a very high accuracy.
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I. INTRODUCTION

Proposals of using atomic clocks in the optical region
of the electromagnetic spectrum open up the curiosity to
investigate the transitions between the electronic energy levels
of several atoms and ions [1–3]. It has been proposed and
observed that with respect to the neutral atomic species,
ions can provide more accurate clock transition frequencies
[2–8]. Some optical transitions of several ions, starting from
singly charged to multiply charged, have made them excellent
candidates of atomic clocks in the past two decades [2–6]. In
the literature, there are a number of indications of using the
forbidden transition between a ground state or a very long-lived
metastable state and a higher excited state of an ion as clock
transition [2,3,8–13]. Along this direction, we find that the
optical transitions between the second excited state 4s 2S1/2

and the first excited state 3d 2D5/2, the ground state 3d 2D3/2

of Sc2+ can be used as clock transitions. The wavelengths for
4s 2S1/2–3d 2D5/2 and 4s 2S1/2–3d 2D3/2 transitions of this ion
are 3946.07 Å and 3915.53 Å, respectively [14]. The lifetime
of the metastable state 4s 2S1/2 is around 0.05 s [15]. The
lifetime of the first excited state 3d 2D5/2 is very large, about
1.2 × 104 s [15], and hence it can be treated as a very long-lived
metastable state. The cooling transitions 3d 2D3/2,5/2 → 4p
2P1/2,3/2 of this ion can be operable by a tunable coherent
source in the VUV region [16–21]. Therefore, this ion has the
necessary features to be applicable as a possible candidate of
an optical atomic clock.

However, any transition suffers shifts due to the presence
of external perturbations [22]. Such perturbations arise mainly
from the blackbody radiation due to nonzero room tempera-
ture [22–25] and from external electric field used to trap the
ion [22,26]. Such trapping field can cause Stark shifts in the
energy levels and hence in the clock transition frequencies
associated with these levels [22,26]. As a result, the accuracy
of a clock frequency is reduced. Therefore, corrections should
be made to account for this type of electric-field-induced shifts.
This requires estimations of the electric dipole polarizabilities
of the clock transition states, as the Stark shifts are proportional
to these polarizabilities and intensity of the applied electric
field [22]. Laser cooling and trapping of ions were proposed,
studied, and have been demonstrated [27–29] already. Ions

having a single valence electron were studied for laser trapping
recently [27].

The electric dipole polarizability of an atom or ion depends
on the frequency of an applied electric field [22,26]. As a
consequence, the Stark shift is also frequency dependent or
dynamic in nature. It is usual that with changing frequency
of a tunable laser, one can see changes in the Stark shifts of
different energy levels and hence in the transition energies
among them. Therefore, the clock frequency shift due to
such dynamic effect should be considered. Nevertheless, such
study can also select some frequencies of a tunable radiation
source where the polarizabilities and consequently the Stark
shifts corresponding to transition states become equal [26].
As a result, the transition energy between two such states
remains unaffected by the electric field due to such choices
of the source frequencies. The wavelengths corresponding to
these frequencies are called magic wavelengths [22,26]. For
an atom or ion, sometimes these wavelengths are useful to
determine transition strengths of a few specific transitions or
ratios between them [22,26]. The blackbody radiation shift
of a clock frequency is proportional to the difference of the
zero-frequency scalar polarizabilities of the clock transition
states [22,23].

Scandium in its neutral and different ionized states is
abundant in various stellar media [30–36]. There are evidences
of the presence of Sc in various astrophysical systems, such as
solar atmosphere [30], ζ Oph cloud [30], disk and metal-rich
halo stars [32], planet-host stars [36], Am stars [34], etc.
As a consequence, the transition parameters of Sc and its
different ions have been a matter of considerable research
interest in the past four decades [31,37–44]. Especially, a
few reports are available in the literature on the issues of
abundance anomalies of Sc, which demand careful line-profile
analysis using accurate hyperfine data [32,39,40,45]. In this
regard, results on hypefine parameters are available for neutral
Sc [40] and singly ionized Sc [39,46]. The present work on
the hyperfine values for the Sc2+ ion is a supply to these
parameters in the literature.

In the present work, we perform calculations on the
dynamic electric dipole polarizabilities and hyperfine structure
A and B constants for Sc2+. Here the total polarizabilities are
divided in two parts: core and valence parts. Each of these
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two parts is calculated using the sum-over-states approach as
described in Ref. [22]. In the valence part of a polarizability,
the most dominant contribution to the sum is calculated using
the relativistic coupled-cluster theory with single, double, and
partial valence triple excitations [RCCSD(T)] in linear and
nonlinear forms [47]. In this part, the remaining contribution
to the sum is evaluated using the second-order relativistic
many-body perturbation theory [RMBPT(2)] [48] and the
Dirac-Fock (DF) theory. RMBPT(2) is also used to estimate
the core polarizability of the Sc3+ ionic core. Additionally,
we calculate the total polarizabilities (valence + core) using
only the Dirac-Fock wave functions to see the changes in these
values with the correlation corrections to the wave functions.
The ab initio correlation corrected results are improved further
by the inclusion of the experimental transition energies in
the valence part. We consider the frequency dependence
not only in the valence part but also in the core part of a
polarizability. The present RCCSD(T) theory, as mentioned
above, is employed also to estimate the hyperfine structure A

and B constants to a very high accuracy.

II. THEORY

The coupled-cluster theory for a single-valence system
is explained in detail in Refs. [48–51]. Briefly, this theory
relates a single-valence correlated atomic state |�v〉 with its
corresponding DF reference state |�v〉 using the relation

|�v〉 = eT {1 + Sv}|�v〉, (2.1)

where “v” denotes the orbital in which the valence electron
is considered. Here T and Sv are the cluster operators that
produce excitations with respect to the closed-shell core and
the single-valence open shell, respectively.

The dynamic or frequency-dependent Stark shift of an
atomic energy level that depends quadratically on the electric
field can be written as [22]

F (ω) = − 1
2α(ω)E2, (2.2)

where α(ω) is the polarizability of the system at frequency ω

and E is the magnitude of the applied electric field.
The present method for calculation of the total dynamic

polarizability of a system is described well in Ref. [22]. For a
single-valence atomic system having a valence electron in the
vth orbital, this polarizability can be represented as

α(ω) = α(ω)c + α(ω)v + α(ω)vc. (2.3)

This polarizability reduces to the static form for ω → 0. Here,
α(ω)c is the core polarizability of the ionic core. This ionic
core is obtained by removing the valence electron from the
system. With such a consideration, αvc provides the correction
term to the core polarizability due to the presence of the
valence electron. As the core electrons are tightly bound to
the nucleus, the presence of a valence electron is expected to
change the core polarizability by little amount [24]. Thus we
consider α(ω)vc in the present method of calculations, but its
ω dependency is neglected. α(ω)v is the valence polarizability
of the single-valence system. It is very much sensitive to
correlation correction due to reduced binding of the valence
electron to the nucleus.

In order to estimate the core polarizability, we use the
following expression [22,52,53]:

α(ω)c = 2

3

∑
ap

|〈�a||dDF||�p〉〈�a||dRMBPT(2)||�p〉|(εp − εa)

(εp − εa)2 − ω2
.

(2.4)
Here a represents all the core orbitals. p represents all virtual
orbitals of appropriate symmetries with respect to these core
orbitals. We calculate the core polarizability at the DF level
replacing 〈�a||dRMBPT(2)||�p〉 in the numerator of Eq. (2.4)
by 〈�a||dDF||�p〉.

The valence part of the polarizability is contributed by a
scalar part and a tensor part following the relation [22]

α(ω)v = α(ω)(0)
v + 3M2

v − Jv(Jv + 1)

Jv(2Jv − 1)
α(ω)(2)

v , (2.5)

where α(ω)(0)
v and α(ω)(2)

v determine the scalar and tensor parts,
respectively. Here Jv is the total angular momentum of the state
|�v〉, while Mv is its magnetic component. Using the sum-
over-states form, the mathematical expressions for α(ω)(0)

v and
α(ω)(2)

v can be written as [22]

α(ω)(0)
v = 2

3(2Jv + 1)

∑
n

|〈�v||d||�n〉|2 × (En − Ev)

(En − Ev)2 − ω2

(2.6)
and

α(ω)(2)
v = 4

(
5Jv(2Jv − 1)

6(Jv + 1)(2Jv + 1)(2Jv + 3)

)1/2

×
∑

n

[
(−1)Jv+Jn

{
Jv 1 Jn

1 Jv 2

}

× |〈�v||d||�n〉|2(En − Ev)

(En − Ev)2 − ω2

]
. (2.7)

The hyperfine shift of an atomic energy level associated
with the hyperfine quantum number F can be approximated
by the following expression [54]:

Hhfs = AK

2
+ 1

2

3K(K + 1) − 4Jv(Jv + 1)I (I + 1)

2I (2I − 1)2Jv(2Jv − 1)
B.

(2.8)
K = F (F + 1) − I (I + 1) − Jv(Jv + 1), and A and B are
magnetic dipole and electric quadrupole hyperfine constants,
respectively. The justification for the approximation comes
from the fact that, in general, there are very few contributions
from the higher-order moments beyond the magnetic dipole
and the electric quadrupole moments, such as the magnetic
octupole moment of the nucleus, that can occur in Hhfs. The
mathematical forms to represent the A and B constants are
given as [54]

A = μNgI

〈Jv||T(1)||Jv〉√
Jv(Jv + 1)(2Jv + 1)

(2.9)

and

B = 2eQ

√
2Jv(2Jv − 1)

(2Jv + 1)(2Jv + 2)(2Jv + 3)
〈Jv||T(2)||Jv〉,

(2.10)
where μN is the nuclear magneton and Q is the electric
quadrupole moment of the nucleus; gI is the g factor of
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TABLE I. Comparison of the dipole matrix elements (reduced
form) in a.u. with the present and other calculations (Other).
The values in parentheses indicate the uncertainties in the present
calculations.

Transitions DF Present Othera Otherb

4s 2S1/2–4p 2P1/2 2.582 2.344 (±0.2%) 2.345 2.331
4s 2S1/2–4p 2P3/2 3.652 3.316 (±0.2%) 3.318 3.298
3d 2D3/2–4p 2P1/2 1.536 1.321 (±1.1%) 1.325 1.320
3d 2D3/2–4p 2P3/2 0.683 0.588 (±1.1%) 0.589 0.588
3d 2D3/2–4f 2F5/2 1.401 1.165 (±0.4%) 1.173 1.157
3d 2D5/2–4p 2P3/2 2.056 1.771 (±1.1%) 1.780 1.770
3d 2D5/2–4f 2F5/2 0.376 0.313 (±0.4%) 0.315 0.311
3d 2D5/2–4f 2F7/2 1.679 1.399 (±0.4%) 1.411 1.390

aReference [44].
bReference [15].

the nucleus and is represented by gI = μI

I
, where μI is

the magnetic moment of the nucleus in the unit of nuclear
magnetons. The reader is referred to Ref. [54] for detailed
explanations of the above two mathematical expressions.

III. RESULTS AND DISCUSSIONS

We start our calculations with generating the DF orbital ba-
sis functions having two-parameters Gaussian type form [55].
These parameters are optimized with respect to the energies
and radial wave functions of the DF orbitals obtained using
the GRASP92 code of Parpia et al. [56]. We use 35, 32, 25, 22,
and 20 basis functions for the s, p, d, f , and g symmetries,
respectively, at the DF level of calculations. The number of
active orbitals (including all the core orbitals) considered
for these symmetries during the RCCSD(T) and RMBPT(2)
calculations is 12, 11, 10, 9, and 8, respectively. We have
tested that these large numbers of symmetries and active
orbitals are sufficient to include the correlation corrections in
the energies, dipole matrix elements, and hyperfine constants
without too much computational complexity [55]. We compare
the most important dipole matrix elements in reduced forms
as calculated by the present RCCSD(T) method with the
corresponding CCSDpT results of Nandy et al. [44] and SDpT
results of Safronova et al. [15] in Table I. The CCSDpT
results were calculated in a similar way as the RCCSD(T)
results are calculated by us. The small differences between
these two sets of results may be the consequence of different
choices of optimized parameters for the basis functions,
and the consideration of different numbers of active orbitals
used in the coupled-cluster calculations. The SDpT values
are calculated using the single, double, and partial triple
excitations, but in a linearized form. In this form, they used a
linear approximation: |�v〉 ≈ {1 + T + Sv}|�v〉 in Eq. (2.1).
However, inclusion of nonlinear terms, such as T 2

2! , is more
appropriate theoretically [47,57], and is considered in the
present work. We have estimated the uncertainties in our results
which arise from the neglect of Breit interaction and some of
the quantum electrodynamics (QED) effects, as well as the
limited number of active orbitals and symmetries.

In Eq. (2.6) and Eq. (2.7), the set of intermediate states
(the running label “n” in the summation) which can provide

TABLE II. Values of static dipole polarizabilities in a.u. at the
various levels of calculations. The values in parentheses indicate the
uncertainties in the present calculations.

State DF CC CC (Expt.)

4s 2S1/2 Scalar 43.73 35.07 35.23 (±1%)
3d 2D3/2 Scalar 5.10 4.02 4.00 (±5%)

Tensor −1.63 −1.03 −1.02 (±3%)
3d 2D5/2 Scalar 5.08 4.03 4.01 (±5%)

Tensor −2.30 −1.47 −1.45 (±3%)

nonzero dipole matrix elements in the calculations of the
valence polarizabilities of 4s 2S1/2, 3d 2D3/2, and 3d 2D5/2

states are {np 2P1/2, np 2P3/2}, {np 2P1/2, np 2P3/2, nf
2F5/2}, and {np 2P3/2, nf 2F5/2, nf 2F7/2}, respectively. For
both the equations, we consider the sums up to n = 25. The
terms with n > 25 were found to contribute very little. The
sum of the terms having n = 4, 5, and 6 for np 2P1/2,3/2 states
and n = 4, 5 for nf 2F5/2,7/2 states contribute dominantly and
are sensitive to correlation correction. Therefore, calculations
of these parts of the sums need exhaustive treatment of the
correlation correction which is performed here using the
RCCSD(T) [49] wave functions. We define these parts as Part
I. We consider the next significant contributions in the sums up
to n = 12 for the np 2P1/2,3/2 and nf 2F5/2,7/2 states. In these
parts, the dipole matrix elements are calculated by including
core polarization correction on top of the DF approximation
using the RMBPT(2) [53]. We define these parts as Part
II. The remaining parts of the sums with n = 13 to n = 25
contribute marginally, and are thus determined using the DF
wave functions. We label these parts as Part III.

In Table II, we present static values of scalar [α(ω)(0)
v +

α(ω)c + α(ω)vc] and tensor [α(ω)(2)
v ] polarizabilities calcu-

lated using different approaches. Here the column labeled
by DF shows the results when all the Part I, Part II, and
Part III of α(ω)v along with α(ω)c and α(ω)vc are calculated
using the DF wave functions only. The CC represents the
results where α(ω)c and α(ω)vc are treated with RMBPT(2),
and the correlation corrections in Part I and Part II of α(ω)v
are included as described in the previous paragraph but Part
III of α(ω)v is calculated at the DF level. Based on the CC
results, the CC(Expt.) results are obtained by replacing the
RCCSD(T) energies in the denominators of Eq. (2.6) and
Eq. (2.7) by the experimental transition energies from the
National Institute of Standards and Technology (NIST) [14].
Such replacements are seen to change the CC polarizabilities
by a small amount. However, the CC(Expt.) polarizabilities are
recommended and their uncertainties are discussed in the later
part of this section. Nevertheless, the correlation corrections to
the wave functions are crucial in calculating the polarizabilities
at a desired level of accuracy. These corrections reduce the
magnitudes of the scalar polarizabilities by about 20% to 21%
and tensor polarizabilities by about 36% to 37%.

The frequency dependencies of the total polarizabilities
[α(ω)] for the 4s 2S1/2, 3d 2D3/2, and 3d 2D5/2 states are
plotted in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6
for the different magnetic sublevels as indicated therein. The
plots are made using the polarizability values for frequencies

052510-3



NARENDRA NATH DUTTA, SOURAV ROY, AND P. C. DESHMUKH PHYSICAL REVIEW A 92, 052510 (2015)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
-200
-175

-150
-125

-100
-75

-50
-25

0

25
50

75
100

125
150

175
200

P
ol

ar
 (a

.u
.)

Freq (a.u.)

 DF

 CC

FIG. 1. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 4s 2S1/2 state.

from ω = 0 a.u. to ω = 0.425 a.u. with a frequency interval
of �ω = 0.005 a.u. In each of these plots, the polarizability
values at both the DF and CC levels, as described in the
previous paragraph, are shown. The resonances in these plots
correspond to the first excitation energies. Their appearances
can be understood from the energy denominators in Eq. (2.6)
and Eq. (2.7). For the 4s 2S1/2, 3d 2D3/2, and 3d 2D5/2 states,
the resonances happen due to the 4s 2S1/2 − 4p 2P1/2,3/2,
3d 2D3/2 − 4p 2P1/2,3/2, and 3d 2D5/2 − 4p 2P3/2 transitions,
respectively. The energies corresponding to these transitions
are represented in Table III. With increasing ω, the resonances
appear at the positive side of the polarizabilities. At the left
side of the resonances, the polarizabilities remain positive
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FIG. 2. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 3d 2D3/2 state with M = ±1/2.
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FIG. 3. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 3d 2D3/2 state with M = ±3/2.

and increase with increasing frequency. At higher ω value
of this side, a higher value of a polarizability and hence an
induced dipole moment indicates a valence electron is more
loosely bound to the nucleus. The impacts of the correlation
corrections to the wave functions make the ω sensitive regions
for the 3d 2D3/2 and 3d 2D5/2 states with M = ±1/2, ± 3/2
blueshifted. These shifts appear to be nearly equal to the
differences of the first excitation energies calculated using the
DF and the RCCSD(T) theories. The ω sensitive region for the
4s 2S1/2 state also gets blueshifted by the correlation. But this
shift is comparatively small with respect to the shifts in the
case of the 3d 2D3/2 and 3d 2D5/2 states as mentioned before.
It can be understood as a consequence of the larger amount
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FIG. 4. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 3d 2D5/2 state with M = ±1/2.
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FIG. 5. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 3d 2D5/2 state with M = ±3/2.

of correlation corrections to the 3d 2D3/2,5/2 → 4p 2P1/2,3/2

transitions compared to those to the 4s 2S1/2 → 4p 2P1/2,3/2

transitions. The M = ±5/2 component of the 3d 2D5/2 state
shows no resonance at both levels of calculations. For this
component, we have found a strong cancellation between the
scalar and tensor parts of the polarizability at every value
of ω.

We compare the frequency versus total polarizability plots
at the CC level for the 4s 2S1/2 and 3d 2D3/2 states in Fig. 7,
and for the 4s 2S1/2 and 3d 2D5/2 states in Fig. 8. From
these plots, one can observe that the differences between
the polarizabilities of the 4s 2S1/2 and 3d 2D3/2,5/2 states in
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FIG. 6. (Color online) Frequency (Freq) dependence of polariz-
ability (Polar) for the 3d 2D5/2 state with M = ±5/2.

TABLE III. Present transition energies in a.u. calculated using
the DF and RCCSD(T) theories. The experimental results from the
NIST in a.u. [14] are compared.

Transitions DF RCCSD(T) NIST

4s 2S1/2–4p 2P1/2 0.1595 0.1674 0.1666
4s 2S1/2–4p 2P3/2 0.1615 0.1696 0.1687
3d 2D3/2–4p 2P1/2 0.2399 0.2800 0.2830
3d 2D3/2–4p 2P3/2 0.2419 0.2822 0.2851
3d 2D3/2–4f 2F5/2 0.5664 0.6211 0.6236
3d 2D5/2–4p 2P3/2 0.2411 0.2811 0.2842
3d 2D5/2–4f 2F5/2 0.5656 0.6200 0.6227
3d 2D5/2–4f 2F7/2 0.5656 0.6200 0.6227

the region ω = 0 a.u. to ω = 0.125 a.u. can cause noticeable
Stark shifts in the optical transitions 4s 2S1/2 → 3d 2D3/2,5/2.
Therefore, corrections for such shifts should be considered
for these clock transitions if a tunable laser operating in the
infrared or visible regions is used to trap Sc2+. It can be noted
that the polarizabilities of the 3d 2D3/2,5/2 states are changed
by a maximum amount of around 10% at ω = 0.125 a.u.
from the corresponding static values. On the other hand, this
change is around 110% in the polarizability of 4s 2S1/2 state.
Nevertheless, both Fig. 7 and Fig. 8 show some intersections
in or very close to the region from ω = 0.275 a.u. to ω =
0.300 a.u. Here we consider those intersections where all
the curves in both the figures tend toward zero value with
increasing ω. These intersections, as observed in the vacuum
ultraviolet (VUV) region, provide the magic wavelengths
for the corresponding transitions. With the accessibility of
tunable coherent radiation sources in the VUV region [16–21],
it may be possible to determine these magic wavelengths
experimentally. The positions of the magic wavelengths are
found to be very close to the first excitation energies of the
3d 2D3/2,5/2 states. Therefore, the polarizabilities of the 3d
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FIG. 7. (Color online) Frequency (Freq) dependence of polariz-
abilities (Polar) for the 4s 2S1/2 and 3d 2D3/2 states at CC level. The
brackets indicate the magnitudes of the M components.
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FIG. 8. (Color online) Frequency (Freq) dependence of polariz-
abilities (Polar) for the 4s 2S1/2 and 3d 2D5/2 states at CC level. The
brackets indicate the magnitudes of the M components.

2D3/2,5/2 states at these wavelengths are strongly dominated
by the terms with the 3d 2D3/2,5/2–4p 2P1/2,3/2 dipole matrix
elements. Also, at this frequency region, the polarizabilities
of the 4s 2S1/2 state are dominated by the terms having 4s
2S1/2–4p 2P1/2,3/2 dipole matrix elements. Therefore, as is
obvious from Eq. (2.5), Eq. (2.6), and Eq. (2.7), equality
of the polarizabilities at the magic wavelengths can be used
to determine the 4s 2S1/2–4p 2P1/2,3/2 and 3d 2D3/2,5/2–4p
2P1/2,3/2 transition strengths within a very good level of
approximation. One can use the RCCSD(T) data for 3d
2D3/2,5/2–4f 2F5/2,7/2 transition matrix elements as presented
in Table I and RCCSD(T) or NIST transition energy values as
presented in Table III to do this job. This follows from the fact
that the next significant contributions to the valence parts of the
3d 2D3/2,5/2 polarizabilities at the magic wavelengths appear
from the terms having these matrix elements. Nevertheless,
the experimental detection of the magic wavelengths can be
considered as one of the excellent applications of a tunable
radiation source in the VUV region as discussed here. In
Table IV, we give the values of the magic wavelengths
calculated at the CC and CC(Expt.) levels. We recommend the
values of CC(Expt.) as these are determined in a more accurate
way by including the experimental transition energies.

TABLE IV. Values of the magic wavelengths in the unit of Å.
The labels in parentheses indicate the magnetic sublevels of the
corresponding states. The uncertainties in the magic wavelengths
are estimated to be around ±0.4%.

Transitions CC CC (Expt.)

3d 2D3/2 (±1/2)–4s 2S1/2 1529 1509
3d 2D3/2 (±3/2)–4s 2S1/2 1598 1581
3d 2D5/2 (±1/2)–4s 2S1/2 1516 1496
3d 2D5/2 (±3/2)–4s 2S1/2 1552 1534

In order to give an approximate estimate of uncertainty in
the calculation of a static polarizability value, we consider a
few things: (a) uncertainty in α(0)c, (b) uncertainty in the Part
I region of α(0)v , (c) uncertainty due to incomplete correlation
correction in the Part II region of α(0)v , and (d) uncertainty
due to the use of the DF approximation in the Part III region
of α(0)v . These are the main sources of error. To estimate the
uncertainty (a), we apply our present technique as presented
in Eq. (2.4) to calculate the core polarizability of Ca2+, which
appears next to Sc3+ in the Ar-isoelectronic sequence. We
then estimate the percentage differences of this calculated
polarizability of Ca2+ from the experimental value of Öpik [58]
and from the perturbed relativistic coupled-cluster (PRCC)
result of Chattopadhaya et al. [59]. We take the maximum
of these two percentage differences as the uncertainty in the
polarizability for Ca2+. We approximate the uncertainty for
Sc3+ core in (a) to be the same as estimated for the Ca2+ core.
The uncertainties in (b) can arise from the uncertainties of 4s
2S1/2–4p 2P1/2,3/2 matrix elements for the 4s 2S1/2 state and
3d 2D3/2,5/2–4p 2P1/2,3/2 matrix elements for the 3d 2D3/2,5/2

states as the terms associated with these matrix elements
dominate here. A significant amount of uncertainty in (c) and
(d) can appear in the polarizabilities of 3d 2D3/2,5/2 states.
This is due to the fact that the dipole matrix elements between
3d 2D3/2,5/2 and nf 2F5/2,7/2 states do not converge rapidly
with increasing n. Therefore, the sum of the terms associated
with these types of matrix elements for n > 5 can contribute
noticeably. This is shown well in the polarizability calculations
of Ca+ using the SDpT method in Refs. [24,60]. We take the
dipole matrix elements of Safronova et al. [15] calculated
by the SDpT excitations method for n = 6,7 of Sc2+. Then
the contributions from the terms associated with these matrix
elements to the polarizabilities are estimated. However, for
other higher n values, the SDpT results are not available
in their work [15]. Therefore, we scaled the contributions
for these n values with respect to the corresponding SDpT
results for Ca+ [24,60]. Then we recalculate the polarizabilities
using this new set of values at Part II and Part III. The
differences between the present polarizabilities in Table II and
these recalculated polarizibilities are estimated as uncertainties
from (c) and (d). All the major sources of errors described
in (a), (b), (c), and (d) are summed up to estimate the total
uncertainties. The uncertainties in the magic wavelengths also
depend on the uncertainties in the 4s 2S1/2–4p 2P1/2,3/2 and 3d
2D3/2,5/2–4p 2P1/2,3/2 matrix elements due to the dominance of
the associated terms at these wavelengths. Uncertainty in the
core polarizability has no significance here as it is cancelled
in the differences of the two polarizabilities. We calculate
the uncertainties in the magic wavelengths by checking
the maximum variations in the positions of polarizability
intersections corresponding to the maximum variations in
these matrix elements as quoted in Table I.

Table V and Table VI represent the hyperfine-structure
constants A and B, respectively, for 45Sc2+ as calculated using
the DF and RCCSD(T) theories. Without considering isotopic
effect, the hyperfine values of the other nearby isotopes can
be determined well from the present data through proper
scaling by gI and Q values. We use the Fermi type of
nuclear charge distribution function to calculate the hyperfine
constants. The electron correlation plays a significant role
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TABLE V. Hyperfine A constants for 45Sc2+ in MHz calculated
using the DF and RCCSD(T) theories. gI = 1.3590 is used [61]. The
values in parentheses indicate the uncertainties in the RCCSD(T)
calculations. “Other” represents the RLCMBPT values [62] and the
experimentally measured values [63] in MHz.

State DF RCCSD(T) %Corr Othera Otherb

3d 2D3/2 296.13 357.13 (±0.5%) 20.60
3d 2D5/2 126.14 84.61 (±4.0%) −32.92
4s 2S1/2 3916.50 5045.38 (±0.5%) 28.82 4958 5040
4p 2P1/2 801.90 1053.71 (±0.5%) 31.40 1050
4p 2P3/2 154.66 216.53 (±0.5%) 40.00 210
4d 2D3/2 51.21 57.41 (±1.0%) 12.11
4d 2D5/2 21.87 27.32 (±0.5%) 24.92
4f 2F5/2 1.94 2.27 (±0.5%) 17.01
4f 2F7/2 1.08 0.04 (±50.0%) −96.30

aReference [62].
bReference [63].

here. The percentage values of the correlations (%Corr) are
quoted in the fourth column of both these tables. Unlike
the A values, the %Corr seems to affect the hyperfine B

constants of the fine-structure states having the same n and
L values but different J values by almost the same amount.
The B constants of the 4f 2F5/2,7/2 states are found to
be abnormally correlated. These hyperfine values can be
substituted in Eq (2.8) to calculate the hyperfine shift of an
energy level with a known quantum number F . The sum of the
Breit and some of the QED corrections, which are neglected in
the present calculations, along with the changes in the results
with increasing number of active orbitals and symmetries can
provide good estimates of uncertainties in these constants.
The present results for the A constants are compared with
the other values as found in the literature. We find a very
good agreement of our RCCSD(T) results with the measured
values of Kopfermann et al. [63]. The theoretical value for
the 4s 2S1/2 state was calculated earlier using the relativistic
linked-cluster many-body perturbation theory (RLCMBPT).
This theory excludes the correlation correction in the wave
function beyond the second order [62]. However, the higher-
order correlation corrections in the RMBPT are included in
this work using the formalism of the RCCSD(T) approach.
The 〈r−3〉 value for the [Ar]3d electronic configuration of
Sc2+ ion is reported as 1.5755 a.u. in Ref. [64]. Our present
calculations for the B constants correspond to the 〈r−3〉 values
1.5475 a.u. and 1.5378 a.u. for the [Ar]3d3/2 and [Ar]3d5/2

configurations, respectively.

TABLE VI. Hyperfine B constants for 45Sc2+ in MHz calculated
using the DF and RCCSD(T) theories. Q = −0.22 barns is used [61].
The values in parentheses indicate the uncertainties in the RCCSD(T)
calculations.

State DF RCCSD(T) %Corr

3d 2D3/2 −29.61 −32.00 (±1.0%) 8.07
3d 2D5/2 −41.93 −45.42 (±1.0%) 8.32
4p 2P3/2 −46.51 −65.25 (±0.5%) 40.29
4d 2D3/2 −5.12 −7.72 (±1.0%) 50.78
4d 2D5/2 −7.27 −10.96 (±1.0%) 50.76
4f 2F5/2 −0.32 −2.77 (±4.0%) 765.63
4f 2F7/2 −0.38 −3.23 (±4.0%) 750.00

IV. CONCLUSION

The present calculations of the dynamic polarizabilities can
be used to estimate blackbody radiation shifts and frequency-
dependent Stark shifts in the 4s 2S1/2–3d 2D3/2,5/2 clock
transitions in Sc2+. The magic wavelengths corresponding
to these transitions are found at 1496 Å, 1509 Å, 1534 Å,
and 1581 Å by our present method. If these magic wave-
lengths are accurately measured, experimentalists could deter-
mine the 3d 2D3/2,5/2–4p 2P1/2,3/2 and 4s 2S1/2–4p 2P1/2,3/2

transition strengths in the future. The present hyperfine-
structure constants provide valuable data for accurate line-
profile analysis of astrophysically important transition lines
and hence can resolve the abundance anomaly issues for
scandium.
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