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The multiconfiguration Dirac-Hartree-Fock method was employed to calculate the total and excitation energies,
oscillator strengths, and hyperfine structure constants for low-lying levels of Sm I. In the first-order perturbation
approximation, we systematically analyzed correlation effects from individual electrons and electron pairs. It was
found that the core correlations are of importance for the physical quantities concerned. Based on the analysis,
the important configuration state wave functions were selected to constitute atomic state wave functions. By
using this computational model, our excitation energies, oscillator strengths, and hyperfine structure constants
are in better agreement with experimental values than earlier theoretical works.
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I. INTRODUCTION

The complicated electronic structure of lanthanide atoms
leads to unique physical properties which are of great interest
to various applications. For example, lanthanide luminescence
was investigated for biomedical analyses and imaging in view
of their enabling easy spectra and time discrimination of the
emission bands which span both the visible and near-infrared
ranges [1]. The rich and broad spectra of rare-earth elements
are also accessible to astronomy studies [2,3] and have
many applications in the lighting community [4]. However,
investigation of atomic parameters for rare-earth atoms are
quite difficult due to the complicated and strong electron
correlation effects mainly arising from electrons in the 4f open
shell [5–7]. Among the lanthanide atoms, the energy-level
structure of samarium is one of the most complex, as shown
in Fig. 1 [8]. The term of its ground configuration is [Xe]
4f 66s2 7F . The open 4f,5d,6s, and 6p shells in excited states
give rise to the complex structure of energy levels, and large
overlap between energy blocks can be found from this figure.
In this work, we focus on the transitions from configurations
4f 66s2 to 4f 66s6p, which contain the lowest states for odd
and even parities.

Because of the strong correlation effects, there are only
a few ab initio calculations of atomic properties for Sm
I. Porsev [9] studied the lifetimes of low-lying odd-parity
levels 4f 66s6p 9Go

0−4 and 9Fo
1,2 within the framework of

the relativistic configuration interaction (RCI) method, where
electron correlations involving the valence orbitals (4f , 5d,
6s, and 6p) were considered. The deviation of their excitation
energies from experimental values [10,11] is about 15%, and
the calculated oscillator strengths are not consistent with
the experimental values [12,13] either. Later, based on the
multiconfiguration Dirac-Hartree-Fock (MCDHF) method,
Dilip et al. [14] investigated the excitation energies and
the hyperfine structure (HFS) constants for low-lying levels,
where the active space approach was adopted to include the
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valence correlations involving 5d, 6s, and 6p electrons. Their
excitation energy values are very close to Porsev’s values. For
HFS, it is interesting that the discrepancy between their results
and experimental measurement [15] is considerably large,
while the results in the single-configuration approximation
by Cheng and Childs [16] agree with experiment quite well. In
their calculations, due to the limited computational capacity
at that time, the core correlations have not been taken into
account, although they were found to be of importance for
heavy elements [17].

In this work, we explored the effect of correlation from each
electron pair on total energies, excitation energies,and HFS
constants for low-lying levels of Sm within the framework of
the MCDHF method [18]. On the basis of analysis of electron
correlations, the important configurations, accounting for main
electron correlations in the first-order perturbation approxima-
tion, were selected to calculate the different atomic properties.
The agreement between present results and experimental val-
ues was dramatically improved by including core correlations.

II. THEORY

In the MCDHF approach, the atomic state wave function
(ASF) � is represented as a linear combination of symmetry-
adapted configuration state wave functions (CSFs) �:

�(�πJM) =
∑

r

cr
��(γrπJM), (1)

where π , J , and M are the parity, total angular momentum,
and magnetic quantum number, respectively. � and γr are
the additional quantum numbers to define each ASF or CSF
uniquely. Configuration mixing coefficients cr

� are obtained
through diagonalization of the Dirac-Coulomb (DC) Hamilto-
nian

HDC =
N∑

i=1

[cαi · pi + (βi − 1)c2 + V (ri)] +
∑
i>j

1

rij

, (2)

where the V (ri) is the monopole part of the electron-nucleus
Coulomb interaction, and αi and βi are the Dirac matrices. In
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FIG. 1. (Color online) Scheme of the odd-parity and even-parity
levels (in cm−1) of the Sm atom.

the relativistic self-consistent field procedure, both the radial
parts of Dirac orbitals and the expansion coefficients cr

� are
optimized [19].

The Breit interaction in the low-frequency approximation

Bij = − 1

2rij

[
αi · αj + (αi · r ij )(αj · r ij )

r2
ij

]
(3)

and the QED effects including vacuum polarization and
self-energy correction can be included in the relativistic
configuration interaction computations [20–22].

Once the initial- and final-state wave functions have been
obtained, the radiative transition matrix element can be
expressed as

Mif = 〈�(i)‖ O(1)‖�(f )〉. (4)

Here O(1) is the electric dipole (E1) interaction. The standard
Racah algebra assumes that the orbital sets for the initial- and
final-state wave functions are the same [23]. This restriction
can be relaxed by the biorthogonal transformation technique
[24]. As a result, the transition matrix elements described by
independently optimized orbital sets can also be calculated
using Racah algebra.

The hyperfine structure of the atomic energy levels is caused
by electromagnetic interactions between the nucleus and
electrons. The magnetic dipole (M1) and electric quadrupole
(E2) hyperfine interaction constants A and B are given by [25]

AJ = μI

I

1

[J (J + 1)]1/2 〈�J J‖T (1)‖�J J 〉 (5)

and

BJ = 2QI

[
J (2J − 1)

(J + 1)(2J + 3)

]
〈�J J‖T (2)‖�J J 〉. (6)

Here, I is the nuclear spin, μI is the nuclear magnetic dipole
moment, QI is the nuclear quadrupole moment, and T (k) is
the electronic tensor operators of rank k. The M1 and E2
hyperfine operators T (1) and T (2) are defined as [25], in atomic

units,

T (1) =
N∑

j=1

t (1)(j ) = −iα(αj · 1j C (1)(j ))r−2
j (7)

and

T (2) =
N∑

j=1

t (2)(j ) = −C (2)(j )r−3
j , (8)

where α is the fine-structure constant, and C (k) is the spherical
tensor operator of rank k.

In this work, the new version of the GRASP2K package
[20] was adopted to calculate wave functions and atomic
properties, such as excitation energies, oscillator strengths,
and HFS constants.

III. ELECTRON CORRELATION EFFECTS

In the multiconfiguration calculations, one can obtain the
indication of the important correlation corrections according
to the perturbation theory [19,26]. The zero-order ASF should
include the dominant configuration state functions. The first-
order correction of ASFs is composed of all CSFs which inter-
act with zero-order ASFs and thus can be expressed as a linear
combination of CSFs that are obtained by single and double
(SD) substitutions from occupied orbitals of the reference
configuration to virtual orbitals. The first-order correlations
can be further classified into different pair correlations which
are defined by all possible substitutions from a certain electron
pair [19]. Based on determination of the contributions from
each pair correlation, the important correlation corrections can
be selected effectively to investigate atomic quantities.

In this work, we are concerned with the low-lying levels
of Sm I, the ground configuration of which is [Xe] 4f 66s2,
and the lowest odd-parity levels belong to the [Xe] 4f 66s6p

configuration. The 4f , 6s, and 6p orbitals were treated as
valence, and the others were core orbitals. Due to the huge
CSF space arising from the open 4f shell, the first-order
correlation effects (especially for the excited state) could not be
completely included within our computational capacity. There-
fore, we divided them into several subsets from individual
electrons or electron pairs, the contributions from which could
be evaluated in a series of smaller configuration-interaction
(CI) calculations. The analysis of the first-order electron
correlations for the ground and excited states proceeded as
follows:

(1) The occupied orbitals were optimized as spectroscopic
in the single-configuration approximation and kept frozen in
subsequent calculations. The relaxation effect was accounted
for by the independent optimization of the ground and excited
states.

(2) The virtual orbitals were generated in a restricted con-
figuration space, in which only some electron-pair correlations
were included in the MCDHF approach. For example, in the
relativistic self-consistent field procedure, the configurations
could be obtained by SD substitutions from valence orbitals
to the virtual ones. As a result, these virtual orbitals were op-
timized to accommodate the contributions from only valence
correlations.
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TABLE I. Correlation energy 	E for ground state 4f 66s2 7F 0.
Model: SrD, MCDHF calculations with the configurations were
obtained by all single and restricted double (SrD) substitutions to
these virtual orbitals (the restriction was described in text); SD,
CI calculations with configurations were generated by single and
unrestricted double (SD) replacement. Layers indicate number of
virtual orbitals of a particular symmetry. NCF is the number of CSFs
with J = 0,1,2. E( 7F 1 - 7F 0) is the excitation energy in cm−1 of
7F 1 - 7F 0.

Model Layers NCF 	E (cm−1) E( 7F 1 - 7F 0)

SrD “1spdfg” 9 152 −27 078.48 298.16
SrD “2spdfg” 18 164 −28 712.10 302.47
SrD “3spdfg” 27 176 −28 913.40 303.75
SD “3spdfg” 322 280 −32 115.94 307.40

Experiment [5] 292.58

(3) By applying the orbitals generated above, the different
electron correlation effects could be included in a series of CI
calculations to select the important ones.

(4) The Breit and QED corrections were estimated in the
single-configuration approximation.

In the evaluations of various atomic properties, the impor-
tant configuration state wave functions were selected on the
basis of analysis of electron correlation effects. Moreover, we
could optimize the orbitals to accommodate the contributions
from the selected electron correlations in the framework of the
MCDHF method.

A. Generation of the virtual orbitals

In the present MCDHF approach, to reduce complexity of
self-consistent field calculations the virtual orbitals were added
layer by layer. The configurations were obtained by single and
restricted double (SrD) substitutions from valence orbitals, in
which the two occupied orbitals must be replaced by two of
the same virtual orbitals; i.e., only the double substitutions
from 4f , 6s, and 6p to virtual orbitals nl2 were permitted.
The one-electron energy values of virtual orbitals do not have
physical meaning; the properties of virtual orbitals depend
on the correlation effects they describe [27]. In this paper
the virtual orbitals were enclosed in quotation marks to avoid
confusion with occupied orbitals, and they are listed by angular
symmetry and quantity. For example, “2spd1f ” means two of
each of the s, p, and d symmetries and one of the f symmetry.

In this section, three virtual layers for levels with even parity
and two virtual layers for ones with odd parity were generated
within the framework of the MCDHF method. In order to
check the validity of this restriction on double substitutions,
contributions from the reduced configurations were added in
the CI calculation, where the configurations were obtained by
single and unrestricted double (SD) substitutions from valence
orbitals to all virtual orbitals generated above.

Tables I and II present the correlation energies for the
ground state 4f 66s2 7F 0 and the excited state 4f 66s6p
9Go

0, as well as the excitation energies of 4f 66s2 7F 1 and
4f 66s6p 9Go

0 states. The correlation energy is defined as the
total energy difference between the multiconfiguration and
single-configuration values. As can be seen from Table I, the

TABLE II. Correlation energy 	E for exited state 4f 66s6p
9Go

0. NCF is the number of CSFs with J = 0,1. E( 9Go
0 - 7F 0) is the

excitation energy in cm−1 of 9Go
0 - 7F 0.

Model Layers NCF 	E (cm−1) E(9Go
0- 7F 0)

SrD “1spdfg” 51 017 −23 559.04 10 234.69
SrD “2spdfg” 100 370 −25 654.01 9 773.33
SD “2spdfg” 457 452 −27 549.98 10 394.95

Experiment [5] 13 796.36

calculations with one virtual layer could capture most of the
valence correlation effects for the ground state. In addition,
the SrD model can include the valence correlation effects
effectively with a smaller number of CSFs. For example,
the difference in 	E between the SrD and SD models is
3196 cm−1 for the ground state and 3.74 cm−1 in the fine
structure of the 7F 1 level, while the NCF was reduced to
27 176 from 322 280.

Similar results for the excited state were given in Table II, in
which the total and excitation energies were not significantly
improved by the expansion of configuration space. However,
the excitation energies E( 9Go

0 - 7F 0) differ from the experimen-
tal value by more than 3000 cm−1. Therefore, the contributions
from the electron correlations which were not included in the
generation of virtual orbitals should be evaluated.

B. Contributions from different electron correlations

In order to include the significant correlations with respect
to computational capacity, we divided the one- and two-body
electron correlations into several subsets. The CI approach
was used to include different correlation effects within the
virtual orbital set “1spdfg”, in which orbitals generated
above were applied and kept frozen. For example, the valence
correlation of 4f 66s6p could be divided into 4f , 6s, 6p, 4f 2,
4f 6s, 4f 6p, and 6s6p electron correlations. The 4f electron
correlation effect was expressed as a linear combination
of CSFs that are obtained by single replacement 4f → v

(virtual orbital), and the CSFs for the 4f 6s electron pair
correlation were obtained by unrestricted double replacement
4f 6s → vv′. Based on these CI calculations, the contributions
from each correlation subset to the total energy were evaluated
by the absolute value of correlation energies 	E.

1. Valence correlations

The contributions from the different valence correlations
to the total energy E0 of the ground state 4f 66s2 7F 0 and
the excited state 4f 66s6p 9Go

0 (E1) are presented in Fig. 2.
For the ground-state total energy E0, the individual electron
correlations are 4f , 6s, 4f 2, 4f 6s, and 6s2. It was found
that the one-body correlation effects from valence orbitals are
negligible. The most important valence correlation is from the
4f 2 electron pair, while the contributions from the 6s2 and
4f 6s pair correlations to the correlation energies are much
smaller than it.

The contributions of the specific correlation effects for the
excited state are similar to that for the ground state. The
one-body correlations also have a negligible effect on the
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FIG. 2. (Color online) Contributions from the different valence
correlation effects to the total energies for ground state 4f 66s2 7F 0

(E0) and exited state 4f 66s6p 9Go
0 (E1). The contributions were

evaluated by the absolute value of correlation energies 	E.

total energy E1. The most important valence correlation is
from 4f 2 electron pair, and the 4f 6s and 4f 6p correlations
contribute little to the total energy. This result indicates that the
electrostatic interaction between the deep-lying 4f electron
and outer 6s and 6p electrons is very weak.

Although essentially important for the total energies, it was
found that the correlation between 4f 2 electrons has only a
small influence on the excitation energy E( 9Go

0 - 7F 0). The
change in excitation energy E( 9Go

0 - 7F 0) mostly comes from
the difference of electron correlation effects involving the
external 6s6p and 6s2 electrons. This could also be due to the
weak interaction between the 4f electron and outer electrons.

The excitation energy E( 9Go
0 - 7F 0) calculated with these

valence-valence (VV) correlations is 10 394.95 cm−1 (see
Table II), compared with the experimental value of 13 796.36
cm−1. Apart from the valence correlation effects, there are
other types of correlation effects involving the core shells. The
difference of 3000 cm−1 should come from the core-valence
(CV) and core-core (CC) correlation effects.

2. Correlations involving core shells

In Fig. 3 we present the contributions from the differ-
ent correlations involving core shells 4d5s5p to the total
energy E0 for the ground state 4f 66s2 7F 0 and the exited
state 4f 66s6p 9Go

0 (E1). The contributions from one-body
correlations are quite small except for the 4d electron. In
addition, the CV correlation effects between core and 4f

electrons, especially for the 5p4f and 4d4f electron pair
correlations, are very important to the total energy E0. For
CC correlations, only the nl2 pair correlation effects were
illustrated in the figure because they are more important than
correlations between electrons in different orbitals; e.g., the
contributions from 5p2 and 4d2 pair correlations exceeded
10 000 cm−1. These correlations involving 4d and 5p shells
strongly influence the atomic state wave functions. The one-
and two-body correlation effects involving 3spd4sp shells

FIG. 3. (Color online) Contributions from the different electron
correlation effects involving core shells 4d5s5p to total energies for
ground state (E0) and exited state (E1).

were also taken into account for the ground state, but their
contributions are much smaller than 4d5s5p shells.

For the exited state, due to the huge CSF space arising from
the reference configuration 4f 66s6p, only CV and the most
important part of CC correlations (i.e., the nl2 pair correlations)
were considered. The effects of electron correlations involving
4d5sp shells to the total energy are similar to the ground state
7F 0. The 5p4f , 4d4f , 5p2, and 4f 2 electron pair correlation
effects are most important, and the contributions from the
correlations between the core and the 6p electrons are even
smaller than 6s pair correlations.

As can be seen from Fig. 3, the correlations involving
5p and 5s electrons have a significant influence on the
excitation energy E( 9Go

0 - 7F 0). However, it seems that these
core correlations would decrease the E( 9Go

0 - 7F 0), while the
result without core correlations lowers the experimental value
by about 3000 cm−1. This could be because the convergence
in the present CI calculations was slowed down by the fact
that the virtual orbitals were optimized to accommodate the
contributions from only valence correlations.

In order to obtain reasonable contributions from the corre-
lation effects involving 5p and 5s electrons to the excitation
energy, we have reoptimized the virtual orbitals in MCDHF
calculations with the inclusion of electron correlations involv-
ing core orbitals 5s and 5p, respectively. In Fig. 4 we present
the contributions from these electron correlation effects to the
total energy for the ground state (E0) and the exited state (E1)
with the new set of virtual orbitals. The contributions to the
total energy are similar to those using the previous orbital set;
that is, the 5p4f and 5p2 electron correlation effects are most
significant. However, the 5p4f and 5p2 pair correlations have
a negligible influence on the excitation energy. Additionally,
the correlations between 5p and external 6s and 6p electrons
are most important to the excitation energy. For the 5s electron,
the contribution from the 5s4f correlation to the excitation
energy is also very small, and the correlations between 5s and
outer 6s6p electrons have a negligible effect on both total and
excitation energies.
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FIG. 4. (Color online) Contributions from the different correlation effects involving 5p and 5s electrons to total energies for ground state
(E0) and exited state (E1). In order to obtain accurate contributions for the analysis on excitation energy, the virtual orbitals are reoptimized to
accommodate the correlations involving 5p and 5s electrons, respectively. See text for further details.

These individual contributions indicate that the core corre-
lations are very important for total energies. For the excitation
energy E( 9Go

0 - 7F 0), the CV correlation effects from 5p

electrons were found to be significant and tended to improve
the result without core correlation.

C. Breit and QED corrections

In Table III we display the excitation energies of 4f 66s6p
9Go

0,1 and 9Fo
1 states, as well as the correction of Breit

interaction and QED effects in the single-configuration ap-
proximation. It was found that these high-order corrections
have a negligible effect on excitation energies. The remaining
discrepancy between calculations and experimental values is
mostly attributed to the electron correlations involving core
shells which are not included.

IV. CALCULATION OF ATOMIC PROPERTIES

A. Excitation energies and oscillator strengths

1. Calculational model

As mentioned above, the first-order correlations could not
be adequately included in the calculations for Sm with respect
to the open 4f shell that results in a huge CSF space. In order
to carry out an accurate calculation of the excitation energies

TABLE III. Breit and QED effect on the excitation energies of
4f 66s6p 9Go

0,1 and 9F o
1 states of Sm in cm−1. DHF indicates the

uncorrelated Dirac-Hartree-Fock calculation, and VV indicates the
multiconfiguration calculation with valence-valence correlations.

Model 9Go
0 - 7F 0

9Go
1 - 7F 0

9F o
1 - 7F 0

DHF 6 694 6 899 7 944
VV 10 394.95 10 601.49 11 624.21
Breit correction −67 −89 −77
Breit and QED correction −114 −136 −124
Experiment [5] 13 796.36 13 999.50 14 863.85

and transition probabilities, the important specific correlations
should be selected to form the ground and excited atomic
state wave functions, based on analysis of electron correlation
effects. Also, the orbitals need to be optimized to accommodate
the contributions from the selected electron correlations in the
framework of the MCDHF method.

As discussed in Sec. III, the valence correlations involving
outer 6s and 6p electrons should be included in this correlation
model, which significantly influence the excitation energy.
Apart from the valence correlation, the CV correlations were
found to be very important as well. Therefore, in our MCDHF
calculations, the 4f 6s, 4f 6p, 6s2, 6s6p, 5p6s, and 5p6p

electron pair correlations should be included.
For the transitions from 4f 66s6p 9Go

1 and 9Fo
1 to 4f 66s2

7F 0,1,2, the levels belonging to the lower and upper configu-
rations were optimized in two separate MCDHF calculations.
At the starting point, the occupied orbitals were obtained in
the single-configuration approximation. Then we extended our
calculations to include the selected correlations, which further
included the important core correlations compared with the
calculations in Table II. The CSFs were obtained by single
and double substitutions from the selected electron pair to
virtual orbitals. Although a larger virtual orbital set is more
conducive to including the selected correlations, only the
“2spd1f ” virtual orbitals were generated in our calculation
due to the large size of CSFs. The number of CSFs within this
computational model is given in Table IV. The configuration
space is considerably smaller than the one generated by the
conventional active space approach. For example, the number
of CSFs with this correlation model for the 9Go

1 and 9Fo
1 state

is 291 689, compared to 20 701 402 CSFs obtained by SD
substitutions from orbitals 4df 5sp6sp to the same orbital set.

2. Results

The transition energies and oscillator strengths of transi-
tions from 4f 66s6p 9Go

1 and 9Fo
1 to 4f 66s2 7F 0,1,2 states

for different configuration models are presented in Table V
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TABLE IV. The number of CSFs as a function of the virtual
orbital set in the MCDHF calculations with this correlation model
(described in Sec. IV A 1): “nspdf ”, virtual orbital set; J P , total
angular momentum (J ) and parity (P ) of an atomic state.

Model J P = 1o J P = 0e J P = 1e J P = 2e

Single configuration 252 14 19 37
“1spdf ” 113 231 2280 10 440 23 220
“2spd1f ” 291 689 5087 26 120 60 421

and compared with other theoretical and experimental data.
The large discrepancy between single-configuration results
and experimental values indicates that the strong electron
correlation effects exist in Sm I. Due to the computational
limitation at that time, only part of the VV correlation could
be included in Porsev’s CI calculation [9], and Porsev’s
results of transition energies are about 2000 cm−1 lower than
experimental data. The present multiconfiguration approach
gave much better results. For example, the excitation energy
of 4f 66s6p 9Go

1 was improved to 14 265 cm−1, only 266 cm−1

higher than the experimental value. This result indicates that
this correlation model could account for the major difference
of the electron correlation effects between ground and exited
states.

The oscillator strengths in Babushkin (length) and Coulomb
(velocity) gauges (fB,fC) for transitions from 4f 66s6p 9Go

1

and 9Fo
1 to 4f 66s2 7F 0,1,2 states are also given in Table V. It

can be seen that the electron correlation effects on the oscillator
strengths are remarkable. Compared with Porsev’s results,
the oscillator strengths in the Babushkin gauge agree well
with experimental data, and the agreement was improved with
increase of configuration space. For the 9Fo

1 -7F0,1 transitions,
which have the largest transition probabilities, the deviations
are less than 10% from the experimental values. However, the
transition rates for weak lines are less accurate than those for
strong lines, since the values are too small and thus more
sensitive to electron correlation effects, especially for the
9Go

1 -7F1 transition.

FIG. 5. (Color online) Radial distribution of the transition matrix
element 〈 7F 0 ||O (1)|| 9Go

1〉 in Coulomb and Babushkin gauges.

Meanwhile, we noted that the inconsistency in the oscillator
strengths between different gauges is very large. The oscillator
strengths in the Coulomb gauge are much larger than those
in the Babushkin gauge. The gauge difference is ascribed to
the fact that the E1 transition amplitudes in Babushkin and
Coulomb gauges are sensitive to different radial regions of
the wave functions. Therefore, we defined a radial-dependent
factor Cif (r) by

Mif =
∫ ∞

0
Cif (r)dr, (9)

where Mif is the radiative transition matrix element. In Fig. 5,
we illustrate the radial dependence of Cif (r) for the transition
matrix element 〈 7F 0 |O(1)| 9Go

1〉 in Babushkin and Coulomb
gauges. It was found that only the wave function in the larger r

region contributes significantly to the E1 transition amplitude
in the Babushkin gauge, while the transition matrix element
in the Coulomb gauge is very sensitive to the whole region

TABLE V. Excitation energies E (in cm−1) and oscillator strengths f (10−4) for E1 transitions from odd-parity 9Go
1 and 9F o

1 states to
even-parity 7F 0−2 states: B, Babushkin gauge; C, Coulomb gauge; “nspdf ”, virtual orbital set of the MCDHF calculation with the correlation
model described in Sec. IV A 1.

9Go
1 - 7F 0

9Go
1 - 7F 1

9Go
1 -7F2

Model E fB fC fB/fC 	E fB fC fB/fC E fB fC fB/fC

Single configuration 6 899 1.66 0.07 42 6 621 0.01 0.02 0.45 6107 0.60 0.01 63
“1spdf ” 13 087 16.35 61.3 0.27 12819 10−6 0.03 3*10−5 12305 7.56 33.4 0.23
“2spd1f ” 14 265 11.05 22.7 0.49 14001 0.006 0.03 0.24 13488 4.01 9.46 0.42
Porsev [9] 11 533 6.9a 11248 0.1a 10723 2.8a

Experiment [10,13] 13 999.50 12.5 13 706.92 13 187.58 5.7
9F o

1 - 7F 0
9F o

1 - 7F 1
9F o

1 -7F2

Model 	E fB fC fB/fC E fB fC fB/fC 	E fB fC fB/fC

Single configuration 7944 4.07 1.34 3.03 7665 5.70 3.42 1.7 7151 1.47 1.98 0.74
“1spdf ” 14127 46.4 134.3 0.35 13859 42.2 118.9 0.35 13345 4.66 10.7 0.44
“2spd1f ” 15291 27.8 47.6 0.58 15026 34.2 57.7 0.59 14514 6.54 10.0 0.65
Porsev [9] 12674 19.6a 12389 30a 11864 9.0a

Experiment [10,13] 14863.85 28.2 14571.21 31.7 14051.93

af = fBEexpt/Eth.
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(a) from different one-body electron correlations (b) from different two-body electron correlations

(c) from different one-body electron correlations (d) from different two-body electron correlations

FIG. 6. (Color online) Contributions from different one- and two-body electron correlation effects to HFS constants A and B of the 4f 66s2

7F 1 state. The contributions were evaluated by the difference between the multiconfiguration and single-configuration values.

of wave functions. Meanwhile, there are large cancellations in
the integral of the transition matrix element in the Coulomb
gauge, which lead to the requirement of higher-quality wave
functions. As a result, the oscillator strengths in the Babushkin
gauge are more reliable than the ones in the Coulomb gauge.

In this work, only the selected first-order electron cor-
relations were taken into account in the calculations. The
uncertainties of the transition energies and oscillator strengths
are mainly attributed to the higher-order and the residual
first-order electron correlations. The comparison with the
experimental data presented in Table V can give us a rough
estimate of the uncertainties of our results. Approximately,
the errors in the present calculations of the transition energies
are 2–3 %. For the oscillator strengths, the differences between
the results in the Babushkin gauge and experimental values are
about 30% for the 9Go

1 -7F2 transition, and 10% for the stronger

lines. Next, we examine the influence of different correlation
models on the HFS constants.

B. The hyperfine constants

Atomic HFS provides an important test for ab initio atomic-
structure calculation, since hyperfine interactions are sensitive
to electron correlations. Cheng and Childs calculated the
ground-state multiplet HFS constants of the Sm atom within
the single-configuration approximation [16]. The results are
in quite good agreement with experiment [15]. Later, a
multiconfiguration calculation was reported by Dilip et al. [14]
with worse results compared with experimental values. In view
of this, we investigated different electron correlation effects
on HFS constants and then carried out new multiconfiguration
calculations for the 4f 66s2 7F 1 state.
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TABLE VI. The hyperfine constants A, B, and B/Q for the 7F 1

state of 147Sm. VV, multiconfiguration calculation with valence-
valence correlations; “nspdfg”, virtual orbital set of the MCDHF
calculation with the correlation model described in Sec. IV B;
μ = −0.812μN and Q = −0.261b were taken from Ref. [28].

Model A (MHz) B (MHz) B/Q (MHz/b)

Single configuration −33.73 −75.89 290.77
“1spdfg” −99.45 −26.22 100.46
“2spdfg” −30.77 −60.19 230.61
“3spdfg” −31.89 −60.88 233.26
Dilip [14] −23.12 −35.70
Cheng [16] −33.77 −58.88a 290.05
Experiment [15] −33.493 −58.688 224.86

aCalculated with Q = −0.203b.

In Fig. 6, we present the contributions from the different
correlations to the magnetic dipole HFS constants A and
electric quadrupole constant B of the 4f 66s2 7F 1 state for
the 147Sm isotope with nuclear spin I = 7/2. Using the
experimental nuclear parameters taken from Ref. [28], the
contributions were evaluated by the difference between
the multiconfiguration and single-configuration values. It was
found that the one-body electron correlations are very impor-
tant to the constants, since the major corrections for hyperfine
interaction are the spin and orbital polarizations [19]. The
two-body electron correlations have a relatively smaller effect
on the HFS constants, although they are essentially important
for the total energy. Therefore, in our MCDHF calculations the
one-body electron correlations from 3spd4spdf 5sp6s shells
were chosen to form atomic state wave functions.

Using the computational model described above, the HFS
constants A, B, and B/Q of the 4f 66s2 7F 1 state for the 147Sm
isotope are presented in Table VI. In the single-configuration
approximation, our result for the constant A agrees with the
similar work of Cheng and Childs [16] and experimental
measurement [15] quite well. Reference [16] provides a better
result for constant B, but they used a fitting electric quadrupole
moment Q. The similar B/Q results from Ref. [16] and ours
are given in this table. In our multiconfiguration calculations,
the HFS constants A and B were significantly changed by the
considered electron correlations, and then they were converged
with the expansion of the configuration space. The results
of both constants A and B have a good agreement with
experimental data. Moreover, the constant B was improved
from the single-configuration calculation, only about 2 MHz
lower than the experimental value. The large discrepancies
between Dilip et al.’s multiconfiguration calculation [14] and
experimental data could be because they only partly considered
VV correlations, which could not improve the results when the
electron correlation effects balance out.

For the exited state, there are no theoretical predictions of
HFS according to the best of our knowledge. Using the same
computational model, the results of the HFS constants for
4f 66s6p 9Fo

1 and 7Go
1 states are shown in Table VII. In this

case, the single-configuration calculations could not provide
reasonable results. For example, the calculated HFS constant
B of the 7Go

1 state is 10.79 MHz while the experimental value is
−9.63 MHz [29]. Although our MCDHF calculations of HFS

TABLE VII. The hyperfine constants A and B for 4f 66s6p 9F o
1

and 7Go
1 states of 147Sm: “nspdf ”, virtual orbital set.

9F o
1

7Go
1

Model A (MHz) B (MHz) A (MHz) B (MHz)

Single configuration −241.05 19.24 −171.83 10.79
“1spdf ” −539.05 17.27 −89.22 −14.11
“2spdf ” −326.12 15.86 −169.75 −12.49
Experiment [29] −423.34 13.21 −212.62 −9.63

constant A were not fully converged, the values of constant B

were largely improved by the captured one-body correlation
effects. The constant B of the 7Go

1 state becomes −12.49 MHz,
much closer to the experimental value.

In our calculations of hyperfine constants, only the one-
body electron correlations were considered. All the two-body
correlations and the higher-order corrections contribute to the
uncertainties. However, the errors of both constants A and B

of the 4f 66s2 7F 1 state were found to be less than 5%. For
the 4f 66s6p 9Fo

1 and 7Go
1 states, the accuracy of the results

mainly depended on the convergence of the calculations.
Comparing with experimental values, the deviation of the
hyperfine constants of 9Fo

1 and 7Go
1 states are about 20–30 %.

V. CONCLUSION

Recently, the partitioned correlation function interaction
(PCFI) approach was developed for complicated atoms
[30,31], which relaxes the orthonormality restriction on the
orbital basis and breaks down the originally very large calcu-
lations into a series of smaller calculations. The subspace of
CFSs makes it easier to capture the effects weakly connected to
total energy, which could be significant for some atomic prop-
erties. For the calculations of a complicated atom like Sm, with
complicated and strong electron correlation effects, it would
be very useful to divide the electron correlations. In this work,
we also divided the first-order electron correlations into several
subsets, but we used the MCDHF method to investigate these
correlation effects on total energies, excitation energies, and
HFS constants. It was found that the core correlations are of im-
portance for the total energies. However, only the correlations
involving 6s and 6p valence orbitals significantly influence
the excitation energies, although they make relatively small
contributions to total energies. For HFS constants, the major
corrections are from the one-body electron correlation effects.

Based on the analysis of electron correlation effects, the
important configuration state wave functions were selected to
calculate the different atomic properties using the MCDHF
approach. The results of transition energies and oscillator
strengths from 4f 66s6p 9Go

1 and 9Fo
1 to 4f 66s2 7F 0,1,2 states

have a much better agreement with experiment, compared
with previous calculations without core correlations. Further-
more, the HFS constants were also calculated for examining
correlation models. It was found that the validity of the
single-configuration approximation is restricted on ground-
state multiplets and more complicated electron correlations are
required for treating the HFS for excited states. By including
the important correlation effects, the reasonable results were
obtained for 4f 66s6p 9Fo

1 and 7Go
1 and 4f 66s2 7F 1 states.
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